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ABSTRACT

The first few sections of this paper recall methods and re-
sults of the series by Roeschel (1995) — (2001): The defini-
tion of overconstrained mechanisms, the set up of special
plane equiform motions and their application to the making
of overconstrained mechanisms. Subsequently we go for
some novel mechanisms of this type: We will consider
starting polyhedra with a closed band structure. Bands with
and without twist will be studied in detail. Nice examples
with one twist are gained from the Moebius strip. This will
result in the generation of ocerconstrained polyhedral mod-
els which we call Moebius-mechanisms. A physical model
without self-intersections is presented.

Key words: Kinematics, Overconstrained linkages.

1. OVERCONSTRAINED MECHANISMS

In the 3-dimesnional Euclidean space a displacement is de-
termined by 6 parameters (3 from translations, 3 from rota-
tions). Multibody mechanisms consist of a series of n rigid
bodies, which are linked by r linkages. The number of in-
dependent parameters of the mobility of a linkage is called
the degree of freedom f;of the linkage. Without consider-
ing geometric details and possible dependencies the mecha-
nism will have a theoretical degree of freedom F, which
amounts to

r
(1) F =6x{(n-1-r)+ Y f;.

i=l
This formula is referred to as Gruebler’s formula (see Beyer
(1963) p.102. F <0 characterizes theoretically rigid
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Figure 1: A linear equiform motion with globally
fixed point A* at 3 positions and 3 point paths

mechansims. If all geometric properties and dependencies
of the mechanisms are known, we are able to compute its
actual degree of freedom @ . If @ > 1 the mechanism will

be moveable, regardless of F < (. Such mechanisms are

called overconstrained. Many examples of such overcon-
strained mechanisms are known. The paper will add some
new examples which are generated with the help of polyhe-
dra — therefore we will speak of moveable models of poly-
hedra. As a special example we refer to the famous
HEUREKA-Polyhedron and the proof of its moveability by
Stachel (1991).

2. PLANE LINEAR EQUIFORM MOTIONS WITH A
GLOBALLY FIXED POINT
In the Euclidean plane there are equiform motions
&£(t):=E/E* (fixed plane E*, moving plane E) with a
globally fixed point A*e E* which move all points of E
on straight lines (not through A*). We use Cartesian frames
{A*,x*, y*}and {A, 52 y} in E* and E, respectively. Then
&(t) can be parametrized by
(x.y) > (e, y*)

2) x*(t,x,y)= (xcost — y sint)/cost

y*(t,x,y)= (xsint + y cost)/cost
with — 7#/2 <t < 7 /2. Any straight line g* (not through

A*) is the point path of exactly one point of the moving
plane E (see Yaglom (1968) p. 71 and figure 1).

3. A CHAIN OF LINEAR EQUIFORM MOTIONS
This plane configuration is used as the starting element

Ag* =A%, g)(t) = Ey=E/Ey*=E*. Successive reflec-
tions with respect to planes o;*,i = 1,...,k builds up a se-
ries of reflected plane equiform motions g (t) = E;/E; *
where each has straight line point paths and a globally fixed
point A; *e¢ E; *, though they run in different planes E; *

of the 3-space. Moreover, all are congruent even with re-
spect to their parametrisation. Given that the fixed points
A; * do not belong to the intersections E; ¥ E; * or

E; | *N E; * there exists exactly one point in E; with its
point path on E;_; *n E; *. This way, the procedure gen-




crates a chain of equiform plane motions, which are linked
via common straight line paths.

In Roeschel (2001) closed chains of four linked motions of
this type have been characterized: The configuration can be
closed iff the four points Ay *:= A* and A; * cither belong
to a circle, a straight line or are lying on a sphere k. In the
first two cases the corresponding planes E; * (i = 1,2,3)
are gained by succesive reflections of E*:= E,* with re-
spect to the planes of symmetry of the pairs A; | * A; *. In
the third case all planes E; * (including E *) have to be
tangent to the sphere x . Figure 2 shows this situation. Any
two linear equiform motions in the tangent planes E; * and
E;* of a given sphere can be linked by a common point
path, if the orientation fits. This way the linkage points
generate polygons in the planes E; *.' The arrows (figure
2) indicate the orientation of the point paths with decreasing
t

Figure 2: Equiform motion of linked polygons

3. A CHAIN OF LINKED SPACE MOTIONS

If we perform all these linked equiform plane motions,
compose them with similarity transformations (scalings
with factor cos #) from a fixed point O* cancelling out the
common scaling factor and extend the outcome into the 3-
space we get chains of linked bodies. As the angle between
the planes of our equiform motions remains invariant under
these scalings, each two neighbouring bodies Z;_;*,X; *
can be linked via spherical 2R- joints®. The rigid bodies can
be represented by orthogonal prisms: Their orthogonal in-
tersections (basic polygons) are those from figure 2. The

! As all points are in the pedal points of their point paths
(seen from A; *) at the same moment it is casy to

determine the polygons in planes E; *.

* These considerations are a generalisation of a paper by
Stachel (1991), who used this idea to prove the mobility of
the so-called HEUREKA-Polyhedron.

edges orthogonal to the basic plane are used as the 2 inter-
secting axes of rotation building up the spherical 2R-joint.
Figure 3 displays that fact.

There is an interesting special case: It can happen that the
planes E; ; *, E; * coincide. Then the angle between the

linked prisms will be 0. In these cases the 2R-joint will be-
come a 1R-joint with its axis orthogonal to E;_; ¥= E; *.

2nd axls

constant angle

Figure 3: Two rigid prisms linked by a spherical 2R-

4. PRIMARY EXAMPLES

There is a great variety of mechanisms generated this way,
which can be classified with respect to their topological
structure. Most of the examples of Wohlhart (1993a) —
(1998) and Verheyen (1989) can be generated this way.
Figure 4 shows a topologic type of a sphere. It has the
structure of a truncated cube and consists of 14 rigid parts
linked by 24 spherical 2R-linkages. Its theoretical degree of
freedom has the value F = —18.

Figure 5 shows a photo of a physical model of the topologi-
cal type of a torus: It consists of 24 rigid parts linked by 42
spherical 2R-linkages and by 6 1R-linkages. Its theoretical
degree of freedom is F=—-60 (!). As these mechanisms at

least provide one-parametric mobility, we have found a se-
ries of highly overconstrained mechanisms with a stun-

Figure 4: Overconstrained mechanism of the
topologic type of a sphere



ningly wide gap between F and & .

5. BAND-STRUCTURES
A viable option of geting a further class of overconstrained

models of polyhedra is the study of a series of planes E; *
(i=0, ..., n) which build up a folded paper-strip with plane
facets E; *. The paper strip shall be closed — so we add a
virtual plane E,,, * = Ey*. Then we proceed as indicated

in 'section 2: We start with a globally fixed point
Ap*e Ey* (not on any of the intersecting lines with the

neighboring planes) and a given rotational orientation
around Ay * in Ey*. This way we define a linear equi-

form motion &y(¢) = Eg/Eg* with the globally fixed
point Ay * in E( *. In order to get good models of move-
able polyhedra from this starting point we will take a sec-
ond point By *# Ap* in Ej*and define a linear equi-
form motion ¢ () =Ey/Ey *with the globally fixed
point By * which is linked to &g (t) via the common point
path on the perpendicular bisector of Ay* By* (all in
EO * )

Then we succesively apply the reflections with respect to
the planes of symmetry o; * between E;_;* and E;*
containing E;_;* N E; *. The composition of all these re-
flections (i = 1, ..., n+1) makes up a displacement & which
will transfrom (Ey*, £4(2)) into (E, . * €,4(@®) in
Epn*=Ep*.

Figure 5: Overconstrained mechanism of the
topological type of a torus

In order to get a closed loop of linked equiform motions we
additionally must have: 5(80 (t))=e,,+| () = eo(t) and
88 (2)) = ¢o(t) for all £. As we proposed Ay *# By *, this
implies that the restriction of ¢ to the plane Ej * has to be
the identity mapping in Ej *.

The overcoinstrained polyhedral model built up by this pro-
cedure then will have 2X(n+1) rigid prisms (the basic

polygons in general are triangles in the planes E; *) which
are linked by 2x(n+1) spherical 2R-joints and n+1 IR-

joints. They stem from the linkage of &(t) and ¢,(t). The
theoretical degree of freedom of these overconstrained
mechansims therefore will take on the value

(3) F=6x(—n=-2)+5x(n+1)= —-n-"7.

The last considerations make clear that we have to look for
closed paper strips with plane facets E; * (i =0, ..., n) with
the additional property that the composition & of the re-
flections with respect to o; * (i = 1, ..., n+1) induces the
identity in E*.

At this point we have to split our considerations into two
parts depending on the number of twists of the paper strip:

6. CLOSED BAND-STRUCTURES WITH AN EVEN
NUMBER OF TWISTS

Let us restrict ourselves to the case of no twist. Then our
paper strip has the topological structure of a cylinder.
Models of this type are well-known. As an example figure 6
displays a physical model gained by the facets of an or-
thogonal quadratic prisma (n = 3 in formula (3), see Ro-
eschel (2001)). Other even twist numbers can be treated
similarily.

7. CLOSED BAND-STRUCTURES WITH AN ODD

NUMBER OF TWISTS
Let us restrict ourselves to the case of one single twist.

Figure 6: Overconstrained model of cylindrical

type

Other odd twist numbers can be treated in a similar way and
shall not be studied in this paper. Then our paper strip has
the topological structure of a Moebius strip. Models of this
topological structurc — but based on a sphere — have been
called Moebius mechanisms and have been studied in Ro-
eschel (2000). As a Moebius strip cannot be imdedded into
a sphere without self-intersections its physical models ei-



ther must have bridges or some parts must be cancelled (re-
duced Moebius mechanisms).

The procedure presented in this paper is capable of gener-
ating Moebius mechanisms without these distortions: Let us
have a closer look to the situation displayed in figure 7: It
shows a typical model of a Moebius strip. As the Moebius
strip is a one-sided surface we have to go around twice in

order to close the loop.
Let now (see the schematic sketch of figure 8 for k = 5)

E;* be the strarting facets for i = 0,.., k and
Eyiiv) * = E; * fori=0,..., k. This way the last k+1 plane
facet coincides with the first one and we have n=2k+2. The
planes of symmetry of E;_;* and E;* are again denoted

by o;* (i=0,..., k-1). The successive composition of the
reflections with respect to the planes o; * (i =0,... k) will
transform any starting point Ay *e Ep* into points
A;*e E;* and finally a point A, *e E; | *=E*. This
composition will be called ¥. But we have to go into the
second loop: Now Ay, 1 * is used as the starting point,

which now is transformed into further
points Ay ;.1 *¥€ Epy;yq *= E; *. Our closure condition of

section 5 here can be written as: §:= Yoy has to induce
the identity in the plane FEj*. This fact will call identity

property.
Remarks: 1) This last condition makes clear, that not all

Figure 7: A Moebius strip

physical models of Moebius strips with plane facets can be
used as a basic configuration of our proccedure (the one
displayed in figure 8 does not have this property!). We have
to look for Moebius strips with plane facets which addition-
ally fulfill this identity-property.

2) Having found such a model with this identity property,
we are able to proceed according to section 5. We will be
able to establish a physical model of an overconstrained
polyhedron with the basic structure of a Moebius strip.
Figure 9 displays a Moebius strip with 6 plane factes (k =5)
which fulfills our identity property.® This interesting model
has an axial symmetry (the axis is displayed in the figure).

3 Its generation is not trivial: We have to start with 5 plane
facets and have to determine the position of the 6th facet
appropriately to our indentity property.

Figure 8: Moebius strip and possible basic points

There a starting point Ay * is transformed according to our

procedure. The resulting polygons are displayed, too.
Figure 10 shows the resulting physical model of the moving
model consisting of 12 rigid prismas linked by 12 spherical
2R-joints and by 6 1R-joints. According to Gruebler’s for-
mula (1) its theoretical degree takes the value F = -12.

CONCLUSIONS

In the first sections of paper we recalled methods and re-
sults, We presented the use of plane equiform motions for
the generation of a series of overconstrained mechanisms
which are based on equiform considerations in the facets of
a polyhedron. In the present paper we considered starting
polyhedra with a closed-band-structure. Bands with one

Figure 9: Moebius strip with plane facets with an
axis of symmetry (with identity-property)

and without twist are studied in detail. Nice examples with
one twist are gained from the Moebius-strip. Accorind to
our procedure we have built up a physical model of the
Moebius type without selfintersections.
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