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A REMARKABLE CLASS OF OVERCONSTRAINED LINKAGES
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Abstract: Given 3 congruently parametrised axial Darboux motions {; = Z; \ I,
(i=1,2,3) with pairwise orthogonal and skew axes, which are gained of ¢, by rotation
of 120, 240 degrees, resp. round a certain axis #. Then we are able to show, that each
relative motion X, \ X j @# i, j=123) has a two-parametric familiy of (real)
points situated on hyperboloids of one sheet @; j» which is moved on spheres centered
on an analogue surface @, ;. The intersection of two hyperboloids in a system Z;

splits into a straight line g; and a cubic circle ¢; . It is shown that it is possible to form
stiff triangles connecting corresponding points of ¢, ¢y, ¢3 , such that the motions are

not disturbed. For the points on the straight lines an analogous result holds: There the
stiff triangles degenerate to straight lines, which in X, determine a regulus on a

hyperboloid of rotation at each moment of the motion. Finally as an example two pairs
of points on g; and ¢; are linked to get an overconstrained linkage.

1. In the 3-dimensional Euclidean space FE; we use Cartesian frames
{0,-; Xis Vi z,-} ({ = 0,1,2,3) to describe points of the given systems Z; (i = 0,1,2,3)
by their position vectors X = (x;,),%) . In I, we define 3 not intersecting

orthogonal axes ay, a,, a3 given by equations

ap .. xg=A, =0, ay ... yg=A4,20=0, ay3.. xg=0,y9=4 (1)
with an arbitrary real 4 #0 (see figure 1). Then we may define 3 congruent (even
congruently parametrized) axial DARBOUX-motions ¢; = Z; \ Z; (=1,2,3) with
axes aj, a,, ay. They all shall be parametrized by their angle of rotation ¢ e [0, 27r].

Then a parametrisation of these motions shall be given by (see O. Bottema-B. Roth
(1979) ,p.321)
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with a further real constant B # 0. The common time parameter { € [0, 2 ﬂ'] links

the 3 systems %, ,, Z3. This linkage represents a generalisation of a partial motion
of the motions studied in
Roschel (1995). We want to
discuss properties of the relative
motions and show that the
motion is not disturbed, if
certain stiff rods (with spherical
links) connect certain points of
each pair of system. Z; \ X

may be moved into X, \ Z,
(Z3 \ Zp) (including its
parametrisation) by a rotation
of 120° (240%) round the axis
fy = [(0,0,0), (LLD)] (see figure
1 for £ = 0). Therefore Z,\ X
and Z3 \ X, are conjugate

motions to X; \ X5 with
Figure 1. The given axia] Darboux motions respect to these fixed rotations.

2. The relative motions Z; \ j G # j). Our definition of the motions guarantees
that for each moment  the positions Z,(s) in Xy may be gained by reflecting Z;(f) at

a straight line a; followed by a fixed displacement in X, . Figure 1 shows the

situation for /=1, j/=2: We have drawn a point path b,y under Z; \ £, (/=1,2), which is
gained from by by rotation round #y. But it may be generated by reflecting the
positions of Z; with respect to the straight line a;, (results denoted by "*") followed
by a fixed screw in %, (with axis a,, angle —z /2 and translation distance — A4 ).
The situation for (7, j) # (1,2) is similar.

Therefore %; \ ; is line-symmetric in the sense of J Krames with respect to a basic

surface I';; , which is the path surface of the straight line a; under the inverse motion

Zy / Z; . Such motions have been studied by J.Krames (1937b).



I';; is a ruled surface of degree 4 (J.Krames (1937b)). In this case in Z; there exists a

two-parametric family of points with spherical paths under ; \ ;. These points in

general are situated on a pair of complex conjugate planes (a special singular case of
that described by J.Krames (1937b)) and on an orthogonal hyperboloid of one sheet
®@;,;, the corresponding centers lie on congruent surfaces, the corresponding

hyperboloid will be denoted by @ ;. We restrict ourselves to the case i = 1 - the other

cases result from permutations and appropriate changes of some signs. Computation
yields

D, ....28Bx zl=A(—Bz+x12+J’12)’
; . 3)
Dy 2By z = A B +x?+2By +nd)

After some algebra the relations V0 @y, < £ > @,y € £, (j = 2,3) between the

points with spherical paths and the centers of their spheres may be written in the
following typical cases:

M2 @y > Oy,

B(B® - x® - 9 - 28%x Ax -y») @

Xy = 2 2 Y2 = 3 s =a ==
T+ -8 "+ (- DB X
and
Mg @3 > O3,
- 282 yl B(— Bz + x12 + y12) Axl (5)
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We now show how fo find these equations for the example i =1, j = 2 (for the other
choices of indices it may be done in a similar way):

Two points % = (x, ¥, 21) , % = (%, ¥, 2)" fixedin Z;, Z,, resp. keep constant
distances during the motions ¢, {5 , iff the difference vector

zy — A - X B+
c;'l,z(t, Xi, Xp) 1= Xo(t, Xg) = Xp(t, X)) =| A + | xg —yj|lcost+ | —x;— yy|sint:=
| Y2 X, - B
'=d+bcost+¢sint 6)

has constant length. This yields

L’at’?Lz{f, E|_ ,?2 )
a

0=c71,2(t,)?1,)?2) :c"onost—EI;sint+550052t+0.5(52—Ez)sinZt



V t €]0, 2x]. This condition is valid, iff

0=ab=Ax -z p-x2z+A0x-n,
0=55='—le2-’4)’2+(B+yl)22+BZI_A(B+x1+y1)’
0=bh&=-x %+ - B y-Bx,

0=5b-2% =2[(B-y) x, - ¥, — BB+ pl.

This is a system of 4 linear equations for x,, y,, z, . It has solutions, if the condition

Bl +y* + B2 Bxyz+A B -x? - pyHl=0 %)

holds. This equation determines the points of £; which may hold constant distances to
certain points of £, . Therefore for 4 B # 0 these points of Z; belong to a complex
conjugate pair of planes and the hyperboloid of one sheet @y, (3). For the points of

®; 5 we get the corresponding points in X, via the map Vi, (4). O

The correspondence V], (4) between the x- and y- coordinates (the ground projections
O, i, 0), (x5, y i» 0) ) does not depend on the constant A (therefore for the first two

coordinates we may use the results of Roschel (1995)). The equations show, that the
ground projection of our relationships may be gained by an inversion with respect to
a circle, followed by a displacement. The centers of inversion have the coordinates

©, B, 0), (-B, 0, 0) resp. for V13 . The radius of the circles of inversion is B \/5 .

We sum up in

Theorem 1: Given the 3 congruent special axial Darboux-motions Z; \ £y (i = 1,2,3)
in a fixed space X represented by (2). Then each relative motion ; \ ¥, is line-

symmetric in the sense of J. Krames and moves a two-parametric family of points of
Z; on spheres centered in L. The corresponding (real) points are (in general)

situated on special hyperboloids of one sheet in both systems.

3. In the case 4 = 0 Roschel (1995) gives a way to generate overconstrained linkages
consisting of rods of constant length (with spherical links in each system %; ). We now
want to extend this procedure to the case 4 # 0

Interesting cases occour, if we start with points P on the intersection of the
hyperboloids @), and @;3. The curve of intersection is an algebraic curve of order 4

containing the absolute points of the planes z, = const. and the point of infinity of the



zy —axis. The correspondences Vj; (i =23) map P|ekjz3:= D, » D3 into
points 7} :=V}; (). By simple computations it is possible to proof the surprising

Theorem 2: Given the 3 congruent special axial Darboux-motions Z; \ X in a fixed
space X represented by (2). Starting with points Py on the intersection curve
ko3 := @2 N D3 the maps Vi; (i =2,3) determine corresponding points
B =V (B) (i=2,3). Then for each point 1 € kip3 = @13 N @3 the relation
b =W, (Vj,k (V,-J (R))) istrue.

This means, that for all starting points £ on k53 := @5 n @3 the corresponding
points B :=1;(R) (i =2,3) determine a triangle A, P, P of fixed shape, which

does not disturb our special one- parameter motion, if the triangles and the systems
Z1, £y, 23 have spherical links at the vertices A, P, A.

4. Now we are interested in the shape of the curve of intersection
ki3 := @15 m @y 3: Suitable geometrical considerations show, that it splits into two

parts; a straight line g; and a cubic cirele ¢, which may be parametrized by

A+ B
—))‘ ,

..... u, B+ u,
£ ( B

®

22 2
. ! o= ZH {n+B)2,A(u+B)), W eR)
ue o+ (n+ R u” + (n + B) B

Then the maps V) ,, Vj3 transform g and ¢ into image curves with the following
parametrisations

Bu+B) B* AB
T

g2 :=V12(81) .. ( )

B Bu  Au
u+B u+B u+B "’

g3 =Ns(g) ... (-

9
Bu(u + B) B2y AB, ©)

(u+B?+B* w+B?+BY u
B*w+B) Bu(u+B) Au
W+ B ut+B* u+B

It is remarkable, that the straight line g; is mapped into straight lines g,, g3, the

cubic circle ¢; into cubic circles ¢,, ¢;. We sum up in

s

cy:=Vp(ep)..(

c3:=Vy3(¢p)...(



Theorem 3: Given the 3 congruent special axial Darboux-motions Z; \ Xy in a fixed
space L represented by (2). Then the intersection curve k3 := @19 N @13 of the
hyperboloids with (real) spherical paths splits into a straight line g and a cubic
circle c|. Without disturbation of the motions the points Py on g may be linked by
sticks with points F, .=V} ; (R) (i=2,3) on straight lines g,, g3, the points on ¢; with

points on cubic circles ¢y, 3.

Now we start with a point / € g;: These points are mapped into points P, € g, and
P egy, whose paths may be studied in %;. Our difference vectors

do(t, u) = Ty, B) =%o(t, B) (6) and dy5(t, u) 1= Fo(t, By) —%y(t, B) read

~B (u + B) u? u? +2uB
dio(t, u) = 1 [% u B - | + B)* | cost + B* —u* | sing], (10)
P @+ B B? — BQu + B)
—B@ + B) u? u* +2uB
dy5(t, u) =ﬁ [% u B — |+ B)? |cost +| B*—u* |sinf].
—u (4 + B) B? - BQu + B)

Therefore we have u 1?1,2("» ) = (u + B) 571,3(t, v) for all uweR. Thus the
corresponding points A € g), P .=V ,(R), B :=V3(R) are collinear during the
whole motion! At each moment t in Xy the triple of straight lines g, g, &
determines a regulus of intersecting straight lines. These straight lines may be
materialized as sticks connecting corresponding points on gy, 25, g3/ Computation
shows that the regulus of sticks for each ¢ €[0, 2 #] in Z; is part of a rotational
hyperboloid of one sheet with common axis ry = [(0, 0, 0), (1, 1, )], which may

degenerate. Of course the shape of the hyperboloids changes with . In this case we
have got a model of a moveable hyperboloid of one sheet, where the generators are
formed by sticks linked together by spherical links. This special case is known - a
model may be found at institutes of geometry at Vienna and Dresden University of
Technology.

5. An example. Now we give an example of a simple overconstrained linkage
following the results of chapter 4: Starting with points ¥ = -05B8 and v = B in (8)

we gain points
Beg ...(~05B,05B,054), Rieg .. (B2B2A4),

(11
Qr€c....(B, -~ B,054), S €c....(-02B,-04 B, 2 A



with corresponding points

Figure 2: The straight line and the cubic circle with some rods

Beg .. (B2B2A,

O, €cy ... (- 02 B, -04 B, 2 A,
Pyegy....(-2 B, - B— A,

Ry €g5.... (=058, 05 B,05 A,

Ry €gy... (=2B, - B,— A,

(12)
Sy €cy ... (04 B,02 B, — A)

13)

€c;....(04 B,02 B, — A, S5 €c;y....(B, - B, 05 A
3 3 3 3

Figure 3: The 3 tetrahedra and their rods

We have got a configuration
consisting of 3 tetrahedra, two
triangular and two straight line links.
The general degree of freedom would
be F = 0. Adding more sticks
according to our rules we would get a
linkage with general degree of
freedlom F < —1. Figure 2 shows a

very simple configuration of this type
consisting of the points (11), (12),
(13) for A=B =100 and t=#xn/6.
As many lines are hidden by the
tetrahedra the left side only shows the
first tetrahedron, the straight line g,

the cubic ¢, the triangular and the

straight line links. The right side gives the image of the whole configuration. It has to




be mentioned that only the edges of the tetrahedra should be materialized - but in order
to gain more instructive pictures the author has chosen the materialized version.

Figure 3 shows the situation for the same model for t=19 7 /24 . Here the straight line

links are situated outside of the 3 tetrahedra. Therefore the two positions only may be
gained by a coninous motion, if intersections of some sticks arc allowed. But both
models built of rods have a one- parametric motion with timeparameter ¢ taken from
two different parts of the allowed time - interval.
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