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Motivation

Recall:

Given a signal, f:]0,2m) = R, we can write it
out in terms of its Fourier decomposition:

= o iKO
f(9)=kzoof[k]-m

f[k] € Cis the k-th Fourier coefficients of f.



Motivation

e k6

F0)= ) flkl-
k=—0o0

Frequency Decomposition:

N

For smaller N € Z, the finite sum:

A o ikO
=—N

represents the lower frequency
components of f.



Motivation

lk9

(9)—Zf =

k=—o0

Filtering:

By modulating the values of f[k] as a
function of frequency, we can realize
different signal filters:

0 otherwise
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(9)—Zf H

k=—o0
Filtering:

By modulating the values of f[k] as a
function of frequency, we can realize
different signal filters:

flk] < flk]- (2 —e7)




Motivation

Goal:

We would like to extend this type of processing
to the context of signals defined on surfaces*:

flk] « flk]- (2 —e™)

*For simplicity, we will assume all surfaces are w/o boundary.



Motivation

Goal:

We would like to extend this type of processing
to the context of signals defined on surfaces*
and even to the geometry of the surface itself:

*For simplicity, we will assume all surfaces are w/o boundary.



Motivation

° ) o kO
£(6) = k;f{k] =

[WARNING]:

— In Euclidean space we can use the FFT to obtain
the Fourier decomposition efficiently.

— For signals on surfaces, this is more challenging.
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How do we obtain the
Fourier decomposition?



Fourier <> Laplacian

Recall:

In Euclidean space, the Laplacian, is the
operator that takes a function and returns the
sum of (unmixed) second partial derivatives:
Zf aZf aZf
Af =552 0y? PP




Fourier <> Laplacian

Informally:

The Laplacian gives the difference between the
value at a point and the average in the vicinity:

1
Af () ~ lim — (Avgs, ) () — f ()




Fourier <> Laplacian

Note:
_ _ eike o
The complex exponential f(0) = N has Laplacian:

82 eik@
392(v2n)

o ik6

f(o) = N is an eigenfunction of the

Laplacian with eigenvalue —k?.



Fourier <> Laplacian

Note:

Similarly, £(8,¢) = - — has Laplacian:
02 02 eik@ . eilqb eik@ . eilqb
+ = —(k* +1°)-
007  0d¢*? 21 21

U

ik il

pik0 . il

f(0,9) = — is an eigenfunction of the

Laplacian with eigenvalue —(k? + [?).



Fourier < Laplacian

Approach:

— Though we cannot compute the FFT for signals on
general surfaces, we can define a Laplacian.

— To compute the Fourier decomposition of a signal,
f, on amesh we decompose f as the linear
combination of eigenvectors of the Laplacian:

fx) = Ef[i] - ¢i(x)  with Agp; =4, - ;.
i=1

This is called the
harmonic decomposition of f.



Fourier <> Laplacian

How do we know the eigenvectors of
the Laplacian form a basis?

Claims:

1. The Laplacian is a symmetric operator.

2. The eigenvectors of a symmetric operator form
an orthogonal basis (and have real eigenvalues).



Fourier <> Laplacian

Preliminaries (1):

— [Definition of the Laplacian]
Af = div(Vf)
— [Product Rule]
div(f - v) = f - div(v) + (Vf, V)

— [Inner Product on Functions]
Given a surface S c R3:

(1. 9)s = [ £ 9 d
S
— [Divergence Theorem™]

j [div(®)] () = j (B(s), 7i(s)) ds
S 0S



Fourier <> Laplacian

Preliminaries (2):

— [Lagrange Multipliers]
The constrained maximizer:
argmax E(x) s.t. f(x) =c
X

is obtained when the gradient of E is

perpendicular to the contour lines of f:
VE = AVg



Symmetry of The Laplacian

1. The Laplacian is a symmetric operator

Given a surface S c R3, we want to show that
for any functions f, g: S = R we have:

(Af,9)s = (f,Ag)s

)

LAf-gdx=fo-Agdx



Symmetry of The Laplacian

Proof:

By the definition of the Laplacian:
Af = div(Vf)

(Af, g)s = fSAf-gdx
— fdiV(Vf) - g dx
S
= f(div(g -Vf) —(Vf,Vg)) dx
S
— —f(Vf, Vg) dx
S



Symmetry of The Laplacian

Proof:

By the product rule:

(Af, g)s = fSAf-gdx
— fdiV(Vf) - g dx
S
= f(div(g -Vf) —(Vf,Vg)) dx
S
— —f(Vf, Vg) dx
S



Symmetry of The Laplacian

Proof:

By the Divergence Theorem*:
| [@iv@) = [ (@6, ds =0
S

daSs

(Af,g)s = JZAf'gdx
fdiv(Vf) g dx
f (div(g - V) — (Vf,Vg)) dx

f (Vf,Vg) dx



Spectra of Symmetric Operators

2. The e.vectors of a symmetric operator form
an orthogonal basis (and have real e.values)

We show this in two steps:

I.  There always exists at least one real eigenvector.

Il. If vis an eigenvector, then the space of vectors

perpendicular to v is fixed by the operator.
\

We can restrict to the subspace perpendicular
to the found eigenvectors and recurse.



Spectra of Symmetric Operators

Proof (ll):

Suppose that v is an eigenvector of a symmetric
operator M and w is orthogonal to v:

(v,w) =0
Since v is an eigenvector, this implies that:
(Mv,w) = (Av,w) = A{v,w) =0
Since M is symmetric, we have:
(v, Mw) = (Mv,w) =0

= The space of vectors orthogonal to v stays
orthogonal after applying M.




Spectra of Symmetric Operators

Proof (l):
Consider the constrained maximization
arg max E(v) = (v, Mv) s.t. ||[v]|* =1
1Y

The sphere is compact so a maximizer v, exists.

At the maximizer, we have:
VE = AV||v,I?
U
2Mvy = 2Av,

= Vg is an eigenvector with (real) eigenvalue A.



What happens in the
discrete setting?



FEM Discretization

1. To enable computation, we restrict ourselves
to a finite-dimensional space of functions,
spanned by basis functions {B;: S - R}/. ;.

Often these are defined
to be the hat functions
centered at vertices.

— Piecewise linear

= Gradients are constant
within each triangle

— Interpolatory

= B; (pj) — 6ij 0 otherwise



FEM Discretization

1. To enable computation, we restrict ourselves
to a finite-dimensional space of functions,
spanned by basis functions {B;: S - R}/. ;.

Having chosen a basis, we can think of a vector
f € R™ as a “discrete” function:

forf@=) fi B
=1
If we use the hat functions as a basis, then:

f(pj) = Zn:fi Bi(p))



FEM Discretization

1. To enable computation, we restrict ourselves
to a finite-dimensional space of functions,
spanned by basis functions {B;: S - R}/. ;.

[WARNING]:

In general, given:

— L: A continuous linear operator

— f € R™ & f(p): A discrete function

The function L(f) will not be in the space of
functions spanned by {B;: S = R}/ ;.



FEM Discretization

1. To enable computation, we restrict ourselves
to a finite-dimensional space of functions,
spanned by basis functions {B;: S - R}/. ;.

2. Given a continuous linear operator L, we
discretize the operator by projecting:

g =L(f)
U

(9,Bj)s = (L(f),Bj)s V]



FEM Discretization

(9,Bj)s =(L(f),Bj)s V]

Writing Oﬂt the discrete functions: )
g(p) = Zgi ‘Bi(p) and f(p) = Zfi - Bi(p)
i=1 nll =1
gi-(BuB))s = ) fi-(L(B)B)s V)

n
i=1 =1



FEM Discretization

‘H'M 3
-

9 (BuB))s = ) fi-(L(BYB)s V]
=1

Setting M and L to be the matrices:
M;; = (B;,Bj)s and L;; = (L(B;), B))s

U
n n
ZMU - gi =2Lij fi VY
i=1 i=1

U



FEM Discretization

=(B;,B;)s and L;; = (L(B;),Bj)s

Both the mass and stiffness matrices are

symmetric and positive (semi)-definite.
When = /A, we have:

(ABU ])S
Definitlon.

The matrix M is called the mass matrix.
The matrix —L is called the stiffness matrix.



FEM Discretization

— (Bll ])S and Ll] — _<VBil VB_]>S

Setting {B;: = R} to the hat
functions, the matrix M is:




FEM Discretization

M;; = (B;,B;)s and L;; =—(VB;,VBj)s

Setting {B;: = R} to the hat
functions, the matrix L is

the cotangent-Laplacian:
(cota + cotf ifj € N(i)

Lij =9 - Z Ly ifi=j

\  KEN(D)




FEM Discretization

flTiH + |17

12
Mij — <
My,
\ KEN(i)
Observations:
— [Sparsity]

Entry (i,j) can only be non-zero
if vertex i and vertex j are
neighbors in the mesh.

ifj € N()

ifi =j

and Lij = <

(cota + cotf

_ZLik

ifj € N(i)

ifi = j




FEM Discretization

flTiH + |17

ifj € N (cota + cotf ifj € N(i)
12
Mij=< . . and Lij=< _ Z Lik lfl=]
My, ifi=] .
. KEN(D)
\ KEN(i)

Observations:

— [Authalicity]
The mass matrix is invariant to
area-preserving deformations.

<
— [Conformality]

The stiffness matrix is invariant to
angle-preserving deformations.




FEM Discretization

[WARNING]:

Given a discrete function f < f(p), the vector:

-

Often, the matrix M is approximated by the diagonal
lumped mass matrix, making inversion simple.

In the literature, the operator M~ 1L is
sometimes called the normalized Laplacian.

g=M7'Lf



_LdP

FEM Discretization

acian Spectrum:

Lap

n the continuous setting, the spectrum of the

acian, {(¢;: S » R, —1; € R*Y)}, satisfies:
Ap; = —4; - ¢y

And the {¢;} form an orthonormal basis:

(i b)s = L 5:P) - b)) dp = 5,



_LdP

FEM Discretization

acian Spectrum:

nt
ap

ne discrete setting, the spectrum of the
acian, {(q?l e R" —A; € IRZO)}, satisfies:
Loy =—A; - Mo

And the {qgl} form an orthonormal basis:

(i bj)s = b7 M- ;=5

Finding the {(q_b)i,li)} is called the

generalized eigenvalue problem.




The Spectrum of the Laplacian

nterpreting the Eigenvalues:

f @ is a (unit-norm) eigenfunction of the
_Laplacian, with eigenvalue A:
AP =409
U
(Ap, P)s = A -(P, P)s
U
_<V¢' v¢>S = A

= The eigenvalue 4 is a measure of how much ¢
changes, i.e. the frequency of ¢.




How do we compute the
spectral decomposition?



Getting the Dominant Eigenvector

Assume that a matrix A is diagonalizable, with
(unit-norm) spectrum {(g/_b)i,/li)}.

Given v, we have the harmonic decomposition:

b= o[il-



Getting the Dominant Eigenvector

n
Ak = zﬁ[i] Ak g,
i=1
Without loss of too much generality, assume 4,
is the largest eigenvalue, |4;/4,,| < 1 fori # n.

n P I
A% =/1,’§-Zf5[i] ' (/1_1> - @y
i=1 "
Then (1;/14,))% = 0as k - oo, fori # n.
AkD

= 9—>_> as k > o
|AkU| ¢n




Getting the Dominant Eigenvector

ArnoldiDominant(4 € R" x R™ )
1. v« RandomVector()
. while( ...)

2

3. UV« AV

4. v« v/|V]
5. 1« (40, D)

6. return(v, A1)



Getting the Sub-Dominant Eigenvector

If the matrix A is symmetric, the eigenvectors
will be orthogonal:
ArnoldiSubDominant(4 € R™ x R" )
1. (Vy,49) <« ArnoldiDominant( A )
2. v, « RandomVector()

3. while(...)
4. 1})1 — A’l}l
5. U1 « Uy — (U1, Vo) " Vo

A similar approach can be applied to:
e Solving the generalized eigenvalue problem

* Finding the eigenvectors with smallest eigenvalues
e Finding the eigenvectors with eigenvalues closest to A
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Signal/Geometry Filtering

HarmonicDecomposition( S ¢ R?  feER)
1. (M,L) « MassAndStiffness (S)

2. {(¢: —ﬂi)}?zl « GeneralizedEigen( M , L )
3. Foreachice€[1,n]: fT-M-qu-
4. fli < (f. di)s

Process( F:R - R)
1. g0
2. Foreachice€|[l,n]:
3. gl « fli]- FQ)
4. Geg+all- ¢
5. returng




Signal Filtering

Given a color at each vertex, we can modulate
the frequency coefficients of each channel to
smooth/sharpen the colors.

FQ) =e™* Input




Geometry Filtering

Using the position of the vertices as the signal,
we can modulate the frequency coefficients of
each coordinate to smooth/sharpen the shape.




Partial Differential Equations

Recall:

The Laplacian of a function at a pointp € S is
the difference between the value at p and the
average value of its neighbors.



Heat Diffusion

Newton’s Law of Cooling:

The rate of heat loss of a body is proportional to the difference in
temperatures between the body and its surroundings.

Translating this into the PDE, if H(p, t) is the

heat at position p € § at time ¢, then:

BH_ N
ot |



Heat Diffusion

Newton’s Law of Cooling:

The rate of heat loss of a body is proportional to the difference in
temperatures between the body and its surroundings.

Goal:

Given an initial heat distribution h: S — R, find

the solution to the PDE:

0H
— =7n-AH

such that:
H(p,0) = h(p)



Heat Diffusion |—=n-AH

Note:
Let {(¢;, —1;)};= be the Laplacian spectrum.

= The functions:

H;(p,t) = e "4t . ¢, (p)
are solutions to the PDE.

= Any linear sum of the H;(p, t) is a solution.



Heat Diffusion ——=1n-AH

Compute the harmonig decomposition of h:
h(p) = ) Kli] - ¢i(p)
Then cons?nder the fur:::ion: )
H(p,t) = ) Rlil-Hy(p,0) = ) Rlil-e 4% - g,(p)
i=0 i=0

—|t is a solution to the heat equation.
— It satisfies H(p, 0) = h(p).



Heat Diffusion (Colors)

HarmonicDecomposition(S c R?* , h:S > R)
1.

Process(t € [0, x))
1. g<o0
2. Foreachice€[1,n]:
3 glil « hli] - et
4. G g+all- ¢
5. returng




Heat Diffusion (Geometry)

HarmonicDecomposition(S c R?* , h:S > R)
1.

Process(t € [0, ) )
1. g<o0
2. Foreachice€[1,n]:
3 glil « hli] - et
4. Geg+ali- ¢
5. returng




Heat Diffusion (Geometry)

[WARNING]:

1. As the geometry diffuses, the areas and angles
of the triangles change.

= The mass and stiffness matrices change.
= The harmonic decomposition changes.

If we take this into account, we get a non-linear
PDE called mean curvature flow.

2. Mean curvature flow can create singularities.




Wave Equation

The acceleration of a wave’s height is proportional to
the difference in height of the surrounding.

Translating this into the PDE, if H(p, t) is the
height at position p € S at time t, then:

0°H
ez A



Wave Equation

The acceleration of a wave’s height is proportional to
the difference in height of the surrounding.

Goal:

Given an initial height distribution h: S - R,
find the solution to the PDE:

0%H

oz 1A
such that:

OH
H(p,0) =h(p) and E(p,0)=0



Wave Equation | 2
ave Equation |——=n-aH

Note:

If {(¢p;, —A;)}i=, are the eigenfunctions/values
of the Laplacian, then:

Hf(p,t) = cos(yn - 4; - t) - ¢:(p)
Hi(p,t) =sin(y/n - A; - t) - ¢;(p)
are solutions to the PDE.

= Any linear sum of the H; (p, t) and H? (p, t) is
a solution to the PDE.




Wave Equation | 2
ave Equation |——=n-aH

Compute the harmonig decomposition of h:
h(p) = ) Kli] - ¢i(p)
Then consider the fur:::ign:
H(p,0) = ) Rlil-H (0,6) = ) Rlil-cos(yn 2 - t) - u(p)
(=0 =0

— |t is a solution to the wave equation.
— It satisfies H(p,0) = h(p).

— |t satisfies %—i] (p,0) = 0.



Wave Equation

HarmonicDecomposition(S c R?* , h:S > R)
1.

Process(t € [0, x))
1. g«<o0
For each i € [1,n]:

2 _
3 gli]l < h[i] - cos(yn - A; - t) \
4. g g+glil-é; |
5. return g J4




How practical is it to use the
spectral decomposition?



Complexity

Challenge:

If we have a mesh with n vertices we get n
generalized eigenvectors.

x 0(n?) storage / O(> n?) computation.

Approximate:

Sometimes a low-frequency solution will do.
v 0(k - n) storage

Sometimes a numerically inaccurate solution will do.
v 0(n) storage / O(?) computation



Approximate Spectral Processing

Preliminaries:

Let M be the mass matrix, —L the stiffness matrix,
and {(51’» —2;)} the spectrum, we have:

Me; = Mg, —Lop; = A; - M

Taking a times the 15t equation plus £ times the 2"¢:

(@-M—=B-L)d;=(a+p-1) M
Multiplying by (a - M — L)1

& —(a+ﬁ A) ((@-M—B-L)"1e M),
;= ((a-M—=B-L)"1oM)g,

(CH‘,B'AL')



Approximate Spectral Processing

Preliminaries:
(y+6-4) Mp; = -M—-6-L)p;

(0(+,B'/1i).¢i=((WM_'B'L)_%M)Cbi

Combining these, we get:
((@M=B-L) oy -M—65-1))p; =

=+6-2) ((@-M—=B-L)y" o M),
_)/+5Al —>.

_C(+,B‘Ai.¢l




Approximate Spectral Processing

Example (Signal Smoothing):
The goal is to obtain a smoothed signal:
flil « fLil - F(A:)
We can relax the condition that F(1) = e~* and use
a different filter F: R — R.

The new filter should:

— preserve the low frequencies
— decay at higher frequencies



Approximate Spectral Processing

- i
(X+ﬁ‘/1i

((a'M_,B'L)_l°(V'M_5'L))$i:(

Example (Signal Smoothing):

Consider the solution to the linear system:

Gg=(M—-B-L) oM)f

Solving this linear system is equivalent to filtering with:

F(1) =

1+6-4
with [ the rate of decay of higher frequencies.

A 1 N
= ) il gy b




Approximate Spectral Processing

_ ral ]/+6/11 —
((a-M—-p-L) 1°(V'M—6'L))¢i—(a+ﬁ_/1i)'¢i

Example (Signal Sharpening):

Consider the solution to the linear system:
g=(M—-B-L)ytoM-B-a-L))f

Taking the spectral decomposition of f:

S Ac 1+O',BAL —
Q—Zf[l]' T - @i




Approximate Spectral Processing

_ ral )/+5/11 —
((a-M—-B-L) 1°(V-M—5-L))¢i—(a_l_lg_/li)'flbi

Example (Signal Sharpening):

Consider the solution to the linear system:
g=(M—=B-L)ytoM-B-a-L))f
l1+o0-p-4
F(Q) =
= FW =77

Signal smoothing is a special instance, with 0 = 0.

— Aincl) F(A) = 1: Low-frequencies preserved

— /%im F (A1) = o: High frequencies scaled by o.



Approximate Spectral Processing

Process(SCcR3,feR" ,ceR,BER)
1. (M,L) « MassAndStiffness (S)

2. jeWM—-B-0-L)f
3. A« (M —-p-L)
4. return Solve( 4,3 )

By approximating, we replace the computational complexity of

storing/computing the spectral decomposition with the
complexity of solving a sparse linear system.




Heat Diffusion (Revisited)

0H

Discretization (Temporal):

Letting H;: S — R be the solution at time t, we
can (temporally) discretize the PDE in two ways:

Explicit Implicit
Hyys — Hy Hyys — Hy
6 ~ AHt 6 ~ AHt+6
U U
Hiys = H  + 0 - AH, (1-6-A)Hpys = H,;




Heat Diffusion (Revisited)

Explicit Implicit
Hiis = He + 0 - AH, (1-6-A)Hiys = Hy

Discretization (Spatial):

Projecting onto the discrete function basis gives:

U U
MH,,5 = MH, + & - LH, (M —68-L)H,.5 = MH,
U U
Hiys =(M™1o(M+6-L))H, Hiys =((M—=6-L)"1oM)H,



Heat Diffusion (Revisited)

Explicit Implicit
Hiys =M oM+68-L)H, | Hyas=(M—-6-L)"'oM)H,
U U
H.slil=Q-6-21) - H]Ji ~ 1 o
t+6[l] ( 1) t[l] H, s [l] — 7 . H, [l]

Discretization:

Both methods give an inaccurate answer when a
large time-step, 9, is used.

But... g’=((a-M—,B-L)_lo(y-M—S-L))f

= F(A):a+[3-/1-




Heat Diffusion (Revisited)

Explicit Implicit

Though neither approximation gives an accurate answer at large
times-steps, implicit integration is guaranteed to be
(unconditionally) stable.

B Asimilar approach can be used to approximate the solution
to the wave equation without a harmonic decomposition.

lim(1-6-2) =1

But at high frequencies (and large time-steps):

. . 1
Jim(1=6-4)=—o ‘ }ﬂi%(ua-zi)_o
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Conclusion

Though there is no Fourier Transform for general
surfaces, we can use the spectrum of the
Laplacian to get a frequency decomposition.

This enables:
— Filtering of signals
— Solving PDEs

by modulating the frequency coefficients.



Conclusion

Though computing a full spectral decomposition
is not space/time efficient, we can often:

— Use the lower frequencies.

— Design linear operators whose solution has the
desired frequency modulation.

Using the theory of spectral decomposition:

— We can design stable simulations, without
explicitly computing the decomposition.



Future

We have seen that the mass and stiffness
matrices are invariant to (respectively) authalic
and conformal deformations.

— Eigenvalues as isometry-invariant signatures
[Reuter, 2006] Laplace-Beltrami Spectra as ‘Shape-DNA'...

— |Isometric embedding for intrinsic symmetry detection
[Ovsjanikov et al., 2008] Global Intrinsic Symmetries of Shapes

— Heat diffusion for computing isometry-invariant distances.
[Sun et al., 2009] A Concise and Provably Informative Multi-Scale...

— Authalicity/Conformality constraints for correspondence
[Rustamov et al., 2013] Map-Based Exploration of Intrinsic Shape...

— And much, much, much more...



Thank You!



