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Abstract The paper is devoted to the generation of frameworks of polyhedra as
ornaments of the octahedral group O. An hierarchical block structure is used to
implement the action of O in a CAD-package. The framework is generated by a
starting (prismatic) rod as the motif. We give a series of examples and discuss the
symmetry of the corresponding ornaments.
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1. Introduction. Any polyhedron of the 3-dimensional Euclidean space determines
a group of symmetry G. Its elements are direct automorphic displacements of the
polyhedron. We start with an object M , called motif. The orbit of M with respect
to the group G is called ornament (G,M) with motif M .
There are many interesting publications with fascinating figures dealing with such
ornaments (see [1]-[9]). We will present an approach to teach regular polyhedra and
their ornaments even for undergraduates. It is an interesting topic to visualize the
action ofG with CAD-packages (see [10], [11]). We will work with an hierarchic block
structure as implementation of the corresponding group of symmetry G. Additional-
ly, the design of the motives trains geometric modeling and needs familiarity with
spatial congruence transformations. All considerations can be performed directly in
the 3-dimensional space. Former efforts of drawing of these ornaments are replaced
by using a CAD-package.1

In this paper we restrict our examples to the group G = O: This group O is the
set of direct automorphic displacements of a regular octahedron (or equivalently a
cube).

1The figures of this paper are produced in the CAD-packages AutoCAD and MicroStation.
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2. Frameworks as Ornaments. In the introduction we defined ornaments (G,M).
We will present examples by using one prismatic rod as motifM . They will be defined
by a regular polygon p as profile, which is extruded along its axis g (orthogonal to
the plane of the profile).
We will present frameworks, where the axes and the edges of the rods form closed
rings. They are gained, if g has at least two intersecting neighbors (positions under
G). This will happen in the following two cases2 (which can be mixed):
Type A: The axis g of the rod is orthogonal to at least one rotational axis of the
group G.
Type B: The axis g of the rod meets at least two rotational axes of the group G.

3. The Octahedral Group. We will use some basic properties of the octahedral
group O. We will give a list of the elements of O. 3 O contains the following 24 direct
displacements (see figure 1):
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Figure 1: Some axes of rotation of the group O

• The identity id.

• Rotations about 4-fold axes a connecting opposite vertices of the octahedron.

• Rotations about 3-fold axes b connecting the centers of opposite faces.

• Rotations about 2-fold axes c connecting midpoints of opposite edges.

2There are more possibilities if G is containing reflections, too.
3For more details see the textbooks [1], [3], [5], [6], [7].
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O is a normal subgroup of index 2 in the full octahedral group Oh. Oh is the union of
O and the coset Oρ = O ◦ (ρ), where (ρ) denotes a reflection in a plane of symmetry
ρ of the octahedron.
An investigation of the structure of O leads to various implementations of the action
ofO in a CAD-package. We suggest to use the following hierarchical procedure, which
implements O as a sequence of blocks (or models):

Motif = Identity - Triple - Pair - Group = Ornament

There the block Triple contains 3 rotated copies of the block Identity (axis of rotation
is the 3-fold axis b of the face A,B,C of the octahedron).
The block Pair contains 2 rotated copies of the block Triple (axis of rotation is the
2 fold axis c - c contains the midpoint of the edge [B,C].
The block Group contains 4 rotated copies of the block Pair (axis of rotation is the
4-fold axis a through the vertex A.
Our motif M is used as input into the block Identity. The resulting ornament is ge-
nerated (as output) in the block Group. The following figure 2 displays the situation
for an arrow as motif M .

Motif = Identity

Group = Ornament
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Figure 2: The blocks of our implementation of the ornaments (M,O)

These preparations allow to generate various ornaments by the choice of suitable
motives. 4

4. Hinged polygons as ornaments of case A. Firstly, we present two nice
examples for case A. We will use a cylindric rod as the motif. According to section
2 its axis g is chosen orthogonal and skew to one of the 3- or 4-fold axis of the
octahedron.

Example A1 (Hinged triangles): The axis g of the rod is orthogonal to the 3-fold
axis b (see figure 3). The ornament is gained by rotating a rod along an edge of the
octahedron with respect to the axis b (angle 2π/9).

s

c

Figure 3: Motif for figures 4 and 5 Figure 4: The block Triple

The block Triple contains 3 rotated copies of this motif, which form a triangle. The
intersection of two neighbor rods (axis g and g∗ respectively) splits into two ellipses.
Therefore it is quite natural to use a miter cut in order to get fitting rods. This
miter cut follows the plane of symmetry σ of g and g∗ through the center M of the
polyhedron. The following figure 5 shows the result with an inscribed sphere, which is
used to hide some parts in the back and to highlight the structure of the framework.
There are 8 triangles, each hinged with 3 neighbors. It needs some attempts to gain
a solution without self-intersections. Figure 4 displays the necessary conditions: In
order to get the ornament the triangle (included in the block Triple) is rotated about
the 2-fold axis c. To guarantee that the original and the rotated triangle are hinged,

4The reader is invited to experiment with different motives. Even without deeper geometric
considerations there can be gained fascinating ornaments.
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the two-fold axis c has to intersect the initial triangle in an inner point. The radius
of the rod has to be smaller than the distance of g and of c (see figure 4). Based on
these ornaments there exist art objects (see H.S.M. COXETER [4]).

Figure 5: Hinged triangles Figure 6: Hinged squares

Example A2 (Hinged Quadrangles): The axis g of the rod is orthogonal to the 4-fold
axis a. For a suitable choice of the rod we gain the ornament of figure 6.

5. Frameworks as ornaments of case B. Secondly, we turn to case B and we will
use prismatic rods. The axis g of the rod meets two (or more) axes of the octahedron.
We generate a prismatic rod R by extrusion of a regular hexagon along the axis g.
As in case A the rod R should fit to its neighbors. Additionally, we want to get
intersecting edges for intersecting prismatic rods.

We consider an n−fold axis z intersecting g at a point Z (see figure 7). g∗ is the axis
of the neighbor rod R∗ (rotation ρ of g about the axis z through the angle 2π/n).
This rotation can be generated as composition of two reflections (σ) ◦ (ε): The first
plane is ε := [g, z], the second plane σ is the plane of symmetry of g and g∗ through
z. We get intersecting edges on R and R∗ if the rotation ρ and the reflection in
the plane σ yield the same rod R∗. This fact is guaranteed if the rod R is plane
symmetric with respect to the plane ε (σ is used as the plane of a miter cut). As the
n−fold axis z contains the center M of the polyhedron we have ε = [g,M ]. Hence ε
is independent from the axis z. The rod R has a second neighbor R∗∗ (rotated copy
of R, rotation about z through the angle −2π/n). As before, we put a second miter
cut through R. Figure 8 shows the result. In general the two miter cuts are different
- in the case of a 2-fold axis (n = 2) the two cuts are coincident.
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Figure 7: Fitting edges

g meets a second axis z̄ of the octahedron. Therefore there exist two further miter
cuts (fitting to the new neighbors). z̄ is a line in ε, too. The symmetry of the
rod R with respect to ε guarantees that the edges of R and its new neighbors are
intersecting in points of the corresponding miter cut. To get ornaments with closed
loops we chose as motif a rod with axis g = [1, 2] where 1 and 2 are points of
intersection from g and two axes of the octahedron. The planes of the miter cuts
are planes through 1 and 2, respectively (see figure 9).

Figure 8: The rod with 2 miter cuts Figure 9: The rod with 4 miter cuts

Remarks: a) As a consequence of these considerations we will use prismatic rods
R (axis g) symmetric with respect to the plane ε := [g,M ] henceforth.
b) If this reflection of the rod R is an automorphic reflection of the octahedron, we
gain ornaments from the full octahedral group Oh.

5

5Our next examples show, that there are examples for frameworks as ornaments in the group
O which do not belong to the full group Oh even if our motif has a reflection symmetry.
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In order to get a structured presentation for examples in case B we will give a
complete list of different types of these planes of symmetry ε with respect to the
octahedron.6 We study the bundle of its axes. All plane sections of this bundle are
projectively equivalent. We will use the section with a plane π orthogonal to the
2-fold axis c1 (see figure 10). The points A1, A2 and A3 denote the intersections of
the 4-fold axes, B1, B2, B3, B4 and C1, C2, C3, C4, C5, C6 those with 3-fold and 2-fold
axes, respectively. The points A3, B3, B4 and C6 are points at infinity.

Figure 10: The configuration of the intersections of the axes from O in π

The different types of planes of symmetry ε have lines of intersection in π, which
are displayed with different colors in figure 10:

B1. ε contains exactly two axes of the octahedron (red): There ε is spanned exactly
by a 3-fold axis (e.g. b2) and a 2-fold axis (e.g. c2) which do not belong to one
triangular face of the octahedron. ε is no plane of symmetry for the octahedron!

B2. ε contains exactly three axes of the octahedron (green): There ε contains three
2-fold axes (e.g. c1, c2, c4). ε is no plane of symmetry for the octahedron!

B3 ε contains exactly four axes of the octahedron: Here we have two distinct possi-

6Note that ε has to contain at least two axes of the octahedron.
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bilities:

B3a. ε contains two 4-fold and two 2-fold axes of the octahedron (blue, e.g. a1, c1, a2, c6).
ε is a plane of symmetry containing 4 edges of the octahedron.

B3b. ε contains one 4-fold, two 3-fold and one 2-fold axes of the octahedron (magen-
ta, e.g. a3, b1, c1, b2). ε is a plane of symmetry of the octahedron.

In the cases B3a and B3b the plane ε is a plane of symmetry of the octahedron.
Hence, in these cases our procedure yields ornaments from the full octahedral group
Oh.
Now we present some examples:
Case B1: g intersects a 3-fold axis b and a 2-fold axis c of the octahedron, which
do not belong to one face of the octahedron (see figure 11)7. The two axes b and
c are orthogonal lines. Therefore it is natural to take our line g on one side 12
of a quadrangle (green) with vertices on b and c, respectively. The corresponding
ornament is shown in figure 12. It consists of 12 ”half - quadrangles”, which form
closed loops of 6 rods. In order to get its structure they are displayed in different
colors.

12

Figure 11: g meeting a 2- and a 3-fold axis Figure 12: Ornament

Case B2: g intersects two 2-fold axes c1 and c2 of one face of the octahedron (figure
13). The plane ε = [g,M ] = [c1, c2] is orthogonal to a 3-fold axis b. As a first choice
we take the axis g1 like in figure 13. The ornament is displayed in figure 14. It
consists of four triangular stars”. A very special version is displayed in figure 15:

7If there is only one axis of the same type we omit the indices of the axis.
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Here the axis g2 of the rod is orthogonal to the 2-fold axis c2. Then the two rods
meeting at c2 have the same axis - hence the star degenerates into a triangle. The
ornament consists of 4 hinged triangles (each is built up from 6 copies of the motif).
Again we gain an ornament known from art (see H.S.M. COXETER [4]).

�

Figure 13: g1 and g2 intersecting two two-fold axes

In this case we have a third 2-fold axis c3 in ε. The point of intersection of g and
c3 can be an outer or an inner point of 12. The latter case gives ornaments with
self-intersections (no example displayed).

Figure 14: Triangular stars Figure 15: Hinged triangles

Case B3a: g is a line in the plane ε = [a1, c1, a2, c6] (see figure 16). Our rod is
restricted to two of these axes (points 1, 2). If the initial rod follows an edge of the
octahedron from the vertex to its midpoint we gain a framework ornament of the
octahedron. If one of the other axes intersects [1, 2] in an inner point we get self-
intersecting ornaments. The following example (figure 17) is gained by using 1, 2 as
end-points on a 2-fold and a 4-fold axis. The second 2-fold and the second 4-fold axis
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intersect [1, 2] in inner points. Therefore we get 2-fold and 4-fold self-intersections
of the ornament. Figure 18 displays another example of this case with 2-fold self-
intersections: The end-points 1 and 2 are chosen on the 4-fold axes a1 and a2 (see
figure 16).

Figure 16: g for case B3a Figure 17: Example with 2-fold and 4-fold self-intersections

Figure 18: Example with 2-fold self-intersections Figure 19: g1, g2 and g3 for case B3b

Case B3b: g is a line in the plane ε = [a3, b1, c1, b2] (see figure 19). We choose the
points 1, 2 on the 4-fold axis a3 and the 3-fold axis b1. The rod g1 is parallel to
the second 3-fold axis b2 in ε, g2 is parallel to the 2-fold axis c1 (see figure 19).
The corresponding ornaments are the Rhombic Dodecahedron (figure 20) and the
famous Stella Octangula of J. KEPLER (figure 21). The latter is a compound of
two congruent regular tetrahedra, which are displayed in different colors.
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Figure 20: Rhombic Dodecahedron Figure 21: Stella Octangula

There are various cases with further intersections of the rods. Figure 22 displays an
example with 2-fold self-intersections. The initial rod has the axis g3 (see figure 19).
It is orthogonal to the 3-fold axis b1.

Figure 22: Example for case B3b Figure 23: Curved rods

Of course, the prismatic rod can be replaced by any other motif. If we extrude the
hexagon along a curved path we gain further ornaments. Figure 23 displays one
example. In order to get fitting edges again we have to guarantee the existence
of the corresponding and fitting miter cuts. This implies that the motif has to be
symmetric with respect to the corresponding plane of symmetry ε (at least in the
neighborhood of the end-points of the path). If the path is in the plane ε this
condition holds automatically.

6. Conclusion. We presented a large scope of examples all generated as ornaments
of the octahedral group. We started with prismatic rods as motives and used miter
cuts in order to get fitting edges. In the last figure 23 we replaced the prisms by
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other geometric objects. Further generalizations of this step (with a skew path) will
produce objects between geometry and art. Additionally, the presented geometric
considerations and methods can be used for symmetric groups of other polyhedra,
too.
The fascinating ornaments of the paper shall motivate the use of professional CAD-
packages with geometric knowledge. This topic offers a good possibility to train
spatial transformations and constructions. Without any structured use of blocks it
is almost impossible to construct the ornaments.
We hope, the paper will stimulate the reader to its own experiments in this fascina-
ting field.
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[1] J. Böhm - E. Quaisser: Schönheit und Harmonie geometrischer Formen. Akademie
Verlag, Berlin 1991.
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