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Abstract: The paper gives a construction of a new series of overconstrained
spatial mechanisms with six systems connected via nine spherical 2R-joints.
The mechanisms are designed by means of plane equiform motions. This
new type of overconstrained mechanisms will be called Mdbius mechanisms.
By removing one of its joints, the so-called reduced Mdbius mechanisms will
be set up, still being overconstrained. A special example is being studied
in detail: It admits interesting self-motions of different degrees of freedom.
This is why it represents a new example of kinematotropic mechanisms.

1. Linear equiform motions with a globally fixed point

The equiform group of the Euclidean plane £* consists of equiform trans-
formations: They do not change angles, but possibly lengths of geometric
figures. Kinematics with respect to this group has first been studied by
(Krause, 1910). We consider special one-parametric equiform motions ¢*:
We fix a point A* and a line g* not containing A*. Then there exists a
one-parametric equiform motion ¢* = (*(¢) := e/e* of a moving plane ¢
with respect to the fixed plane £* such that a point A € e coincides with
the globally fixed point A* € €* and a point P € £ moves on the line ¢*.
Then ¢* moves all general points of € on straight lines (see figure 1). Such
equiform motions are called linear equiform motions with a globally fized
point A* (cf. (Yaglom, 1968), p. 71).

Any line h* (not through A*) is the path of one and only one point
@ € ¢ (construction with the help of equal angles - see figure 1).

We use Cartesian frames {A*, 2*,y*} in £* and {4, z,y} in €, respec-
tively. The motion ¢* can be parametrized by

C* : (lU,y) - ('T*7y*) with
z*(t,z,y) == (¢ cost — ysint)/cost (—7w/2<t<7/2)
y*(t,z,y) :== (z sint + ycost)/cost. (1)



As a consequence, ¢* can be generated by a rotation with the center A*
(angle t) followed by a scaling with the center A* and the factor 1/cost.
The motion ¢* has a rotational symmetry with respect to the center A*.
At the moment ¢ = 0 we have: Observed from A* the points of £ are the
pedal points on their straight line paths.

Figure 1. A linear equiform motion ¢* with globally fixed point A* and some point paths

2. A chain of six linear equiform motions

Further on we will use some considerations of the paper (Roeschel, 1996a).
Taking a sphere ®* (center M*) in a fixed Euclidean three-space E3 we
choose six different points {A} € ®*; ¢ = 1,...,6}. Let the plane 7' be
tangent to ®* at Af. By s}, we denote the intersection lines of the planes
7 and 77; the plane containing s, and M* is called op; (6,7 = L., 6).
Seen from A the pedal points on the lines s} ; are called P, (7 # i mod 2).

We start with six Euclidean congruent linear equiform motions ¢/ () :=
gi/7} in the planes 7* with globally fixed points A} (¢ = 1,...,6). Observed
from the outside, the orientations of {f(t), (5 (t) and ¢f(t) with increasing ¢
are chosen clockwise, the others counterclockwise.

So for all j # ¢ mod 2 the plane equiform motions (}(t) := £;/7; can be
gained from (}(t) by reflection with respect to the plane of symmetry o7 .
As a consequence, for all ¢t € (—m/2,7/2) we can link the moving planes ¢;
and e; (j # i od 2) via the point paths on the straight lines s} ;. All (three)
linked points of the moving plane ¢; determine a triangle. At the moment
t = 0 the positions of these points are just the pedal points F};. Figure 2
shows the situation for 4 = 1 - the orientation of the forward process of the

motions being indicated by an arrow.




Figure 2. The tangent plane 7{ and its neighbours 75, 75 and 7§

This procedure in general gives a configuration of six triangles in the
six tangent planes 7 which are linked to each other. The configuration
remains closed, if all plane linear equiform motions ¢; with the globally
fixed points A} are performed with the same time parameter t.

Figure 8. The closed chain of 6 triangles in the tangent planes of a sphere

As an example Figure 3 shows this situation at the moment ¢ = 0. The
triangles are parts of six planes tangent to the sphere. Our linked points are




given by small spheres. As mentioned before we have: At the moment ¢t = 0
the linked points are the pedal points on the straight lines sf’ b (i # j mod 2).
Consequently, their construction is easy.

It seems to be impossible to gain a configuration without self-intersections
of the six triangles. Our configuration can be interpreted as an immersion of
a part of a Mobius strip into the sphere (see figure 4). As this is impossible
without self-intersection, the same is supposed to hold for our configuration
as well.

The same procedure can be performed for any even number 2n > 6.
This would generate more complicated configurations consisting of n—gons
in the planes tangent to our sphere. As the number of intersections increases
with rising n, we will not consider these generalisations in this paper.

A%

Figure 4. Mdobius strip: Systems given by points A, linked systems indicated by con-
nections of points

3. Mbobius mechanisms

Our six linear equiform motions ¢} = e;/7; are congruent (even with re-
spect to the time parameter t). The common scaling factor is 1/ cost. If we
perform all linear equiform motions (¥(¢) and an additional scaling with
respect to the center of the sphere and the factor cost, we gain a series of
spatial one-parameter motions which turn out to be Fuclidean, due to the
scaling factor having been chosen appropriately. These motions shall be
called 7} (t) of systems ¢; with respect to the fixed space. All these motions
are pairwise congruent (including their parametrisation!). Each of them has
a fixed direction (a} := [M*, A¥]). As shown in (Roeschel, 1996a), 0 (t) is
an axial DARBOUX-motion with the fixed axis a]. Its parametrisation is
given by (see (Bottema and Roth, 1979 ) pp. 301)
7% (z,y,2) — (¥, y*, 2%) with
z*(t,z,y,2) =z cost — y sint
‘ i (2)
y*(t,z,y,2z) =z sint + y cost
2*(t,x,y,2) :=cost + z.




The relative motion of two different systems has been studied in (Roeschel,
1996b): In general it is a rational one-parameter motion of degree 4.

Scaling does not change the angles between the moving planes ¢; and
@;. Therefore spherical 2R-joints at the linked points do not affect the
one-parameter motions. We have arrived at a mechnism shown in figure
5: It consists of six systems linked via nine spherical 2R-joints. Its general
degree of freedom is supposed to be - according to the number of systems
and linkages -

F=5x6-9x4=—6. (3)

Our generation, however, guarantees one-parametric movability at least.
Given that it has the topolgy of a Mé&bius strip (see figure 4), we suggest to
call this new family of overconstrained mechansims Mdbius mechanisms. In
order to avoid undesired self-intersections we take some offsets of systems
and build some kind of bridge (see figure 5).

Figure 5. A Mobius mechanism

4. Reduced Mobius mechanisms

Removing one of the spherical 2R-joints, we can get a reduced Mdébius mech-
anism. The moving systems remain well-defined, if one vertex of the trian-
gles is omitted. The corresponding triangle degenerates into a 2—gon. To-
gether with the corresponding revolutes (belongig to one of our 2R-joints)
it determines a system by itself being displayed as a rectangle. In the figures
6 and 7 we have two of them.

This reduced M6bius mechanism consists of six systems linked via eight
spherical 2R-joints. As its theoretical degree of freedom would be f =




5 X 6—8 x4 = — 2 this new mechanism keeps on being overconstrained. It
possibly allows more motions than that of our construction.

The following figure 6 shows a special example starting with the six
planes of a cube. There 77, ..., 7 are the faces of a belt, 77 and 7§ being the
other faces. Given that 77 and 7§ are parallel planes, their 2R-joint would
be at infinity. If we omit this joint we get the reduced Md&bius mechanism
shown in figure 6.

It remarkably admits a great variety of self-motions: Some of them turn
out to offer two degrees of movability:

a) Two independent rotations with respect to two different
axes of the system

b) A one-parametric motion with parallel (or antiparallel)
arms combined with an independent rotation (two possibilities)
¢) A two-parametric translatoric motion with spherical paths

All three do not contain the one-parametric motion, which has been worked
out by our construction. There exist further one-parametric self-motions of
the mechanism, which have not been listed above. This is why the inves-
tigation of this interesting type of mechanism is by no way finished until
now. This mechanism belongs to the family of linkages offering various

Figure 6. A reduced Mobius mechanism starting in the planes of a cube (¢t = 0)

self-motions of different degrees of freedom, which are essentially diverse.
Such mechanisms are called kinematotropic linkages, which have recently
been studied in (Wohlhart, 1996).

Figure 7 shows some positions of the one-parameter motion which we
were starting with. At ¢ = +7/2 some edges of the mechanism coincide.
So our mechanisms provides movability without self-intersections for ¢ €

(—1/2, 7/2).




5. Conclusions

Following the ideas of a previous paper (Roeschel, 1996a) we were able
to design a new series of overconstrained mechanisms. They consist of
six systems linked via nine spherical 2R-joints. As the generation of these
mechanisms used an immersion of a Mdbius strip into a sphere, they were
called Mdobius mechanisms. Removing one of the 2R-joints we could avoid
undesired self-intersections gaining the so-called reduced Mobius mecha-
nisms. These new mechanisms are related to the famous Heureka-polyhedron
and the Turning Tower studied in various papers (e.g. (Stachel, 1991),
(Stachel, 1992), (Wohlhart, 1993a), (Wohlhart, 1993b), (Wohlhart, 1995)
and (Wohlhart, 1998)). Different to those mechanisms our new series con-
sists of merely six moving systems.

Figure 7. 'The reduced M&bius mechanism of figure 6 at t = 7/4 and t = 47 /9
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