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Abstract

In [6] B-spline technique was used for blending of Lagrange interpolants. In this
paper we generalize this idea replacing Lagrange by Hermite interpolants. The gen-
erated subspline b(t) interpolates the Hermite input data consisting of parameter
values ¢; and corresponding derivatives a; ;, j = 0,...,; — 1 and is called blended
Hermite interpolant (BHI). It has local control, is connected in affinely invariant
way with the input and consists of integral (polynomial) segments of degree 2-k —1,
where k — 1 > max{a;} — 1 denotes the degree of the B-spline basis functions used
for the blending. This method automatically generates one of the possible interpo-
lating subsplines of class C*~! with the advantage that no additional input data is

necessary.
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1 Hermite Interpolation

Hermite interpolation data consists of real parameter values 1o < ... < t; <

. < t; and corresponding points and derivatives (vectors in R% d € N)
a;;j, where + = 0,...,land j = 0,...,04 — 1 with [l € Ny, a; € N. It is
well known ', that there is exactly one integral (polynomial) curve h(t) with

polynomial degree less than or equal to n := 3>i_, a; — 1 satisfying 2

W9 (t;)=a;; forall i=0,...,] and j=0,...,05 — L. (1)
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1 See [5, pages 4-11]
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A parametric representation of this Hermite interpolant h(t) is given by?

! ej—1 a;—j—1 ] dm (f. _.“)m p(f)
H0=2 5 o S o e (), e @

1=0 j=0 m=0
where
!
p(t) =[]t~ t)™. (3)
i=0
In the special case of oy = ... = oy = 1 eq. (2) yields the ordinary Lagrange
interpolant
]
p(t)
1(t) = 0" 4
() ;aﬂqo (t—t,)‘!}(”(t;), ( )

whereas in case of | = ( one obtains the Taylor expansion of order oy — 1 at
to:

an—1

b0 1() = 3" a0, - }, -t~ to). (5)

=0

t

i
F gy S—
e
=U,

O~

&
|
|

u mil e = U

m—a;+1 T

Fig. 1. Definition of the knots ;.

It is convenient to set (see figure 1)

Uy = = Ugp-1 = to
Ugy = - = Uggtay—1 = b1
r (6)
uao+,.,+al_1 = = Unp . tl

and to denote the corresponding Hermite interpolant by hg,(%).

3 See [1, page 121]




Let moreover k denote a natural number > maxz{a;}. Then hg () shall denote
the partial Hermite interpolant of degree k in the following sense. Beginning
with ug the next k knots are used to define hg(t): According to (6) the knot

sequence (ug, ..., Ug+k) can be written as
(Uﬂ, s 7,u’ﬂ+k:) - (I'fhv o ‘jtl-]) v $tida e :f't',;) (7)
N i, il N it
r1 times rq times
with t;, <...<t;, and r, < a, for v =1,...,d. We have for the correspond-

ing partial Hermite interpolant hg(t) of degree k

b\ (ti,) = 2, ; (8)

forall j=0,...,r,—landv=1,...,d.

2 Blending of Hermite interpolants via B-spline-basis functions

The intention of this section is to construct for a given natural number k£ >
max{q;} a subspline b(t) which interpolates the given Hermite data t;, a; ; (see
section 1) with polynomials segments of degree 2 -k — 1 and smoothness k — 1
at the knots. The existence of such a subspline is apparent from the following
simple consideration: We could add k — «; arbitrarily chosen derivative vectors

a;;, ] = o4,...,k — 1 at any knot ¢; with o; < k. Then there exist unique
partial Hermite interpolants h;o,_1(t) satisfying the Hermite data a;; and
a;415, J = 0,...,k — 1 belonging to two adjacent knots ¢; and t;;;. Using

them as spline segments, yields a subspline with the required properties (see
also [7]).

But here we will point out a different way. We will generate a subspline by
blending partial Hermite interpolants (of degree k) by B-spline basis functions
of degree k— 1. Surprisingly, this directly leads to a subspline (of degree 2-k—1)
which interpolates the given input. This method does not need additional
derivative vectors.

For a given array U := (ug < u; < ... < u,) of parameter-knots (normalized)
B-spline-basis functions Ngx(t) are defined recursively:

, 1 for t € [ug,ugy1)
j=1: Nai(t):= ChCy 9)
0 else



for 3=0,...,n—k with % =0 and Ny g1 {(tn_g41) == 1.
The functions Ny (t) have the following properties: *

Trivially the B-spline basis functions Ng(t) are C* on each intervall
(U, U 1)s ts = Um # Umy1 = 1. In such an interval only the functions

Noki1,6(t), -, Nmi(t) are different from zero. In the interx@l [y Umng1)
these functions are identical with polynomials Ny, gy1x(t), - - -, Nmi(t) of de-
gree < k — 1. At the parameter knots we have: If up_q;41 = ... = Uy = &5,

for a; < k then the functions Ny, ky1.(t), ..., Nipi(t) are k — oz — 1 times
differentiable at ;.

The functions N (t) form a partition of unity - therefore we have:

n—F

> Nyi(t)

B=0

d”
(dt)”

= 5o, (10)

with the Kronecker symbol dgo := 1 and 4y, := 0 else.

Let now Hermite interpolation data ¢;, a;, i =0,...,l, 7 =0,...,a; — 1 be
given. Let again n := Y_._, a; — 1 and let moreover k denote a natural number

with ®

2
max{oi} <k < ”; . (11)

According to section 1 the partial Hermite interpolants hg y(t) of degree k are
well defined for 6 =0,...,n — k. Now we define a curve as follows:

n—k
b(t) = Z Ng,k(t) . hﬂ,k(t), te [uk_l,un_kﬂ], k> 2. (12)
[£=0

Here the "coeflicients” of the B-spline-basis functions are the partial Her-
mite interpolants hg ,(¢). This curve will be called blended Hermite interpolant

(BHI).

To show some essential properties of BHI-curves we need

4 See [4, pp. 162
® The second inequality in (11) guarantees that the support interval of the B-spline

basis functions is not empty.



Lemma 1 Let upgi+1 = ... = Unm = 1; # Umy1; then for B =m —a; +
1,...,m: (t —t;)F"1"™+P is q factor of Ng(t).

This can be easily verified by making use of the recursive definition (9) of the
B-spline basis functions.

If o; < k (case A) we get as a conclusion of this lemma:

0=FNQ  p=.. = N2
0= Wl sz == N el = Mool (13)
0= W= =W =W = =W,
whereas in case of a; = k (case B) we get
0= _fr(z)—k-}—Q,k
(? e Nﬁg)_lﬁLS,k = Nfrlt)—k-i-f‘l,k | (14)
)

Additionally, at t = #; the basic partial Hermite interpolants satisfy

(i—1) (—2) (0) _
hm—k+1,k = Qi1 hm——k+1,lc = Q-2 - hm—k+1,k = a0
(1) _ (i—2) _ (0) _
hm.—a,—l—l,kz - aﬂ',ai—l, hm—a.-—}—l,k - a’i,ai—27 S hm—ai+1,k - 34,0 (15)
h(“- —2) . h(O) —a;
m—ai+2,k — a’hai—27 oy Umeo 42, — A0

hﬁg,)/c = a0

Theorem 2 (a) The blended Hermite interpolant b(t) belongs to the continu-
ity class C*1.

(b) b(])(tﬁ) =ay;; fO’f' 1= O, .. .,l with Uk—1 S ti S Un—k+1> _7 e O, N 7 1.
(c) The polynomial degree of the segments of b(t) is < 2-k — 1.

Proof

(a) Let tim1 = Um—oy < Um—gy1 = -« = U, = t; < Upmy1 = tiy1 (see figure 1).
If j < k — a; no proof is necessary since the functions Ng(t) are k — a; — 1




- times differentiable at ¢;. Let now k& — a; < j < k — 1. Then using product
rule the 5 right-hand derivative b(f '(t;) of b(t) at t; is

bg) Z ( ) 2 (J ’Y)(ti)-

=0

Like above we have two consider two different cases: a; < k (case A) and
=k (case B).

Case A («a; < k). Here we can split this sum into two parts:

b (1) = go ()i (1)
+ _ki ()E_: ,Gk+ (J 7)(1)

(++)

Since the Ngy(t) are k — a; — 1 - times differentiable at ¢; the first partial sum
(%) is identical with its counterpart in the left-hand derivative b" (t;) of b(t)
at ti.

In (*x) the range of the summation index (3 can be restricted tom—k+1,...,m
since the other B-spline functions vanish identically on the interval [t;,¢; 7).
Moreover the remaining functions Ng(t) are identical with the polynomials

Npg(t) on [t tip1):

SO % W) nde),

y=k—a; B=m—k+1

The upper summation bound m of the second sum in (**) can be replaced by
m—k+v+1 due to (13). Then using (15) one can substitute h(J () = 2y,
hence

m—k+vy+1

J

= Y ()-am X Na
y=k—ay B=m—k+1

J d n—k

= >, () Aj— {Z Bk ( ] =0,
y=k—o; 3=0 t=t;

\ 1

=0, due to (10)




In a completely analogous way we can show that the partial sum v = k —
ai, ..., j of the left-hand derivative bY(t;) vanishes. This means that bgr)(t )

and b_J)(tl) are identical in case A. Hence also for j = k — ¢, ...,k — 1 the
4% derivatives of b(t) at t; do exist in this case.

Case B (a; = k) Like in case A we can reduce the range of the summation
index B to m — k + 1,...,m and replace the right-hand derivatives N, },”,3 auftis)

by the derivatives N, (7) ( ;) of the corresponding polynomials:

_7 m
bY(t, Z() Now(t:) - hge(t:),
v=0 B=m—k+1

According to (14) the upper summation bound m in the second sum can again
be reduced to m — k + v+ 1 and then due to (15) h(] 7)( t;) can be replaced
by a;;_:

) g "R )
bP)=3"(2) @i Y Npalti)
y=0 B=m—k+1
J . (p- n—k
=¥ (i) TRy (H'T)’ [Z N,@,k(t)} = &5
v=0 ¥ A=0 t=t;

=60,v, due to (10)
By an analogous consideration we can show that the j** left-hand derivative
of b(t) at ¢; is equal to a; ; if a; = k:
() _
b J (tl) = a,;-

Hence, in case B too the j derivative of b(t) at t; exists for all in j =
0,...,k — L. This finishes the proof of (a).

Additionally we have found out that for all 7 =0,...,k — 1:

min{j,k—o; -1}

b= Y () Z N - B @) if as <k, (16)
¥=0 B=m—k+1
b(J)(tl) =a; if oy = k. (17)

(b) Let now 5 =0, ...,0; — 1.




Case A (a; < k): The derivatives bV)(t;) (exist and) are computed according
o (16). Since for the first summation index 7 the inequality v < k — a; — 1
holds, the upper summation bound m of the second sum can be reduced to
m— a; by using (13). Due to (15) we moreover have for 3 =m—k+1,...,m—

a;, v<j<a—L h(ﬁ{?)(ti) = a;;_,. Hence

. min{j,k—c;—1} _ m—oy
b= Y (D) aun X V)
v=0 f=m—k+1
min{j,k—o;—1} . d n—=k
— ] . a/L o~ T N ) t — ai, 3%
722% (7) WJ— (dt)” l;;} ﬁk( ):I - J

= -

=d0,v, due to (10)

In case B (o; = k) the statement is true due to (17).

This finishes the proof of (b).

(c) The statement is trivial due to the generation of the subspline. O

As announced at the beginning of this section the construction of the BHI
does not need any further input of derivative vectors. For any knot ¢; with
a; < k the additional derivatives a; o, := blad(t,), ... L f—1 1= b*=1(t,) can
be computed via eq. (16).

3 Additional properties of blended Hermite splines

Affine invariance.

As the computation of the BHI can be done by linear subdivision — using
first the divided differences scheme® for the points on the partial Hermite
interpolants and then Cox-deBoor-algorithm for the B-spline blending — it is
clear that these curves are connected with their input vectors a;; and the
knot sequence in an affinely invariant way: Applying an affine mapping 7 on
the vectors a; ; and then constructing the corresponding BHI gives the same
result as first constructing the BHI and then applying .

Local control.
As the B-spline-basic functions and the partial Hermite interpolants used for

the definition have local control, our BHI-subspline has this property too.

6 see [5, pages 16-21]



Begin-to-end interpolation.

In order to interpolate also the data t;, a;; with t; < uz—1 and those with
t; > Up_x41 One has — like in the case of ordinary B-splines —~ to add knots
at the beginning and at the end of the knot vector U and multiply count the
Hermite splines by (t) and b,_x k(). For instance to achieve interpolation at
the beginning one has to add k — ag knots so that one has exactly & identical
knots at the beginning. In addition one has to count the first partial Hermite
interpolant by x(t) k—ap+1 times. Analogously for interpolation of the data at
the end (¢; > u,_x,1) one has to extend the knot vector U to k identical knots
at the end and count b, () k¥ — oy 4 1 times. An example for begin-to-end
interpolation for different values of £ is shown in figure 2.

Closed Interpolation.
It is also simple to construct a closed BHI: One just has to "overlap” the

existing data as in case of ordinary B-splines.” Figure 3 shows an example
for closed interpolation, varying the result by changing the lenghts of the first
derivative vectors in two of the points. k& was chosen to be 4.

Special cases.
If aj = kfor : = 0,...,1 we get a BHI b(¢) whose polynomial segments are

the Hermite interpolants belonging to the input data t;, a;; and t;41, a1,
for j =0,...,k.

If aj =1 fori=20,...,l one obtains a blending of Lagrange interpolants —
this is the case treated in [6].

Fig. 2. Example for begin-to-end interpolation for different values of k (I = 4, ap = 1,
a1:2, a2:3, a3:2,a4:1).

7 See [4].



Fig. 3. Example for a closed interpolation for varying derivative vectors ag1, az 1.

4 Conclusions

We defined a new interpolating subspline for Hermite interpolation data. The
blended Hermite interpolant (BHI) was generated by blending partial Hermite
interpolants by the normalized B-spline basic functions. The segments are
integral curves of degree 2 - k — 1, which are of class C¥! at the knots ¢;.
At these knots the input data are interpolated. All is defined in an affinely
invariant way. According to the B-spline curve scheme it is easy to generate
an open or closed BHI.

The idea of the BHI could be seen as a limit consideration of the paper [6]:
The Langrangian input of that paper is changed into the Hermite input. Then
B-spline blending is performed. Then it is easy to sweep to integral B-spline
curves. In this cases the spline only belongs to the class C*~2, of course.
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