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Abstract. Rational (1,n)-Bézier surfaces are ruled surfaces: They are generated by a
one parameter set of straight lines. Among the ruled surfaces the developable ones
play a special role in technical use. In this paper we give a general characterisation of
developable rational (1,n)-Bézier surfaces.

Categories and Subject Descriptors: G.1.1 [Numerical Analysis]: Interpolational —
spline and piecework polynomial interpolations; 1.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modelling — curve, surface, solid, and object repre-
sentations

General Terms: Algorithms, Design.

Additional Key Words and Phrases: Bézier surfaces, developable surfaces, spline sur-
faces.

1. Introduction. Developable surfaces can be rolled out into a plane without stret-
ching. For some technical applications objects made of paper, sheets of tin etc. consist
of pieces of developable surfaces. Therfore technicians have always been interested in
that type of surfaces.

The use of computers in technical construction led geometric investigations on so
called ’free form surfaces’. They allow a unique handling in Computer Aided Design.
Especially for the class of ’Bézier surfaces’algorithms have become international stan-
dard. G. AUMANN ([1], [2]) has studied certain types of developable Bézier patches.
In this paper we demonstrate for n € N(arbitrarily), which of the rational (1,n)-
Bézier surfaces are developable. This is a generalisation of G. AUMANN’s papers in
two directions: On the first hand metric restrictions are abandonned, on the second
hand we study rational Bézier patches, which allow additional degrees of freedom at




the phase of design. As an example the case n = 3 is regarded more closely, the case
n = 2 is discussed in detail.

As known (see H. BRAUNER [5],p.293, and W. BLASCHKE /K. LEICHTWEISS [3],p.192)
the devolopable surfaces (that are surfaces, which can be bended into a plane without
stretching or pulling) are just those surfaces, which consist of parts of planes, cylinders,
cones, and surfaces generated by the tangents of a (in general twisted) curve. This curve
is called ’edge of regression’. Every developable surface is generated of a one parameter
set of straight lines (’generators’ ). Every one of these lines has the property, that
there exasts one and only one tangent plane for all of its points.

So we can say: A necessary condition of a Bézier surface for being developable is the
existence of a one parameter set of straight lines on the surface. In this paper we
investigate (1,7n)-Bézier surfaces which surely fulfill this precondition®.

2. Rational (m,n)-Bézier Surfaces. In the real 3-dimensional projective space
P3(R) we describe points X by homogeneous coordinates (zg, z1, 22, z3) F (0,0,0,0)
and write them as vectors x = (@, &1, T2, z3)*. Vectors of the same direction determine
the same point in P3(R).

Let p¥ := (pgj,pij,pgj,pij) with ¢ =0,...,m and 7 =0,...,n be the control points of
a so called ’control net of a rational (m,n)-Bézier surface ®’. & is described by the
representation

x(u,v) = ﬁ;gp@r(u)ﬂ;@) (w,9) € [0,1] % [0,1]. (1)
The polynomials
Brw = (T) (0 = wmiud 2

are the ’‘Bernstein polynomials of degree m’. Those of degree n are defined in the same
way. The parameter curves u = const. and v = const. are rational Bézier curves of
order n, m, respectively.

It is usual (see HOSCHEK J./LASSER D. [6]) to define an ’affine part’ of the projective

space by picking out a ’plane at infinity w’. We choose w ... zo = 0; so we can
introduce affine coordinates in the affine part A3(R). These coordinates are z = oy =
Z2 , _
xg ? @ °

1The question for general (m, n)-Bézier surfaces (m,n > 1) with a continuous set of straight lines
seems to be open until now. Examples for such surfaces are certain surfaces of order 2. As is known,
however, surfaces of order 2 in general are not developable.




Every control point p*/ not in w determines an affine position vector b” = (2%, 3%, 2%9).
If the coordinate py is called B;; (the 'weight of the control point p*’ ), we can write
p” = B;(1,b¥)" (B # 0).

3. Developable (1,n)-Bézier Surfaces. In (1) we set m = 1. A (1,n)-Bézier
surface ® is a ruled surface: Its u-curves v = const. are straight lines (generators). @
is developable if and only if (see E. KRUPPA [7], p.64) along any one of these lines
there exists one and only one tangent plane. Necessary and sufficient for that is, that
on any generator there exist two points with the same tangent plane (E. KRUPPA [7]).
Along the border curves kg...u =0 and k; ...u = 1 the tangent planes of the surface
are determined by the vectors?

x(0,v), %4(0,v), X,(0, v) (3)
and by
x(1,v),%u(1,v), %(1,0), (4)

respectively. We have
%.(0,0) = 3 BI@)(P¥ — p%) = %L, ) = x(1,) — X(0,).
3=0

This is a point on the line v = const., which is independent of the parameter u. The
coincidence of the tangent planes (3) und (4) therefore is characterized by condition

det(x(0,v),x(1,v), x,(0,v), x,(1,v)) = 0. (5)

The ruled surface ® is developable iff (5) holds for all parameter values v € [0, 1].

For the evaluation of condition (5) it is of advantage to represent the Bézier surface ®
with the help of ’shift operators’ (see HOSCHEK J./LASSER D. [6], p.134) E, F' in the
following way?®

*(u,v) = (1 —uv+uE)(1—v+vF)"p®. (6)
Then we have

*X,(0,v) = n(l—v+oF)*"}(F —1)p®

x,(1,v) = n(l—v+oF)"1(F—1)p'.

We define:

6ijkl = det(Fipoo, Fjpoo, Ekaoo, EFlpoo) 7
- det(Fipoo’ Fjpoo,kam, Flpm) S det(poi’ poj, plk’pll) ( )

2Subscripts in x,, x, will denote partial derivatives.
3The operators E, F are defined by E*Fip® := p¥ for i € {0,1},5 € {0,...,n}.



and after short calculation we get out of (5):

n—1

) (n ; 1) (n - 1) (n ; 1) (n ; 1) (1 — v)tn—t=imi=kelyitithtls, =0

i\j fe =0 J
for all v €[0,1].
(8)
For s = const. the polynomials (1 v*® represent a basis in the vector space of
all polynomials of degree 4n — 4. Comparing the coefficients in (8) fori+j+k+1=s
we gain the elegant conditions:

= -1 -1 -1 -1
2 )OO (M) s =0
6,5, k,1=0 (9)
i+j+k+l=s

_ ,0)411.—4—.9

for all s€{0,...,4n —4}.
This yields:

Theorem 1: Conditions (9) characterize the control nets (and weights) of developable
(1,n)-Bézier surfaces.

For example for n = 3 this characterisation (9) (we have to use §;;. = 8k = 0) shows:

s§=20: 60101 = 0

s=1: do102 + o201 =0

s=2: &or0s + bosor + 3(bo112 + 81201) + 480202 = 0

8 =3: bo20s + o302 + bo11s + 1301 + 3(o212 + b1202) = 0

8=4: bo123 + 82301 + bosos + 981212 + 3(81208 + Bos12) + 4(80215 + b1302) =0 (10)
8 =15 0&o22s + ba302 + Sos13 + b1303 + 3(81213 + b1312) = 0
8 =6: Obosas + 62303 + 3(b1228 + b2312) + 461315 = 0

8§="T: 81333+ 63313 =10
s=8: 62323:0.

If the control points (and weights) of a (rational) (1, 3)-Bézier surface are given, we can
check with the help of the conditions (10), whether the given net leads to a developable
Bézier surface.

4. Developable (1,2)-Bézier surfaces. The case n = 2 should be considered in




FIGURE 1: PLANARITY CONDITIONS FOR A DEVELOPABLE (1,2)-BEZIER SURFACE

detail. Out of (9) we gain

0: o101 =0
=1: bo102+ bo201 =0
8§ =2: dozz + o112 + 81200 =0 (11)
=3: o212+ b12020=0

As in the general case (9) the equations for

s =0 and s = 4n — 4 (here s = 0 and s = 4) guarantee, that the control points
p%, p%, p'% p!! and on the other hand p°, p®n-1) pln pl(n-1) gre lying in one plane
(see figure 1). These conditions (’planarity conditions’) have a very obvious geometric
interpretation: They guarantee, that along every one of the border generators (v = 0,
v = 1, resp.) the surface determines one and only one tangent plane.

‘We note:

Theorem 2: A (1,2)-Bézier surface is developable iff the control net fulfills the con-
ditions (11) .

In the following we only regard the case f;; # 0; we write p* = f;; (blij) and so we

ae 1 1 1 1
5ijkl =ﬂoi,30:iﬂ1kﬂ1l det (bOi b% plk b”) .




For that we note
disri = BoiBoiPiePu  Bijri.

The real number B;;y is determined if the control points b%,b% b'* b in Ej are

given.

In general it will not be possible to construct a developable rational Bézier surface,
which is spanned between two given rational Bézier curves of order 2. If all the weights
B;; are free and the control points b°, b, b'°, b!! and b®*, b%*—1) b1 bi("»~1) respec-
tively are in one plane (planarity conditions), in (10) there remain still three essential
conditions for s = 1,2, 3.

One possibility of a practical strategy to generate a developable (1, 2)-Bézier surface is
the following:

1. Let the control points b € Ej be given the way that the planarity conditions
hold. So we can be sure that in (11) the equations for s = 0 and s = 4 are

fulfilled.

2. The remaining conditions for s = 1,2,3 are homogeneous quadratic equations
in the weights (Boo, Bo1, Boz2) and (Bio, P11, P12), respectively. With any triple of
solution every proportional triple also is a solution. Thus we choose Bgo: oz
arbitrarily and get out of (11) for s = 1,2, 3:

BooB1o [Bo1Biz2Boroz + BozP11Bozer] = 0
BooBoz2B10P12Boz02 + PooBorPr1Pr2Borrz + BorfozProfriBrzer = 0 (12)
Bo2P1z [BooBr1 Boziz + Bo1ProBizes] = 0.

Elimination of By; yields two equations for Pio: B11: P12.

In the general case we can gain By as well as Bio: B11: B2 out of it. The results are

Ba201Bozo2 Boz12
.32 = BooBo2 13
i Bogo1Bo112B1202 + B1201 Boz212Boioz (13)
and
,3101,3113,312 b ,3003021230102 : —.3013010231202 : ,3023020131202- (14)
. . . B B B
Real solutions only exist iff BgofBosz Bomn Bum%mm:fgum Boros > 0 holds.

Figures 2 and 3 show some examples of rational (1,2)-Bézier surfaces; we have put
Boo = Poz = 1.
For Boo, Boz > 0 we suggest to choose the root Bo; > 0 in condition (13). We get

a rational Bézier patch ®,, which naturally is part of an algebraic surface ®. If we
take - for comparison - the second root 8p; < 0 in (14) only Bi; changes its sign.







FIGURE 3: AN EXAMPLE OF A DEVELOPABLE RATIONAL (1,2)-BEZIER SURFACE

The corresponding patch ®, then is part of the same algebraic surface . Figure 4a,b
illustrates that.

On every nonconical developable surface the generators are tangent to the edge of
regression (see 1.). Patches containing parts of this curve in general have no technical
application. The algorithm described above also works in this case. Figure 5 shows
such a Bézier patch.

5. An example of a developable (1,3)-Bézier surface. Equation (10) charac-
terizes the control points of developable (1, 3)-Bézier patches. We now treat with an
example in order to show the use of these conditions.

In our example we restrict the weights B;; = 1 (s = 0,1, j = 0,...,3). The edge
generators ep...x(u,0),e;...x(u,1), resp., shall not be situated in one plane. The
tangent planes 79,7 along ep, e; shall not be parallel; the line of intersection is called
s. Excluding some special cases we place affine coordinates {O, z,y, z} the way that
T ... ¥y=0, 13 ... 2=0,€ ... y=z=0ande ... c=y—2z=0hold. Asin







FIGURE 5: A PATCH CONTAINING A PART OF THE EDGE OF REGRESSION

section 4 we put p¥ = L) with b9 = (o¥ ,y9, 2%}t Then we have 2°% = z'? = 0,
b

Y =y =0, 21 =0, 2’ =1 —y'® and we may put b® = (1,0,0)t, b*® = (0,1,0)*
(see fig. 6).

So equations s = 0 and s = 8 in (10) hold. The remaining equations s = 1,...,7
represent a linear system for the unknowns 2% (¢ = 0,1, j = 1,2). Solving the
equations s = 1,2,6,7 we get solutions 2% (i = 0,1, j = 1,2), depending on the
values of %,z 219 42 42 4’3, Then the other equations s = 3,4,5 represent a

single condition* on z%, z'!, 210, 42, ¢12 43,

As an example we choose % = ,21° = 2, ¢ =2 412=1 413 =21 One solution
of the mentioned condition is given by z!' = %. The corresponding values for the
i oree Ol _ 6 11 _ _3 _02__ 59 _12 , 8 13 _ 1 ¥
unknown 2% are: 2" = —33, 2 = —g;, 2% = —2, 21« 5, 2'® = 7. Fig. 7 shows

the resulting developable (1, 3)-Bézier surface. =
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FIGURE 7: A DEVELOPABLE (1,3)-BEZIER PATCH
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