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Abstract

We construct (integral) interpolationg subspline curves
for given data points and knot vector. The algorithm is
very close to B-spline approximation. The idea is to blend
interpolating Lagrangian splines by B-spline techniques.
All is connected in affinely invariant way with the control
points and the knot vector. We are able to show, that our
scheme produces high quality subsplines, which include
known procedures like Overhauser or quintic
interpolation schemes. In addition we may sweep to B-
splines and return in a very lucid way. Examples show the
power of the method. The given procedure allows
generalisations to rational subsplines and to tensor
product interpolating surfaces.

0. Introduction

The paper deals with the following interpolation
problem: n+1 data points {pg,...p,} and knots

uy <4y <....<u, be given. Determine a subspline

k(t) (¢t €lug, u,]) of class C™ with k(w;) = p; for all i
=0,...,n . Although solutions are well-known, we will add
a new idea to construct such subsplines in a way related to
B-spline techniques.

In the last years many new attempts have been made to
join the well-known algorithms of freeform curves (B-
Splines...) and interpolation schemes. In {1] recently

socalled X-splines of class C2 have been considered,
which consist of (non integral) rational segments of
degree 5. These (sub)splines allow interpolation and
approximation as well. [1] have shown, that these X-
splines are close to (but not identical with) B-splines.

The idea of the following is to use Lagrangian
interpolation for certain sets of the data points
{Di>..-Divx} and corresponding knots. The resulting

curves denoted by I:-(z) then are blended by normalized
B-Spline basic functions N; ;(¢) of degree &-1 and give

the interpolant k(f). As Ti(um) = P, for i= m-k, ..., m,

for the corresponding subspline we have k(tty) = P

This idea is close to the paper [3] - there Bézier and
Lagrange techniques are linked.

Figure 2: Closed interpolant for k=4




We will be able to proof, that this subspline in general

is of class C*¥1. The segments are integral rational
curves of degree 2k-1. Furthermore, our subspline is
connected in affinely invariant way with the set of points
{Po,---Pn} » If the knot vector (u, ...,4,) does not

change. It is easily possible to sweep to and from B-
splines.

1. Lagrangian interpolants

In affine space 4;(R) a set of points {py,... py} and
knots (up <) <.....<u,) are given. We fix an integer .
Then we are able to compute the unique Lagrangian
interpolant i;(t) of degree &, which interpolates the points
{D;»..- Di+k} at parameters (u;,...,u%x). We determine

these interpolants for i=0, ..., n-k. With the Lagrangian
polynomials of degree £
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for j=0, ..., k we define
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and for i ;= m-k, ..., m we have

(1.3)  L(ty) =Pm-

2. Definition of the interpolant

We want to blend these interpolant curves (1.2) by B-
spline techniques. As usual we define normalized B-spline
basic functions via the recursion formula: For
i=0,.,n+k-1:

1 for t €lu;,u;

1) Nii(:= I
0 else
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l—uj

2) N j(0):= N, j-1(®) +

Uiy j-1 = U
u,-+j -1
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for j = 1,...,k with the additional definitions % :=0 and

Np_k 1(#4y—k+1) = 1. These notations follow [6]. Now
we define a (sub)spline curve by

n—k
@2) k@)= Q50O Ny@®

i=0
for t € [ug_1,up—k+1]. Like in the case of B-spline
curves for ¢t €[ty Upms1) we  have

m -
k()= DO Nig@).

i=m—k+1
3. Properties of the subspline curve (2.2)

a) For m = k-1, ..., n-k we have:
k() := ) () Ni g Ct) =
i=0

m
=l Ny () = |use (13) |=

i=m—-k+1

m
= Z Pm Nix(um) = | partition of unity | =
i=m-k+1
= Pm -
Thus our subspline I?(t) (2.2) with (1.2) interpolates the
points  {Pg_y,....Pn—k} 4t the  parameters

(Ug—1s-- s Up—k) -
b) Now we state the following

Theorem 1: The subspline k(t) (t € [Ux_1stp-k+1])
(2.2) with (1.3) is of class CF~1.

Remarks: 1) The class ckVis surprising. If we put
T,-(l) := p; for all =0, ...,n we gain a B-spline curve with
control points {py,... p,} (of course the curve does not
interpolate the given points any more). This B-spline

curve is of class C*~2 at our values (Ugyeens Up—k-1) -

2) The segments of our subspline are integral rational
curves of degree k+k-1 =2 k - 1. Thus curves with even
degree are not generated by our procedure.

Proof of theorem 1:

The only problems of discontinuity may occour at the
values ¢ = u,, (m =k, ..., n-k-1), where segments of the
subspline are linked. We use well-known properties of B-
spline basic functions of degree k-1 (see [6]):

We consider two adjacent segments of the subspline
belonging to values  €[u,_,u,) and  €[uy,up1) .
We compute basic functions for the interval



t €[ty,_1,4,): The corresponding interpolating curve

segment then is given by
n-k

G0 k@ := D) Nig@).
i=0

We denote basic functions for the adjacent interval

*
t €[y, umy1) by Npoj j (1)
segment then is represented by

n—k_ .
200 Nip@.
i=0
Both curve segments are rationally parametrized by .
At ¢ = u, we may determine derivatives of (3.1) and

(3.2) up to order &-1. Using chain rule we gain

- the corresponding curve
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d'k L L dvE| dUN
63 ay| L 2 @, @
and
P FVE| d'N;
6 | - ZA(VJ) Z @, :,"
thy V=0 ty
for j =0, ..., k-1. There A(v,)) denote integers not

depending on ¢ or the knot vector. For example we have
A0, )) = 4G, N=1.

We know, that B-spline curves are of class ck-2 at
t = u,, . Therefore we have

v .
o5 TNuk| 4Nk
(@’ (@n”
Uy, Un
forall v=0,....k-2 and i=0, ..., n-k. Thus
n ig*
3.6) d—’; E < kj forj=0, ..., k-2.
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But for our subspline we gain more: We have
&k
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(3.5) shows, that the first sum in (3.7) is the same as for
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5,- = 2,'-(u,,,) , this term can be interpreted as the (k-1)-th
derivative of the B-spline curve of degree 4-1 belonging to
the control points {5,- = 7,-(u,,,), i=0,..,n—k} and the
given knot vector (ug, ...,%,) . These derivatives may be
determined via the following recursion formula (see [6], p.

. Now we discuss the remaining term

of (3.7: If we put

170):
n—-k Nik n-k
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with
(3.8)  E[i,0]:= I (tyy), i=0,..,n-k and
cli,jl= clij —ul,]_,_; c'[i;l'j_ll for j>1.
-

We know, that we have N,,_j1(u,) =1 - all other

N; 1(uy,) are zero. Therefore we may write

(3.9) Z l,(um) (k=D! E[m-1Lk-1].

(3.8) shows, that we need c[m - £,0],...,c[m—-1,0] in
order to determine the only interesting vector
cfm-1,k-1]. For all these vectors we have
élm-£k0)=..=clm-10]=p,—1 (see (1.3)). The
recursion formula (3.8) then produces ¢[m—1,k-1]=0.

The second term in the sum (3.7) therefore vanishes. An
analogous discussion may be done for the second curve.
Therefore we have

k-17 k-17*
(3.10) d k_kl = dd k{‘-l
@, @t
Together with (3.6) this finsihes the proof of theorem
1.0

Therefore for the case £ = 2 we gain a subspline of

class C1. Comparing with [2] we see that we have got the
Overhauser spline scheme. In the case &k = 3 we get a

subspline of class c? - its segments are quintic integral
curves. Our method of generation therefore gives the well-
known quintic c? spline interpolants (see [9] and [6]). In
general one may follow well-known algorithms to

generate interpolating subsplines of class ck-1 (see [6)).
There exist solutions of this problem with lower degree



segments than that represented here. But with our
method we do not have to solve systems of equations
to compute the spline! Like we will see in chapter 4 our
procedure is a more constructive one. Some of our
examples shall illustrate the case & = 4. There we have

class C3 of the spline scheme. Figure 1 illustrates
interpolation curves with increasing £ = 2, 3, 4. The

continuity then is of class Cl, c? and C3, resp. The
curve becomes "rounder” if £ increaeses.

4. An algorithm to generate points on the
subspline

Algorithm to generate points on the subspline (2.2)
Input: Data points  {pg,... 5,} and knots
(< <...<w,), fixed integer k , parameter value
tefug_y, up—i].
Output: Point I?(t) on the interpolating subspline (2.2)
1) Determine m with ¢ € {uy,, upyy1). If t= u,_; then
m:=n-k-1.
2)FOR v:=0 TO k-1 DO
BEGIN (* Aitken's algorithm *)
FOR =0 TO kDO §; := Pp—v+i
FOR :=0TO kDO
FOR =0 TO k- DO
N Up—y+i+j —8

gi := gi +
Up—y+i+j = Um—v+i

f= Upyyi N
* : gi+1
Up—v+i+j ~ Um—v+i

Fyi= 4o
END.
3) FOR j:=1TO k-1 DO(* Algorithm of Cox- DeBoor
for B-splines *)
FOR /=0 TO k-j-1 DO

= t— Uy -
K= T— 7 +
Umsk~i~j = Um—i

Uppk—i-j — 1

U k—i—j = Um—i

4) k(ty:= 1y .

It is easy to give such an algorithm. We just have to
combine an algorithm producing Lagrangian interpolants
(we use an algorithm presented in [4], pp. 67, called
Aitken's algorithm) with Cox-DeBoor algorithm for. B-
spline curves. In a memory optimized version we get the
boxed algorithm presented above.

Both algorithms (Aitken and Cox-DeBoor) are affinely
invariant. Therefore we have

Theorem 2: The subspline (2.2) with (1.3) s
connected in affinely invariant way with the data points
{Po,---Dn} and the knots(uy<uy <.....<uy). The

subspline interpolates data points {py_i,..., Pp—k} Gt
values ug_1,...., Uy .

5. Remarks and Examples

a) Like in the case of B-splines we may generate open
or closed versions of these subsplines.

Closed interpolation: In this case we just have to go in
the round to gain further input data (as usual in case of B-
splines).

Open interpolation: Like in the case of B-splines we
may count the first and the last interpolation point k-1
times and add knots to the knot vector.

Figures 3 and 4 show some examples for £ = 4 with
chord lenght parametrisation for the knot vector. In figure
3 the version following chapter 4 (without multiple choice
of control points at the ends) is shown. In figure 4 an open
interpolant are drawn. Figures 1 and 2 show closed
interpolants with uniform knot vector.

ps
Figure 3: Interpolants for the case £ =4.

b) We may sweep to B-spline curves of degree &-1:
This may be done by putting i;-(t) = Di+k-1 for certain
i:=m,...,m*, An index shift is necessary: it helps to
avoid undesired loops of the subspline. The resulting
subspline curve then is of class ck2, Figure 5 shows the
situation for the case £ = 4. There the whole B-spline and
a "sweep curve" are shown. The first part of the sweep
curve consists of integral segments of degree 7
(interpolation), the second of B-spline cubics.

If we want to sweep from B-splines belonging to basic
points  {pg,..., Py} to our interpolants for points

{Pm+15--+» Pn} We put 1:-(r) :=p; fori:=0, .., mk For



Figure 4: Interpolants for the case £ =4.

the following Z; () (i > m—k) we proceed as given in 2.
Figure 5 gives an example.

In both cases the whole curve then is of class C*~2 -
the same class as we have for our B-splines.

c) All may be done in a rational version of these
curves. The influence of the weights of the interpolated

Figure 5: Sweeping of interpolants and B-spline
curves for the case & =4.
points shall be discussed in a further paper.

6. Interpolating subspline surfaces.

If a two-dimensional (rectangular) array of data points
and the corresponding array of knots are given, our
procedure may be used to generate tensor product
interpolants. This is an extension of tensor product B-

spline surfaces. The resulting surface patch is of class-

&k Again our interpolants may be swept to B-spline
surfaces like we have seen in the case of curves. Then

continuity is reduced to class C*=2 But this shall be
demonstrated in a separate paper.

7. Conclusions

The paper has shown the construction of an
interpolating subspline scheme, which is connected in
affine invariant way with data points and knots. It is
gained by combining Lagrangian interpolation with B-
Spline techniques. It may be implemented in a very lucid
way by combining two well-known algorithms used for
solving interpolation and approximation problems
(algorithms of Aitken and Cox-DeBoor). We gained
integral segments of a subspline scheme, which may be
blended to B-spline curves. We generated a powerful tool,
which allows interpolation and B-spline approximation at
the same time. We do not need to solve any equation to
gain theses interpolants. The price we had to pay for it is a
high degree of the segments of our curves. But the
possibility to use well-known algorithms to generate the
interpolant justifies the use of this new method, if the
degree of the interpolants is no problem. Rational versions
and extensions to tensorproduct schemes can be handled
by similar algorithms. ’

Figure 6: Further Examples of interpolating subsplines
for k=4.
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Figure 7: Further Example of interpolating subsplines
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