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Abstract. A Stewart-Gough platform is architecturally shaky iff it remains shaky while
subject to arbitrary displacements of the planes &£ and ¢, wherein the anchor points of

the platform are situated. We show that a smaller subset of displacements of ¢ and
@ exists which characterises the architectural shakiness of the platform. This subset

consists of those displacements which transform ¢ and ¢ into two fixed orthogonal

planes.

1. Introduction

The paper deals with six legged Stewart-Gough platforms (see [Gough 56], [Stewart
65], [Karger-Husty 96], [Karger 97]). The geometry of these manipulators is uniquely
determined by six pairs of points X and ¥; (i =1, ... 6), each set on a plane £ and ¢,

resp. (see figure 1). Every pair of displacements
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Figure 1: The geometry of a Stewart-Gough platform - pairs of anchor points {X;, ¥}




moves X and ¥; to new positions X* and ¥ *, resp.' The six legs of the manipulator
span the connections of the points X; * = £*(X;) and V; * = a *(¥;).

Definitions: The set of points {JX;, 1;} is called shaky with respect to a* and B*,
for short o *,f*- shaky, iff the lines X*Y;* belong to a linear line complex
L*(a*,*) for a pair of displacements a * and B*. If the set of points {¥, ¥;} is
a *, f *- shaky for every pair of displacements « * and B*, we call it architecturally
shaky.

The considerations in [Roeschel-Mick 98] show that for all Stewart-Gough platforms
there exist special displacements a*,S*, such that the configuration becomes shaky.
Then the platform is in a singular position. At this position the stiffness matrix of the
platform becomes singular. If we start with architecturally shaky points, then for all
displacements a*,4* the configuration is shaky and all positions are singular. Such
platforms represent the worst possible case: For all positions the stiffness matrix (the
inverse Jacobian matrix) remains singular. If we fix the leg lengths in this case the
manipulator admits self-motions at every position and is uncontrollable.

A. Karger [Karger 97] characterised architecturally shaky Stewart-Gough platforms. But
thousands of terms occured in the expansion of a key determinant. As Karger's result is
geometric, a more geometric path to it may be deemed interesting. For this, some
classical, well known properties of linear line complexes and linear manifolds of
correlations between two planes are useful. Such methods of geometric deduction seem
applicable to many robotic problems (see [Dandurand 84], [Husty-Zsombor-Murray 94],
[Merlet 89], [Mohammed - Duffy 85] and [Zsombor-Murray et al. 95]).

The paper is organized as follows: In chapter 2 we consider linear line complexes, null
correlations and correlations between the two planes of the platform and outline the
projective invariance of shakiness. In chapter 3 and 4 we develope a sufficient condition
(theorem 4.2) of architecturally shaky Stewart-Gough platforms. In [Roschel-Mick 98]
geometric results on linear manifolds of correlations between planes are used. It is
shown that, barring a few exceptions, the set of points {¥, ¥;} is architecturally shaky,

iff it consists of fourfold conjugate points with respect to a certain set of correlations.

2A. Linear line complexes and null-correlations

In the Euclidean 3-space we use cartesian coordinates (x*,y*,z*) and corresponding
homogeneous cartesian coordinates (xq *:xp *:x9 *: x3*)= (L:x*:y*:z*) to describe
points X*. For a line g* containing two different points .X* (xq *: x; *: x5 *: x3*) and
Y* (3o *:1 31 *: yp *: y3*) we define

" It would be sufficient to move one of planes, but our procedure is a more symmetric
one. The relative motion of one plane with respect to the other can be computed by

combining displacement a * with ,B*_l .

% A correlation maps points into lines. Our set of correlations is spanned by four linearly
independent correlations. If all four image lines of a point X contain a point ¥, X and ¥
are called fourfold conjugate with respect to this set of correlations.
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Six of these terms determine g* uniquely. They are the well known homogeneous
Pliicker line-coordinates’ of g*, denoted by
(3) P1i P2 D3 P4: P5iP6 = PO1: P02 - P03 P23: p31: P12 # 0:0:0:0:0:0.
They satisfy the Pliicker-condition
C)) pP1ps+p2ps+p3ps=0.

Special 3-dimensional line manifolds are the linear line complexes L. They contain all

2) Pitch o= 0 (rotations) characterises singular linear line complexes wherein all lines
intersect the axis of rotation. In this case the coordinates of L satistfy the Pliicker-
conditions (4).

Pliicker-condition (4), L is a regular linear line complex. L is built up by the normals
of the screw with axis @ and pitch o (see [Hunt 90, pp. 314-319 ]). The line a and the

screw pitch are given by
(aj ag + ay as + a3 ag)

6) a (aq: o @ aq—0ca a5 -0m:a—0®), 0= 5 5 B
a= +ayt t+ a3

All lines of the complex L (5) on a given point X* (xg *: x; *: x5 *: x3*) are in a pencil
situated in a plane & (X*). Its vertex is X* The map of the points X* to these planes
#(X*) is a null-correlation 7 in the 3-space. A null correlation is a linear mapping

and has a representation
0 -a4 -as —ag)(x*
a 0 -@ a||x*
7 %t - =0,
™ Oo*.n*»2*.3%) S Y |
a —a@ a 0 /\x*
(7) gives the equation of 7(X*) for unknowns (yp*, 1*, yo*, 3*). If the coordinates

of two points X* and Y* satisfy equation (7) they are conjugate points with respect to
# and the line X* Y* belongs to the linear line complex L.

? A good survey of line geometry is given in [Hoschek 71]. The following is a short
outline of the methods we use for our considerations.



2B. Correlations between orthogonal planes connected with linear line complexes
We restrict this null-correlation 7 to the points X* of the plane ¢*... x3* =0 and
intersect the image planes 7 (X*) with the plane @ *... x| * = 0, perpendicular to &*.
The linear mapping

8 y:X*ee* 5 y(X):=1(X)Nep* Ccep*

is a correlation from the points of ¢* to the lines of ¢*. The points X*
(xg *:x1 *:xp *:0) are mapped to lines (see figure 2). According to (7) with
x3*=y *=0 the coordinates of its points Y * (yg *:0:yp *:y3*) satisfy the linear
equations

0 —a -as5)(x* @ @ agl|(*%*
9 0=00*2*%13% | a 0 ||xq*:=00"n"»9 a0 a1 az2|[x*|, »1*=0.
& @ q\n* @y @ @3)\0*

Remarks: 1) Every bilinearform

with arbitrary (3,3)-matrix (a;;)

7(X*)

represents a correlation from &*
to @*. As proportional matrices

define the same correlation, they
form an 8-parametric linear
manifold X. The elements of the
(3,3)-matrix are homogeneous
coordinates of these correlations.

2) (9) is a special bilinearform. It
represents the correlation y (8).

Only the correlations with (3,3)-
matrices (9, left part) pertain to
linear line complexes. As the
shape of the matrix (9, left part)
shows, we get a S5-parametric
linear submanifold K; of all

Figure 2: The null correlation, the induced correlation correlations K. The three
between planes and projective invariance conditions are

(10) ago =0, ajp =0, ago + ajg = 0.

3) All lines of complex L are connecting lines of conjugate points with respect to y and
intersecting lines of £*m @ *.



2C. Maps in the manifold L of linear line complexes induced by rotations

Given are two orthogonal planes ¢* and ¢*. First, we rotate the plane &* with
respect to the axis »*:= g*n @* ... x1 * = x3* = 0 through angle 5[0, 27) and get

(11) p: £* = £* with X *(xg*,x1*,x2%,0) = X * (x0*, X1 * cos&, xp*, —x1 * sind).

Second, we define an affinity of the space given by x: E3 — E3 with

xo* 1 0 0 0)(xp*

x* =, |0 cosé 0 O x*
12y  xx. v * > X*... 0 0 1 0|x*|

x3 0 —sind 0 I/\x3*

The points of £* are mapped by affinity (12) in the same way as they are mapped by
rotation p (11). The elements of @ * are fixed (see figure 2). The connecting lines of

points X*...(xp*, x1 * €088, xp*, —x1 *sind) e * to points
¥ .0 *:00n *133%) € y(X*) c @* , conjugate to X* with respect to correlation ¥
(8) have Pliicker-coordinates

n -x1*yg * coso P4 X *y3* + x ¥y *sind
(13) »|= x0*»m * -X2 *yo & P51 = -X1 *y3 * cosd
73 xg ¥y ¥+ x ¥y *sind) \pg X1 *y9 *cosd

It is easy to verify, that these lines belong to a new linear line complex L with
coordinates

(14) (@:®:a:ay: a5 ag) =(a) cosS: ay: a3 ~a) Sind: ay +ag Sind: a5 cosS: ag osd).
We denote the set of linear compiexes by L and state our result.

Lemma 2.1: We consider the lines of each linear line complex L as connections of the
piercing points X* and Y* in the two intersecting planes £* and ¢ *. If we rotate X*
according to (11) and connect X * with the fixed points ¥* we get a new line complex
L . Thus, a rotation (11) with axis »*:= £¢*n @ * gives a map in the set L described
by (14).*

Remarks: 1) This is a special case of the well known fact that nonsingular projective
collineations transform one linear line complex into another one. Nonlinear line
complexes are transformed into nonlinear ones.

2) The lines of L intersecting £* n ¢ * are mapped into lines in L , which intersect
E¥Mme*.

3) Only in the cases d=7/2,37/2 is the affinity (12) a singular one. In these cases
our connecting lines are mapped into all lines on the plane ¢ *= ¢* . The corresponding
linear line complex becomes singular,

* Including singular linear line complex with axis &£* ~ g * .



2D. Correlations between parallel planes connected with linear line complexes
The considerations of 2B can be similarly carried out for parallel planes. We restrict the
null-correlation 77 (7) to the points X* of the plane £* ... x3*=0 and intersect the
image planes 7 (X*) with the plane ¢* ... x3* =x * parallel to £*. The mapping
y:X*eg* > y(X*):=n(X*)ne* c ¢* is a correlation from the points of £* to
the lines of ¢@*. The points X* (xpg*:x*:xp*:0)ee* and
Y*(Oo*n*»m*y*)ep* are conjugate with respect to y, iff their coordinates
satisfy condition

g —ay—da4q dy—das|(xg B
(15)  0=00*n* 1" au 0 —a3 || xq*

as a3 0 X
The remarks of 2B hold analogously. Now the procedure of 2C for rotations can be done
for parallel translations of £*. We sum up.

Lemma 2.2: We consider the lines of each linear line complex L as connections of
points X* and Y* of the two different parallel planes £* and ¢*. An arbitrary

translation of £* moves its points X* to X *€&*. If we connect X * with the fixed
points Y* we get the lines of a new linear line complex. Thus, these translations
induce a map in the set of linear line complexes L.

3. Conditions for architectural shakiness

Now we transfer the results on linear line complexes from chapter 2 into properties of
shakiness. We use two homogenous cartesian coordinate systems” to describe our anchor
points { X;, ¥; } inthe planes £ and ¢ of the platform:

(16) Xiooo (x;ix:xp,) and Yoo (voii3iiy2,4) (i=1,.,6).

Given are a fixed set of architecturally shaky points { X;, ¥;} (i = I....,6), and a fixed
pair of orthogonal planes £1*, ¢ *, and a fixed pair of parallel planes &p *# @3 * in
3-space. According to definition of architecturally shaky points the set {X;, ¥;} is
shaky with respect to every pair of displacements a*, #*. In particlar { X;, ¥;} (i =
1,...6)is a;*, B; * - shaky with respect to those pairs of displacements

17 w0 a7 ith =12

a7 aJ.Y;_)Y;*an ﬂJ.Xi_)Xi*,MJ ,

which move ¢ and ¢ to the special fixed planes g*, @1 * and £3*, ¢y * resp. This
property of architecturally shaky points is sufficient. too. We prove

3 Asterisks (*) on the coordinates of points of 3-space differentiate these from
coordinates on our planes.



Theorem 3.1: Given are two orthogonal planes & *, ¢ * and two parallel planes
£ *# @y *, fixed in the space. If {X;, ¥;} i=1,..,6 is a set of points, a;*,f;*-

shaky (j = 1,2) with respect to all pairs of displacements (17), then it is already
architecturally shaky.

Remark: This lemma makes clear, that we just have to test shakiness with respect to
displacements for two fixed orthogonal planes and for two parallel planes. Later we will
see, that the test for the parallel planes g7 *# ¢, * can be omitted.

To prove theorem 3.1 we use theorems 3.2 and 3.3. Lemma 2.1 and definition of
shakiness result in:

Theorem 3.2: Given are two intersecting planes g£;* and ¢@;* and displacements
a1 *, p1* from the set (17), then ag*, B * - shakiness of the system { X;, ¥;} is a
property independent of the angle of intersection of ¢ * and ¢ *.

From lemma 2.2 and the definition of shakiness follows:

Theorem 3.3: Given are two parallel planes &9 * and @, * and displacements
ap *, By * from the set (17), thenay *, fp * - shakiness of the system {X;, ¥;} is a
property independent of parallel translations of & * with respect to ¢, * .

This finishes the proof of theorem 3.1. Thus, these conditions are sufficient too. [

Remark: As we know (see [Liebmann 20], [Wegner 84] and [Wunderlich 83])
shakiness is projectivly invariant. Theorems 3.2 and 3.3 are conclusions of this fact for
the situation of Stewart-Gough platfroms.

4. Consequences of theorem 3.1

Following theorem 3.1 we discuss two different cases:

Case a: Given are two orthogonal planes &) *, ¢ *, fixed in space. The displacements
a1 *and f; * have representationes

(vo* 1 0 0
Yo 0 0 0 0 Yo
o ¥ = 4 cosa —sine||”!

2 \y3* B sina cosa
(18) and

(%% (1 0 0
5l %o x*| |a cosp -sing *0
Aty =) xo*| |b sing cosp ||
2 Lo) Lo o o )M

The points X; * := 1 *(X;) and Y * := o) *(¥;) have connecting lines. Because of
(18) and (9) the connecting lines X; * ¥; * belong to a linear line complex, iff



1 0 0 Y(0 —a -a)(1 0 0 Y(x
00> M) 4 cosa —sina| (a5 a3 0 ||a csf —sinf||x |:=
B sina cosa) \agg - ap)\b sinf cosf)\x

(19) )
a0 dp1 4dp2|(*0

=00,y 2) a0 a1 az||x|=0
@0 D1 B \X2
holds for the coordinates of { X;, ¥; } (=1, ...,6). There we have

ago = a|bB - maB+azad-aga+ as(A-b)+ agB

alp = apbsina — ayasina+ azacosa + ascosa + ag sina

arg = ajbcosa — ayacosa — azasina — assina + ag cosa

ag) = @ Bsinf — ap Beos B+ a3 Acos S~ agcosf — assin
(20) aj] = aisinasin § — aysinacos f+ azcosacos ff

a1 = ajcosasinff — apcosacos f— agsinacos f

agy = ay Becosf + ay Bsin f— a3 Asin S+ aysin f — ascos 3

app = aysinacos f + asinasin f— a3 cosasin f

ayy = ajcosacosf + apcosasin f+ azsinasin f
Remarks: 1) Translations of g1 * with respect to ¢ * in the direction of &1 * N ¢ *
can be fixed either by the translational component A of @y * or b of £y *. Thus, by
(18) a five-parametric set of displacements is given.
2) The g;; are homogenous linear functions of the coordinates a; of the linear line

complex. Thus, the set of linear line complexes determines a five-parametric manifold of
correlations (see 2B). In the 8-parametric linear manifold of correlations described by
arbitrary (3,3)-matrices g; J formula (20) represents a parametrisation of those, which

belong to linear line complexes. This linear manifold is described by three equations,
which are equivalent to the conditions (10) in 2B. With the abbreviations

2n fi=acosf - (A-b)sinpg, g:=asinf+(A-b)cosf

they become
ajjcosa sin + app cosa cos f— aysina sinff— ayo sina cos § =0
@1sinf+ay; csf+agomsa - ayg sina =
= a(Bsinasinf+acosacs ) + app (Bsine cos f— a cosarsin ) +

(22)
+ a1 (Beosasinf—asine cos f) +apy (Beosex cos f+ asinasin )

flag) - Baysina - Bayy ose) =
=g(ayy — Bay sina— Bayy csa) +agp — Baygsina — Bay cosa
The three conditions (22) can be written in the alternate form



{ )
23) U(000,001,002,010,011,012,020,021,@2) =(0,0,0)" with the (3,9) - matrix

0 0 0 0 cosa sin f
U=|0 -sinf —-cosff —-cosa Bsinasinf +a cosa cosf
-1 f -g Bsina -Bf sina
cosa cos 3 0 —sin ez sin S —sina cos f
Bsinacosf—acosasinf  sine  Beosasinf—asine cos S Boosa cos B+ asina sin
Bgsina Beosa - B fesa Bgoosa

All elements of this (3,9) - matrix depend on the motion parameters. As we look for a
solution for arbitrary «, f,a,b, A, B, we have rank U=3.

Case b: Given are two parallel planes g3 * ... x3*=0 and @ * ... y3*=yp *, fixed in
space. From theorem 3.3, without loss of generality, displacements a5 *: & —> &5 * and
Pr*:9p —> pr* can be taken without any translational component for our
investigations. Furthermore, the relative motion of ¢ with respect to £ has only one
essential rotational compopent. Thus we put

A Jof Joooff?® X j:,. ésﬁﬁ;ﬁxﬂ
24 @ N\ o N *l 5 ;
24 w* 1o 10 » % N * 0 ~osp sing||™

2
Y 001 2 o) L 0o o

The points X; *= B> *(X;) and ¥;*= ¥; have connecting lines X;*,¥; * . Because of
(24) and (15) they belong to a linear line complex, iff

ag -ap-ay a;-as) (1 0 0 X0
0o, 7,32) | a4 0 -a3 0 sinf cosf||x|:=
as az 0 0 -cosf sinf)\x

(25)
ap0 dp1 42| *0
=00.y32) a0 a1 a2 || x| =0
ao a1 @2 A"QJ
holds for the coordinates of { X;, ¥;} (=1, ....6). As before, we get a 5-parametric

manifold of correlations, which belong to linear line complexes. This manifold is
described by three equations. They are

ay sin B+ ayp cos f=0
(26) ay)sin B+ayycos f— ajjcos f+appsinf =0
a1 €os f— axy sin f=0

=



Additionally, conditions (26) are exactly the limits of the conditions (22), if we put
a:=0 ,B=t,a:=-t for lim t— . Thus, conditions (26) are algebraically included

in those of (22). Theorem 3.1 can be replaced by

Theorem 4.1: Given are two fixed orthogonal planes £1*, @1 * in the space and
displacements ai*: 9 - o1 *, fitreo>ea*. If {X;, Y} i = 1,..,6 is a set of
points, @ *, Sy *- shaky with respect to all pairs ap*,5;*, then the set is
architecturally shaky.

Conclusion. The decision whether a Stewart-Gough platfrom is architecturally shaky or
not, is substantially simplified by theorem 4.1. The key point of our proof is the
projective invariance of architectural shakiness. This result is used in [R¢schel-Mick 98]
to give a geometric characterisation of architecturally shaky Stewart-Gough platforms.
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