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ABSTRACT: We study a particular chain of 16 congruent regular triangles forming two regular 
tetrahedra and two open pyramids (these pyramids can be folded along their four edges through the 
vertex). Figure 1 shows the basic parts, figure 2 displays a possible assembly mode. These triangles 
are interlinked via rotational joints along the edges of the pyramids and two pairs of opposite edges 
of the tetrahedral. The theoretical degree of freedom of this kinematic chain takes on the value 

. But surprisingly, a physical model of this mechanism seems to admit a one-parametric 
self-motion! The aim of this paper is to prove the existence of self-motions of this structure. 
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1. INTRODUCTION 
Harborth and M. Moeller [3] studied an interesting packing of tetrahedra. It consists of 16 regular 
tetrahedra connected via 32 spherical joints. In this arrangement they define a saturated packing in 
the following sense: Every vertex of a tetrahedorn is linked to one and only one vertex of another 
tetrahedron. In addition the tetrahedra are not allowed to interfere with each other. Considering 
saturated arrangements of regular tetrahedra led to the study of interesting overconstrained 
kinematic chains (see [2] and [4]). These chains are built up of regular triangles – some of them 
form regular tetrahedra, some are used as bases for further regular tetrahedra. 
 
A particular chain of this type is presented and studied in this paper. It consists of 16 congruent 
regular triangles forming the faces of two regular tetrahedra and two ‘open pyramids’ (each with 
four regular triangular faces). Each pyramid can be folded along its four edges through the vertex 
and admits a one-parametric self-motion. Figure 1 shows the basic parts, figure 2 displays a 
possible assembly mode. 
 
The 16 triangles are interlinked via spherical joints at the vertices of the pyramids and the 
tetrahedra. Pairs of these vertices determine rotational joints along the edges of the pyramids and 
two pairs of opposite edges of the tetrahedra. We gain four 1R joints interlinking the two tetrahedra 
and the pyramids, while each pyramid itself has four 1R joints in the edges through the vertex. The 
theoretical degree of freedom of this kinematic chain (ten rigid bodies and twelve 1R joints) takes 
on the value F = -6. But surprisingly enough, a physical model of this mechanism seems to admit 
some one-parametric self-motion! 
 
Figure 3 (with faces of the two tetrahedra) and figure 4 display the framework formed by the edges 
of the triangles. It consists of 24 stiff rods of unit length which meet in ten points (spherical joints).  
 
In the following we will look into possible self-motions of this structure.  
  
 



 

 

 

2 

 

     
   Figure 1           Figure 2 

 

  
Figure 3            Figure 4 

2. THE BASIC PYRAMID 
Our mechanism consists of a number of parts. Firstly, we consider the part forming an open 
pyramid with 4 facets (congruent regular triangles - see figure 5). We use a Cartesian frame {O; x, y, 
z}. It is natural to use coordinate planes of a ‘world coordinate system’ in the planes of symmetry of 
the possible folded versions of the pyramid with its center in the origin. Then the one-parametric 
self-motion of this pyramid can be displayed in this world coordinate system. The points 1, 2, 3 and 
4 describe circles with center O in coordinate planes. Its radius shall be normed to 1. Thus we can 
parametrize these point paths by  

 ).sin,cos,0(4),sin,0,cos(3),sin,cos,0(2),sin,0,(cos1      (1) 

There ]2/,6/[   and ]2/,6/[   are linked via 
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. sinsin21     (2) 

 
Remark: The two diagonals of the spatial rhombic quadrangle 1,2,3,4 have lengths 

cos213:1 d  and cos2242 d . Formula (2) yields the linking condition  

    (3) ).4()4(4 2
2

2
1 dd 

We consider the spatial rhombic quadrangles with side length 1 and diagonals  and  
complying with condition (3). This is exactly what it takes to form the base of a four-sided pyramid 
with regular triangular facets of side length 1.  
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Figure 5            Figure 6 

 

3. THE LINKED TETRAHEDRA 
Now we put a regular tetrahedron with two vertices in the points 1 and 2 onto the pyramid (see 
figure 6). Its other vertices will be denoted K and L. This tetrahedron admits a one-parametric 
rotation about the line [1,2]. The points K and L are situated on a circle )(k  containing the origin 
O. They can be parametrized by  
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The angle s between two faces of a regular tetrahedron is given by  and 3/1cos s

3/22sin s . L be the point on this circle relating to the parameter u+s. This gives the 
parametrization of the positions of L:  
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The same procedure delivers a regular tetrahedron linked to the edge 2 and 3 (see figure 7). Its new 
vertices are denoted by K* and L*. Parametrisation yields  
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and  
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The variable }1,1{   determines the orientation of the second tetrahedron (the mechanism has 
two corresponding assembly modes). Figure 7 refers to the case for 1 .   
 
Remark: The vectors  from (7) are gained form 22 ,nm


11,nm
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 (4) by a half-turn about the z-axis. 
According to our definitions and (2) we have  
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Figure 7            Figure 8 
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4. INTERLINKING THE TWO TETRAHEDRA 
Now we want to interlink the ‘free vertices’ of the two tetrahedra by using a pyramid like the first 
one. The free ends K, L, L*, K* of the configuration have to belong to the ‘open base’ of a further 
pyramid (just like the points 1,2,3,4 before). This base has to form a spatial quadrangle with equal 
side lengths. Two of its sides are the sides KL and L*K*. Our construction guarantees their length 
being equal to 1. The other two sides of this spatial rhombic quadrangle yield the following 
conditions of equal length 

 .1*,1*
22
 LLKK    (9) 

But not all spatial rhombic quadrangles are valid as ‘open base’ of such a pyramid. Our pyramid has 

four regular triangles as facets. The diagonals of the open base have lengths *:1 KLl   and 

LKl *:2  . According to formula (3) the base fits to a suitable pyramid exactly if the following 
condition holds: 

 ).*4()*4()4()4(4
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2
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1 LKKLll     (10) 

The two equations (9) and equation (10) together with (2) describe the possible positions of the 
mechanism. Our description of the mechanism uses the four variables vu,,, . So we would 
expect only single solutions of these four equations. But, surprisingly, we will see that the four 
equations have at least a one-parametric family of solutions. Thus, the mechanism enjoys some 
self-motion which is at least one-parametric.    

5. POSSIBLE POSES 
Now we are looking for possible poses of the second ‘open pyramid’: This means to determine 
admissible values of the four variables vu,,,  such that conditions (2), (9) and (10) hold. We 
compute 
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Substituting  and suu  svv   into equation (11) yields a similar expression 
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The equations (11) and (12) are linear in  and , resp. They can be 
solved for and give   
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This allows to eliminate the variable u. The remaining equations are (2), (13) and (10) with the 
substitutions in place. We further put )2/(tan: vt  . Then (11) and (13) yield two polynomial 
equations in t with degrees 8 and 12, respectively. As the result is lengthly we don not display it 
here. A possible self-motion of the mechanism belongs to a common (non-constant) zero of the two 
polynomial equations. There we have to use equation (2) as linking condition for   and  .  
 
Now we take a look at such common zeros of the two polynomial equations. At this point our 
considerations split into two cases depending on the assembly mode of the mechanism: 
 
CASE A - 1 : The polynomial equations have one common real root depending on the 
variable .  Figure 8 displays a graph of this zero interpreted as a function )(tt   of the angle 
 . Together with the solution ))sin2/(1arcsin(    of (2) and u from (13) we have a 
one-parametric self-motion to this mechanism assembly mode.   
 
CASE B - 1 : The use a computer algebra system allows to show that the two polynomial 
equations do not share any real root (depending on the variable  ). For this assembly mode there 
are no self-motions of the mechanism. The mechanism is stiff at any of its position. 
 
We sum up: 
 
Theorem 1: The described kinematic chain of 16 regular triangles has two different assembly 
modes. Only one of them admits a one-parametric self-motion. The second assembly mode is fixed 
at any of its positions. 

Remark: It is quite remarkable, that the mechanism behaves differently in each of its two assembly 
modes.  

 

CONCLUSIONS 
We presented and studied a particular chain of 16 regular triangles. The triangles formed the faces 
of two regular tetrahedra and two ‘open pyramids’. We studied kinematic properties of this chain 
where some of the triangles were interlinked by rotational joints. We were able to prove that this 
mechanism admits a one-parametric self-motion.  
 
Firstly we studied the behavior of the parts and its two different assembly modes. Analytic methods 
led to the description of the poses by several equations. Surprisingly, this overconstrained system of 
equations led to different behavior for the different assembly modes of the kinematic chain. For one 
assembly mode we were able to detect a non-constant common solution of these equations. For the 
second assembly mode such a non-constant solution does not exist. This common solution implies a 
one-parametric self-motion for the corresponding assembly mode. The movability of this 
overconstrained mechanism is all the more astonishing, as the second assembly mode behaves 
differently.   
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