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ABSTRACT

We start with a given velocity-distribution of a one-
parametric Euclidean motion and restrict ourselves to the
points of a surface. According to the concepts of diffe-
rential geometry these velocity vectors can be split into
a normal and a tangent component with respect to this
surface. The tangent components build up a velocity vec-
tor field on the surface. If the surface is a sphere, there
are appropriate results by O. Roeschel (1995). In this pa-
per velocity-distributions of projective motions and some
different types of quadrics are being studied. The result
for the sphere leads to a characterisation of infinitesimal
Euclidean motions. Additionally, the analogous conside-
rations for cones and cylinders of revolution are presented.

1. INTRODUCTION

In 1995 O. Roeschel restricted the velocity-distribution
of a one-parametric Euclidean motion to the points of a
sphere k: Following the concepts of differential geometry
these velocity vectors can be split into a normal and a
tangent component with respect to the sphere. The tan-
gent components themselves build up a velocity vector
field tangent to the sphere, which can be interpreted as
a velocity vector field induced by an infinitesimal Non-
Euclidean motion with x as absolute quadric. These con-
siderations can be generalized in different ways: We can
firstly replace the starting velocity-distribution of a Eucli-
dean motion by the velocity points of a projective motion.
The induced velocities on the sphere x then, in general,
will build up a tangent point distribution of &, which does
not belong to an infinitesimal projective transformation
keeping the sphere fixed.

Secondly, the sphere k can be replaced by another type
of quadric. Then, in general, an analogous procedure will
result in a velocity vector field, which does not fit an infi-
nitesimal Non-Euclidean motion. We offer some examp-
les of this nonlinear behavior in the cases of cylinders and
cones of revolution.

2. BASIC NOTATIONS

In the threedimensional Euclidean space E3 C P; we use
homogeneous Cartesian coordinates (zo : 21 : 3 : x3)
to describe points. All vectors proportional to the vector

X = (mg,z1,T2,%3)" belong to the same point. Some-
times it is convenient to put X = (zg,x)t. The points
in the plane at infinity are given by (0 : =1 : zo : z3)".
The unit sphere x with center M = (1,0,0,0)* has the
equation

(1)

A one-parametric projective motion of the projective
space Pj is given by
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where A4(t) denotes a 4 x 4- matrix of the class C*.
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At any moment this one-parametric projective motion de-
termines a mapping which assigns the tangent point Y to
the position Y. It is called infinitesimal transformation
of the motion (see J. Toelke 1975) and is given by

(%)

The corresponding one-parametric subgroups are gained
by integration of (3) using constant matrices By

4)

by bt

(3) Y:B4Y:(b B,

Ay(t) = exp(tBy).

Those keeping k invariant are characterized by the follo-
wing: For all points Y € k the tangent point Y lies in
the plane tangent to x at Y. Computation shows that
the corresponding constant matrices can be displayed as

_(r ¢
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where I3 and S5 denote the 3 x 3 unit matrix and a 3 x 3
skew-symmetric matrix, respectively.

(5)

The corresponding subgroups can be interpreted as one-
parametric subgroups of the 3-dimensional hyperbolic
CAYLEY-KLEIN space of index 1 with x as absolute qua-
dric (see O. Giering, 1982).

We also need the infinitesimal transformations of a Eucli-
dean motion. Their matrices are
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with an arbitrary skew-symmetric 3 X 3 matrix Ej3.

3. THE INDUCED TANGENT FIELD

We watch the sphere s (1) and an arbitrary projective
infinitesimal transformation ® (3). ® can be restricted
to the points P of k. The path tangent of P is ortho-
gonally projected into a tangent line of x at P. This
"tangential component’ generates a tangent field ®* on «.
In general, ®* is not linear, i.e. ®* will not belong to
a one-parametric hyperbolic subgroup with respect to .
The aim of the following considerations is to characterize
those projective infinitesimal transformations ® with ®*
match a one-parametric hyperbolic subgroup with respect
to K.

Figure 1 shows some points of the sphere k, their path
tangents assigned by ® (belonging to a screw with the
indicated axis) and the orthogonally projected tangents.

Figure 1: Points of the sphere &, their path tangents assigned
by ®© and the induced tangents.

Examples emerge from the results given by O. Roeschel
(1995): Any Euclidean infinitesimal transformation &
with a matrix £y (6) induces a hyperbolic infinitesimal
transformation of k. Figure 2 gives an example: The
starting Euclidean infinitesimal transformation is the one
of figure 1. Some integral curves of the induced hyperbo-
lic infinitesimal transformation of k are sketched.

Figure 2: Some integral curves of the hyperbolic transforma-
tion induced by a Fuclidean screw motion

Infinitesimal perspective collineations with centre M are
given by transformation matrices
)
) +e€ I4

_(a B v
Z4 o ( o 03
with arbitrary real constants «, - - - €, the 3 x 3 zero-matrix
O3 and the 4 x 4 identity matrix 1. The plane of the fixed
points of this transformation has the equation

(8)

In a trivial way the infinitesimal transformations Z, in-
duce the identity on . Therefore, all arbitrary one-
dimensional projective subgoups By € [Ey, Z4] (different
from Z4) induce the same hyperbolic infinitesimal trans-
formation on x as F4. This manifold of matrices are dis-

cribed by
a B v 6
Jo (578 7)

+ 7 Iy, pyo, 7 €N}
and is being built up by the infinitesimal transformations
of perspective collineations with centre M and of Eucli-
dean motions.

(7)

ayo + By +yy2 +dys = 0.
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4. THE CHARCTERISATION OF INFINITE-
SIMAL PROJECTIVE TRANSFORMATIONS
WHICH FIT HYPERBOLIC INFINITESIMAL
TRANSFORMATIONS OF «

Now we start with an arbitrary projective infinitesimal
transformation ® with given data B4 and look for an in-
finitesimal transformation keeping x invariant. We want
to determine data Cy (5) such that this transformation




for all points of k fits the induced tangent field ®*. This
yields the condition

(10) det (ByY, C,Y, Y, M) = 0

for all points Y € . Applying (3) and (5) we modify
(10) to

det (byo + B3y, cyo + Ssy, y) =
(11) & yg det (b, c, Y) +
+ yo [det (b, S3y, y) + det (Bsy, ¢, y)] +
+ det (Bzy, Ssy, y) = 0

for all points Y € k. This equation is a homogenous
polynomial of degree 3 in the variables v, y1, ¥2, y3. Now
we have to consider 2 cases:

Case A: (11) holds identically for all points Y € P;.
Case B: (11) holds for all points Y € k.

Case A: Equation (11), viewed as a polynomial condition
for all y, holds identically. Therfore we have

det (b, ¢, y) =0
det (b’ S3Ya y) + det (B3Y: c, y) =0

(12)
det (B3y S3y, y) = 0

for all y. A careful discussion of all different subcases
gives the result:

All matrices By satisfying the condition (12) belong to
the manifold (9).

Case B: If the equation (11) holds for all y € &, but not
identically, it is bound to be the product of the equation
of the sphere (1) with some linear polynomial:

yé det (b, ¢, y) +
+ yo [det (b, Ssy, y) +det (Bsy, ¢, y)] +
+ det (Bsy, S3y, y) =
= (¥5 — v7 — v3 — v3)(lovo + luyr + Loy + lsys)

(13)

with constants lg, [y, 15,13 for all points Y € P;. Compa-
rison of the coefficients yields

lp=0
(14) det (ba C, y) = llyl +l2y2+l3y3
det (b7 SSya .'Y) + det (B3y’ C,iy) =0
det (Bsy, S3y, ¥) = —(yi +y3 +y3)det (b, c, y)

for all y. Here there are many subcases which have to be
considered. Again the discussion shows that all matrices
B, satisfying the condition (14) belong to the manifold
(9). Thus we have gained the somewhat puzzling result

Theorem 1: Be given the unit sphere x with center
M in the Euclidean 3-space embedded into the projective
space. Then in terms of intrinsic geometry the infini-
tesimal transformations ® of projective motions induce

tangent fields ®* on k. Fach of these tangent fields ®*
belongs to an infinitesimal hyperbolic transformation with
the absolute k iff ® can be represented as a linear combi-
nation of an infinitesimal transformation of a perspective
collineation with center M and of an Euclidean motion.

Remark: The set of infinitesimal transformations men-
tioned in Theorem 1 includes the infinitesimal hyperbolic
transformations with the absolute x.

5. FURTHER EXAMPLES: CONES OF REVO-
LUTION

Surprisingly, the general result of theorem 1 does not
hold, if we consider a cone of revolution v instead of a
sphere, even if we start with an infinitesimal transforma-
tion of a Euclidean motion.

We start with the cone of revolution + given by
(15) x3 + 22 = R

Its axis coincides with the zs-axis of the coordinate
system. For any point P € +« given by X =
(%o, 1, T2, T3)" the normal to ¢ contains the point N =
(07 Z1,Z2, _sz?’)t'

All projective collineations keeping « invariant are given
by the infinitesimal transformations

Ye!(—Y=Q,Y

with
a+X b ¢ d
_ 0 A e fR?
(16) Q= o o x|
0 f g A

where a,---g, R, A are arbitrary real numbers. Additio-
nally we start with an arbitrary infinitesimal transforma-
tion of a Euclidean motion given by (6). Condition (10)
of chapter 4 now delivers

(17) det (E4Y, Q,Y, Y, N) = 0

for all points Y € v. A computation similar to that for
the sphere shows that exactely the Euclidean infinitesi-
mal transformations (6) belonging to pure translations
in the direction of the axis of the cone or pure rotations
around this axis induce automorphic infinitesimal projec-
tive transformations of the cone .

Remarks: 1) Any other Euclidean infinitesimal transfor-
mation induces nonlinear infinitesimal transformations of

.
2) Stunningly, even the infinitesimal screw round the axis
of the cone v does not induce a Non-Euclidean autocolli-
neation of v. Figure 3 shows dots on the integral curves
of such a screw induced on ~.



Figure 3: Some integral curves of the non-projective transfor-
mation induced by a Euclidean screw motion round the azxis of
the cone of revolution

We have got

Theorem 2: Let be given the cone of revolution v in
the Buclidean 3-space embedded into the projective space.
Then in terms of intrinsic geometry the infinitesimal
transformations ® of Fuclidean motions induce tangent
fields ©* on . These tangent fields ®* belong to infinite-
simal Non-Euclidean transformations with the absolute -y
iff © either belongs to a pure translation in the direction
of the azxis of v or to a pure rotation round the azis of ~y.

6. FURTHER EXAMPLES: CYLINDERS OF
REVOLUTION

As a last example we consider a cylinder of revolution ¢
and an infinitesimal transformation of a Euclidean mo-
tion. ¢ be determined by

(18) z] + 735 = R%x}.

Its axis coincides with the zs-axis of the coordinate sy-
stem. For any point P € ¢ given by X = (o, z1, T2, T3)*
the normal to ¢ contains the point N = (z9,0,0, z3)*.

All projective collineations keeping ¢ invariant are given
by the infinitesimal transformations

Ye¢—Y=QY

with
A a b 0
R’u X ¢ 0
(19) Q= g —c a0
d e f g+

with arbitrary real constants. Additionally we start with
an arbitrary infinitesimal transformation of a FKuclidean
motion given by (6). A computation similar to that for
the cone of revolution shows that just the Euclidean infi-
nitesimal transformations (6) belonging to screws around
the axis of ¢ induce automorphic infinitesimal projective
transformations of the cylinder (.

Any other Euclidean infinitesimal transformation induces
nonlinear infinitesimal transformations of ¢. In figure 4
we start with the infinitesimal transformation of a Eucli-
dean rotation round the displayed axis a. The induced
tangent field is nonlinear - some integral curves are dis-
played. The two common points of the axis a and the
cylinder ¢ are singular points of this tangent field.

So we can state

Theorem 3: Be given the cylinder of revolution « in the
Euclidean 3-space embedded into the projective space. In
terms of intrinsic geometry the infinitesimal transforma-
tions © of Fuclidean motions induce tangent fields ®* on
v. These tangent fields ®* belong to infinitesimal Non-
Euclidean transformations with the absolute v iff ® be-
longs to the screws round the azis of 7y, including the pure
rotations round this azis and pure translations in the di-
rection of this axis.

Figure 4: Some integral curves of the non-projective transfor-
mation induced by a Buclidean rolation round the displayed

azis

7. CONCLUSIONS

We started with a given velocity-distribution of a one-
parametric projective motion and restricted ourselves to
the points of a sphere. According to the fundamental no-
tions of differential geometry the velocity distribution was
split into a normal and a tangent component. Theorem
1 gives a characterisation of those one-parametric projec-
tive motions which induce infinitesimal auto-collineations
of the sphere. Further on we studied cones and cylinders
of revolution with respect to given infinitesimal Euclidean
motions. In general, they do not induce auto-collineations
of the cone or the cylinder.
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