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Abstract. We study architecturally shaky Stewart-Gough platforms and characterize the
geometry of its anchor points. The main tool is the connection of geometric objects with
mappings which preserve the structure of the problem. Here, the geometric way is the
use of linear manifolds of correlations and quadratic transformations. By these methods
we show that the anchor points have to be conjugate points with respect to 3-
dimensional linear manifolds of correlations. This result is used to give all possible
configurations of anchor points of architecturally shaky Stewart-Gough platforms.

0. Introduction

The paper is sequel to paper [Mick -Roschel 98). Therefore references to it are prefixed
"I". It deals with six legged Stewart-Gough platforms given by six pairs of anchor points
X and ¥; (4 =1, ...,6), each set on a plane ¢ and ¢, resp. (see figure I.1). In theorem

I.4.1 we gave a characterization of architecturally shaky platforms of this type. Now we
discuss these results in a geometric context: Linear manifolds of correlations are used to
give a geometric characterization of the six pairs of anchor points X and ¥; (i=1, ...,6).

It is shown the theory of n-fold conjugate pairs of points illuminates Karger's
characterisation of architecturally shaky Stewart-Gough platforms [Karger 97].

The paper is organized as follows: In the first chapter well known geometric results on
linear manifolds of correlations between planes are used. The next one gives an
example. In chapter 3 it is shown that, barring a few exceptions, the set of points { X,

Y; } is architecturally shaky, iff it consists of four-fold conjugate points with respect to
a certain set of correlations.

1. Linear manifolds of correlations

The following is a brief summary of well known algebraic facts concerning linear
manifolds of correlations. For further background one may consult [Berzolari 32]. Thus,
we work in the projective space and assume the field algebraically closed. As in 1.2B an
arbitrary (3,3)-matrix A :=(ay;) describes a correlation

(1) KkXee »> k(X)cop
between the points X (xg: x1:x;) of the plane £ and the lines of the plane ¢. The
coordinates of the points Y (yg: y1:y2) of the line x(X) satisfy the linear equation
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We study an r-dimensional linear manifold
r

(3) A=Z/1J- C; (r23) (4, e®)
=1

of matrices spanned by linearly independent matrices C; (j = 1,...,r). This is an analytic

representation of an  (r-1)-parametric  linear manifold of correlations
K,_1:=[x1,...,k ], which is spanned by the (linearly independent) correlations x j

defined by the matrices C; . We determine pairs of points X and Y, which are conjugate
points with respect to all correlations « of the linear manifold K,_q:=[x{,....,x,].

This is equivalent to the fact, that X and Y are conjugate points with respect to the
correlations x ; ( =1, ..., r). An arbitrary point X of & is mapped into r lines & ;(X).

In general they determine an r-sided polygon. If the lines x ;(X) for j =1, ..., r pass
through one point Y'in ¢, X and Y are called r-fold conjugate points.

1) First we investigate two-fold conjugate points. Each pair «4,x; (k # [) of different
correlations defines a mapping

“4) Op1:Xee > QX)=x;(XNnxi(X) ep.

In general it is a quadratic mapping of the points of ¢ to those of the plane ¢ with

three singular points in ¢. In special cases the quadratic mapping can degenerate into a
collineation, which may be a singular one. For all correlations « €[x,x;], the line

k(X) contains the image point Oy ;(X). Therefore two independent correlations from

[xj,x;] produce the same quadratic transformation.

2) Next we consider the linear manifold of correlations spanned by three linearly
independent correlations xy,x;,k,, : Points Xe¢ with images «;(X), k;(X), x,,(X)
passing through a point Y are situated on a plane cubic curve ¢ ; ,, < &, which can

degenerate. It contains the singular points of all quadratic transformations which are
generated by two independent correlations from Kj := [xy,k;,k,,]. For example, the

singular points of Oy ; and Q ,, are on cg ; ,, . These points X ecy ;,, and their
images Y= 0y ;(X) = Ok, ,»(X) are triple conjugate points. The image points ¥ of X

€cy, [ m in general are situated on a plane cubic curve in ¢ .

Consider a special degenerate case of interest: A correlation x with matrix C of rank 1
maps all points of ¢ into one line of ¢. For a given line / in ¢ we get a two-

dimensional linear manifold K5 := [x,k},k,,] of correlations. It is spanned by three
linearly independent correlations x,x,x,, whichmap ¢ to /. Then each point on &
is conjugate to each point on / with respectto X, .

3) Finally, we consider the linear manifold of correlations spanned by four linearly
independent correlations xy,x7,k p,x, : We look for four-fold conjugate points with

respect to Kxy,kx},K,,,%, . Each four-fold conjugate pair of points is triple conjugate.



According 2), the points we seek belong to every cubic curve for all
Ky K3 :=[Kk},k],Km>k,]. We consider a special pair of cubics, for instance ¢y ;

and ¢y ,. These cubics have 9 points in common: Three of them are the singular
points of the quadratic transformation QO belonging to [xy,x;] (4). For the
remaining 6 points X; (i = 1, ..., 6) we have: x;(X;),x1(X;),x,(X;)xp(X;) are
concurrent lines. The common point is denoted by Y;. As mentioned before, ¥; is the
image of X; under the quadratic transformation Qy ;. Thus, in general there exist
exactly six pairs of four-fold conjugate points { X;, ¥;} (i = 1, ..., 6). The other
cubics Cg ., and ¢y , pass through Xj,..,Xg, too. But they do not contain the

singular points of the quadratic transformation Q. ;.

We choose three arbitrary linearly independent correlations from K3 and determine the

corresponding cubic of triple conjugate points: Then in the general case all these cubics
are on the six points X; (/=1, ..., 6).

Remark: These properties are projectively invariant. If we apply (independent)
regular plane collineations to ¢ and ¢, correlations are mapped to correlations of

image data. Conjugate points with respect to given correlations are mapped into
conjugate points with respect to the images of these correlations.

These results are well known in plane kinematics in another context (see [Bottema-

Roth 79, pp. 219]): We
study four or more different
& positions of a moving plane
¢ in a fixed plane ¢ . Each

point X e¢ has positions

X0 X (r23) in .
The perpendicular bisector
of X% and X’ is a line in
@ denoted by «;(X) (¢ =

I,...,). It is well known in
kinematics, that in general
this map «; from the

points of & to these
Figure 1: Four positions of a moving plane perpendicular bisectors is a

correlation. All  circles

containing the positions X ,X1 have their centers on x1(.X). Thus, the quadratic
mapping (4) has its three-position kinematic counterpart in the fact, that the map of the
points of the moving plane to the centers of the circumcircle of the 3 positions
Xx° , X l,X 2 in general is a quadratic one. The respective poles of these three positions

are its singular points. The plane cubic curves of triple conjugate points with respect to
3-dimensional manifolds of correlations from 2) have a four-position kinematic



counterpart. Those points X of ¢ with four positions on a circle in general are situated
on plane cubic curve (triple conjugate points with respect to xq,x9,x3). In Figure 1

there is shown one triple conjugate pair of points {X,, ¥;} and a point X; which does not
have this property . The six pairs of four-fold conjugate points from 3) belong to five-
position theory: We look for points X ine with five positions on a circle. They
correspond to the four-fold conjugate points with respect to x1,x2,k3,k 4 . They are the

intersections of two cubics. In plane kinematics only 4 such points are real, the
Burmester-points. The remaining two are always complex circular points.

2. An example. To clarify the results of chapter 1 we give an example. Let 5 pairs of
points of £ and ¢ be given by coordinates
. X;(1,0,0) X (0,1,0) X3 (0,0,1) X4 (LLD) X5 (xp,5,%1,5%2,5)

Yl (15090) I/2 (091,0) Y3 ({)s(})l) Y4 (1,1,1) },5 @0,5’}’1,5!}’2‘,5)
We compute representations of all correlations (2), which have { X;, ¥;} (i=1,...,5) as
conjugate points. With the abbreviations
(6) Bl =Yk sx5 fork7=0,12.

the 3-dimensional linear manifold K3 of correlations spanned by [k, k2, k3, k4] with
matrix representation (3) and matrices

0 0= Ho2 Hol— H,0 0 wm2—HMy2 Mo~ M2
G =|m2—H1 0 0 G=|0 0 Mo 2~ Ho,1
0 0 0 0 0 0
(7 i
0 m1—m2 Hy1— M1 0 B0—=Ho2 Mo~ H2,0
G =0 0 0 G= 0 0 0
0 Moo-m1 0 Ho,2~ Ho,1 0 0

Thus, our given set of points { X;, ¥;} (i = 1, ..., 5) consists of four-fold conjugate
points with respect to K3:=[x, k2, k3, k4] . But there is at least a sixth pair { Xg,
Yg } with this property:
For the following we assume uq | # #02 . Then (), C, define the quadratic
transformation () 5, which maps the point X(xp,x,xp) €¢ into
Y:= Q) 2(X) (0, 11,32) € ¢ with
Y0 x0 x1 (40,2 = #0,1)

®) yi | =] x1[x1 (ro2 = #1,0) + %2 (41,0 — #o,1)]

2/ \xo [x1 (o2 = p2,1) + %2 (42,1 = #0,1)]

The singular points of this transformation are

! This condition is valid if neither X5 lies on X, X; nor ¥; lieson 15,13



® I'= X1 (1,0,0), II:=X3 (0,0,1) and II1(0, 41,0 — H0,1, H1,0 — 40,2) -

Now we follow chapter 1, 3) and determine the four-fold conjugate points with respect
to K3 . The equations of the curves ¢y  ,, are

€l 2.3 === 0 =xy [x1x2 (41,0 —#0,2)+X22(#o,1 - H,0)+
+xg x1 (40,2 — H1,2) + x0 X2 (11,2 — Ho,D]

€1,2,4 - 0 =xq [x1x2 (10,1 —#2,0)+X12(#2,0 = Ho2) +

(10) +x0x1 (10,2 — #2.1) + x0x2 (12,1 — #0,1)]
CL,3,4 - 0 =xq [x1x2 (41,0 —#0,2)+x22(#0,1 - H,0)+

+x0x) (10,2 — H1,2) + X0 ¥2 (11,2 — Ho0,1)]
€2,3,4 o 0=X [¥1 X2 (1 = p2,0) + %12 (12,0 — H0,2) +

+x0x1 (40,2 — #2,1) + x0x2 (42,1 = Ho,1]

Thus, the cubics of the general case split into straight lines and (two distinct) conic
sections ky,ko.

There exists a unique collineation @ from
£ to @ which transforms X; into ¥; for i

=1,2,3,4. We discuss two different cases:

A) (x0,5:x1,50 x2,5) # (00,5: 1,5 ¥2,5) -
ie. @ does not transform X5 into Y5 :

Then the two conic sections are different.
There are exactly six points on all ¢y ; , -

Thus, there are exactly 6 four-fold pairs of

= conjugate points with respect to the linear
= ; manifold K3: In ¢ they are the points
IS NS X1,...,X5 from (5) and a sixth point

(2,5 =31,5) (41,0 — #0,1) (42,0 — H0,2)
(1) Xe = [O2,5-v0,5) (41,0 —#0,1)(H2,1-H1,2) | »

01,5 =>0,5) (12,0 —H0,2) (12,1 = 11,2)

which lies on all 4 curves (10), too. Via the quadratic transformation (8) it is mapped to
the point

(x2,5=x1,5)(11,0 — #0,1) (42,0 — H0,2)
(12) ¥ = |(x2.5-x0,5)(11,0~#0,1)(H2,1—-H1.2) |»

(x1,5—x0,5) (42,0 —#0,2) (42,1 = 11,2)
which together with Xg forms the sixth pair of four-fold conjugate points with respect
to K3. It is easy to see that the collineation @ maps the connecting line X5 Xy into



Y5 Yg. Figure 2 shows this constellation for the plane ¢- in ¢ we get an equivalent
situation.
B)  (xp,5: x5 %2,5)=00,5: 7,5 ¥2,5) : This condition is equivalent to
H0,1 — H1,0 = H0,2 ~H21,0 =0- ie. @ transforms X5 into Y5 : Then k =k
contains the given points Xj,...,.X5. Thus all points on this conic section & = £, with
equation

(13)  xyxp(u1,0—#0,2) + x0 X1 (10,2 —#1,2) + X0 x2 (1,2 ~#0,1) =0

and their images under Q) » (4) are four-fold conjugate points with respect to K3.
As k contains two singular points of () 5 the images are on a conic section again.

Moreover, the restriction of Q) to & determines a projectivity from A to

Q2 (k).

3. Architecturally shaky platforms
We consider a given platform with anchor points

(14) {X;, ¥;} €& x ¢ with coordinates (xo’i,xl,,-,ngi) (yo’,-,yl,,-,yz,,-)

(i=1,.,6) asin (1.16) (see figure L.1). As stated in I, chapter 4, architecturally shaky
platforms have anchor points with coordinates satisfying (I.19). This is a system of 6
homogeneous linear equations for the 9 elements a; of the matrix (a4 ). We have

t
as T (aoo,am,aoz,010,011,012,020,021,022) = (0,...., 0
with coefficient matrix T given by
L Q1 A AT 21 2101 2101 I2191
(16) T= : : : : : : : oL
66 N6¥6 M6 N6¥6 NeM6 N6R26 26M6 Y26%6 126726
The elements of T depend of the coordinates of the six anchor points {X;, ¥;}. The
system (15) can be written as
apo 49p1 402
17 (J’O,i’J’l,i’JQ,i) ap a1 a2 (xﬂ,:"xl,irxli) =0 fori=1,..6.
@y @21 422
Matrix (a;;) determines a correlation of the points of £ to the lines of ¢@. (17)
characterises the anchor points { X;, ¥;} as conjugate points with respect to this
correlation.

For the following considerations we exclude the most singular cases: If one (or both)
series of anchor points { X;} or {¥;} (i=l,..,6) is on a line (in ¢ or @) we get an
architecturally shaky case: All connecting lines belong to a singular linear line complex.
We will not consider this trivial case

[N



According to remark 2 in chapter 1.4 matrices (4 ) determine corresponding linear line

complexes, iff the additional 3 linear and homogenous equations (1.22) (resp. (1.23) with
matrix U) hold. The elements of U depend on the variable displacement parameters

a, B, a,b, A, B. Thus, corresponding linear line complexes exist only when

18 k(T)<8
(18) ran y) <8

Without any conditions for the design of a Stewart-Gough platform we can choose
certain values of «, f3, a, b, A, B such that (18) holds. Thus, each Stewart-Gough platform

has singular positions. Architecturally shaky platforms are characterised by condition
(18) independent of «, B, a, b, A, B. We give a geometric interpretation: The second part
t
U (aoo, an1,4a0p2,410-A11, 412,320, 321> 022) = (0, 0, 0)’ 0f(18) (resp. (1.23)) are three
homogenous linear equations of the form (17) for i = 7,8,9, if we put
X7 (0, sin 5, cos ,B), Y7(0, cos a,—sin a)
(19)  Xg(L-acos f+(A-b)sin B, asin f+(A-b)cosf),  K(-L Bsina, Beosa) .
Xo(1, ~acos B, asinf),  Y(-L Bsina+(4-b)cosa, Beosa—(4 - b)sina)
Therefore shakiness of the system of points is equivalent to the existence of a correlation
x (depending on 4, B,a,b,a, ), which has {X;, Y;} for i = 1,..., 9 as conjugate
points. Furthermore, points X7, Xg, X9 and Y7,13, Yy are on lines gy and gy in ¢ and
@ with parametrisation

1 0
X() |—acosf|+t(A-b) sinp on gy and
asin cos
20) \ B 2
(-1 0
Y(t) | Bsine |+ (1-t)(4—b)| cosex | on gy with t eR.
\B cose —-sina

(20) determines a projectivity between gy and gy . Correlations, which have { X;, ¥; }
(= 7,8,9) as conjugate points, have all pairs {X(r), ¥(¢)} as conjugate points too. The
points X7, Xg, X9 and ¥7,13,Yy and the lines gy and gy depend on the displacement

data a, (4 - b),f, B,a . Thus we have

Theorem 3.1: A Stewart-Gough platform with six given pairs of anchor points {X;,
Y;} (i = 1,...,6) is architecturally shaky, iff for all possible displacement parameters

a,(A-b),B,B,c there exist correlations x(a, (4-5),5,B,a) with {X;, L} (i =
1,....6) and forall re R {X(¢), Y(¥)} (3.7) as conjugate pairs of points.

The equations (15) give a linear r-parametric solution for the unknown matrices
A = (a;;): The general solution can be written as



@1 A=Z,1jcj (r=9-rankT) (i; € R)
j=1

with linearly independent matrices C; with constant elements. As T’ and U depend on

different entities we discuss two different cases: A) rank T < 5 (then condition (18)
holds - thus, we can expect solutions) and B) rank T = 6.

Case A: rank T < 5 -i.e. r=4 informula (21).
This is a condition for the set of anchor points {X;, ¥;} (7 = 1,...,6). We give a
geometric characterisation. As rank T < 5, at least one pair of points (say { Xg, Y5 })

is not necessary to establish the set (21). It can be computed from the information in
{X;, ¥;} fori=1,.,5 The geometric discussion of (21) leads to the theory of

correlations summarised in chapter 1.

We start our considerations with rank T = 5 (i.e. r = 4). Then the matrices 4 determine
a 3-parametric linear manifold of correlations K3 . Our six pairs of anchor points { X;,
Y; } (=1,...,6) are conjugate points with respect to K3, i.e. they are four-fold conjugate

points (see figure 2). As these properties are projectivly invariant this example covers
the general case for rank T=35. This is the geometric background of Karger's

construction [Karger 97). In the special case mentioned there it is possible to use all
points of the special conic section (13) and their images (on a conic section) as anchor
points of the platform without losing architectural shakiness. The points of these conic
sections are linked in a projectivity. Their connections establish platforms which admit
selfmotions. This fact was already been known to R. Bricard [Bricard 06]. Of course, the
conic sections can split into lines.

If rank T <5 (i.e.r >4) there exists at least a 4-parametric linear manifold of
correlations Ky . Our six pairs of anchor points { X;, ¥; } are at least five-fold conjugate
points with respect to Ky . According to our example this is impossible if there exist 4

pairs of anchor points which are not collinear.

Figure 3: Geometric considerations in case B

o



Case B: rank T = 6. Linear homogenous system (15) then has a linear 3-parametric
solution (21) with » = 3. They determine a 2-dimensional linear manifold of correlations
K> . According to chapter 1 there exists a plane cubic® ¢ x:=¢y,2,3 in &, such that all
its points X ecy and the images Oy (X) € cy in ¢ are triple conjugate points with
respect to all correlations x € K, . Now we consider an arbitrary position of the line gy
(see figure 3). The points {X(¢1), X(t2),X(#3)} (20) are the intersections of gy and cy .
We map the triple of points {X(#),X(t2),X(#3)} in two ways: By (O, they have
images {Y *(4),Y * (#2),Y *(#3)} on cy, by projectivity (20) {¥Y(r]),Y(#2),Y(#3)} on the
line gy. Following theorem 3.1 we seek for correlations x €K, which have
X)), Y * (1)) and {X(1)),Y(t;)} as pairs of conjugate points for / = 1,2,3. Thus,
correlation x maps X(#;)on the line k(X)) =Y * (), Y(;) (1= 123). If Y*(;)
and Y(#;) coincide, we can choose another position of the line gy by variing « and B.
As' we can choose any position of gy, these three lines always must be concurrent,
because they are the images of three collinear points. For a nondegenerate cubic ¢y this
is impossible. Geometric considerations show that cy has to split into 2 different lines,
one counting twice.” As mentioned in chapter 1 the same has to hold for the original
cubic cy . As cy contains the singular points of ¢ 5, one of these lines connects two
of the singular points. All its points are mapped into the same image point by () . The

other line is mapped projectively into the image line. A short computation shows, that
these conditions fix at least a 3-dimensional linear manifold of correlations. Thus, this
doesnot belong to case B. Therefore, case B produces no additional solutions.

We sum up.

Theorem 3.2: The given set of points { X;, ¥;} eex @ (i=1, ..., 6) is architecturally

shaky, iff one of the following statements holds:
a){X;, ;;} (i=1, .., 6)are four-fold conjugate pairs of points with respect

to a 3-dimensional linear manifold of correlations,

b) One or both sets of points { X;} e and {};} € ¢ (i=1, .., 6) is situated
on a line in £ or ¢, respectively. If this condition holds for exactly one set of points,
the other one can be choosen arbitrarily in the plane of the platform.

Remarks: 1) For a given platform not of type b), the following test of architectural
shakiness is valid: According to the proof of theorem 3.2 compute the rank of the matrix
T (16) - input data are the coordinates of the anchor points. rank T <5 characterises

architecturally shaky platforms.

% Note, that we have excluded some singular cases!
*If ¢y splits into one triple line we gain the excluded trivial case.



2) Theorem 3.2 gives the possibility to compute the complete set of architecturally shaky
Stewart-Gough platforms. There is a great variety of socalled "degenerated” cases, if
some anchor points in & or ¢ coincide. A complete list' consists of many types
depending on these coincidencies. It will not be given here.

3) If five arbitrary pairs of anchor points in the two planes & and ¢, respectively, are
given our construction allows to determine a sixth pair such that the platform becomes
architecturally shaky.

4) Our characterisation is invariant with respect to (even different) nonsingular
collineations in the planes ¢ and @, respectively.

5) It can happen that additional legs donot disturb architectural shakiness, for instance
the conic section of the example of chapter 2.

6) If we fix the leg lengths of an architecturally shaky Stewart-Gough platform at any
position we get: It is shaky from definition and does not loose this property in the next
position. Thus, the manipulator admits self-motions.

7) According to chapter 2 we can compute numerical examples. One is used to build a
model which is presented in the lecture.

Conclusion. We studied linear manifolds of correlations to characterise architecturally
shaky Stewart-Gough platforms. The final result (theorem 3.2) shows that, barring one
exception (theorem 3.2b), the anchor points { X;, ¥;} (i =1, ..., 6) of architecturally

shaky Stewart-Gough platfroms consist of four-fold conjugate pairs of points with
respect to a linear manifold of correlations. This property is invariant with respect to
nonsingular collineations applied to the sets of points in & and ¢, respectively. This

result offers a simple possibility to test whether a platform is architecturally shaky or
not. Theorem 3.2 and the remarks illuminate the geometric meaning of Karger's listing

{Karger 97].
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