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Abstract. We show the convergence (for all input data) of refinement rules in Rie-
mannian manifolds which are analogous to the linear four-point scheme and similar
univariate interpolatory schemes, and which are generalized to the Riemannian setting
by the so-called log/exp analogy. For this purpose we use a lemma on the Hölder
regularity of limits of contractive refinement schemes in metric spaces. In combination
with earlier results on smoothness of limits we settle the question of existence of inter-
polatory refinement rules intrinsic to Riemannian geometry which have Cr limits for
all input data, for r ≤ 3. We further establish well-definedness of the reconstruction
procedure of “interpolatory” multiscale transforms intrinsic to Riemannian geometry.

1. Introduction

Linear stationary refinement rules (see [1] for a comprehensive overview) have been suc-
cessfully generalized to data which live in surfaces, Lie groups, Riemannian manifolds
and other nonlinear geometries. Their properties regarding existence of limits, smooth-
ness, approximation power, stability, and use for discrete multiscale representations of
data have been systematically investigated. This line of research was instigated by [6];
the introduction of the so-called method of proximity by [18] and the proof of condi-
tional convergence and C1 smoothness of certain univariate subdivision schemes can be
considered the first systematic result.

Subsequent work investigated smoothness of the continuous limits produced by refine-
ment schemes for manifold-valued data. [20] showed how to achieve manifold refinement
schemes whose smoothness is the same as their linear counterparts, and [12] showed this
property in particular for “barycentric” manifold subdivision rules (multivariate case of
regular combinatorics). [13] established that a so-called interpolatory wavelet transform
in Riemannian geometry lets us characterize Hölder smoothness by the decay of detail
coefficients in much the same manner as is possible by the analogous linear construction.

Unfortunately the question of convergence is not as satisfactorily resolved as the ques-
tion of smoothness. Results which are valid for general classes of schemes apply to “dense
enough” input data. This restriction is natural, but the bounds which are known to im-
ply convergence are very far from optimal.

Recently there has been progress concerning refinement schemes which converge for all
input data. After initial univariate results by [19], it could be shown that for multivariate
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barycentric refinement rules with nonnegative coefficients, convergence in the linear case
implies convergence in general Hadamard spaces [10, 11].

It is our aim to show convergence for all input data for Riemannian analogues of
several prominent interpolatory schemes, including some of the Deslauriers-Dubuc series
[3] and the four-point scheme of [8]. They are constructed via the so-called log/exp
analogy. As a corollary we obtain interpolatory convergent schemes which produce Cr

limits, up to r = 3. Another corollary is the reconstruction of Hölder α functions from
discrete detail coefficients which decay with 2−αk, with k as the level of detail.

Our results apply to complete Riemannian manifolds, which includes surfaces which
are closed subsets of vector spaces. They are thus valid for a wide class of geometries.
The subdivision rules they apply to are interpolatory and are required to be contractive
in a certain manner. The four-point scheme and several Deslauriers-Dubuc schemes have
this property and are used as examples.

Linear interpolatory refinement rules. We start our exposition with a refinement
rule S acting on data x : Z → V , where V is a linear space. A finitely supported mask
a : Z→ R defines S as follows. A sequence (xi)i∈Z is mapped to the sequence (Sxj)j∈Z,
by

(Sx)j =
∑
i∈Z

aj−2ixi, j ∈ Z, where
∑
i∈Z

aj−2i = 1, for all j.(1)

The sum condition characterizes invariance of the rule w.r.t. translation of the data, and
is known to be necessary for convergence. A synonym for “refinement rule” is the notion
“subdivision scheme”. S is interpolatory, if generally (Sx)2i = xi, which means the even
coefficients of the mask are zero except for a0 = 1. In this case, (1) is equivalent to

(Sx)2j = xj , (Sx)2j+1 =
∑
i∈Z

a1−2ixj+i, j ∈ Z, where
∑
i∈Z

a1−2i = 1.

Example 1.1. The well-known (2d+ 2)-point Deslauriers-Dubuc interpolatory rule Dd
acts by inserting a new data item (Sx)2j+1 in between xj , xj+1 by polynomial inter-
polation [7, 3]: We find the unique degree 2d + 1 polynomial, temporarily denoted by
f(t), which maps arguments −d, . . . , d + 1 to values xj−d, . . . , xj+d+1. Then we let
(Sx)2j+1 = f(1

2). For different values of d we get the following masks:

d = 1 : (a±1, a±3) = 2−4(9,−1),

d = 2 : (a±1, . . . , a±5) = 2−8(150,−25, 3),

d = 3 : (a±1, . . . , a±7) = 2−12(2450,−490, 98,−10).

D0, the “simplest rule”, has mask (a−1, a0, a1) = (1
2 , 1,

1
2) and acts by (D0x)2i = xi,

(D0x)2i+1 = xi+xi+1

2 . D1 coincides with the special case ω = 1
16 of the four-point rule

proposed by [8]:

(Fωx)2i = xi, (Fωx)2i+1 =
(1

2
+ ω

)
(xi + xi+1)− ω(xi−1 + xi+2),

whose mask is given by a−3,...,3 = (−ω, 0, 1
2 + ω, 1, 1

2 + ω, 0,−ω).
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We later refer to the polynomial reproduction degree “deg(S)” of a linear refinement
rule S. It is the maximal value of k such that for any degree k polynomial f , applying
subdivision to integer samples of f coincides with sampling f over the half integers
(symbolically, S(f |Z) = f |Z/2). The very definition of Dd implies that deg(Dd) = 2d+ 1.

Manifold refinement rules. It is obvious that the following equation equivalently
defines the linear refinement rule S of (1):

(2) (Sx)j = bj +
∑
i∈Z

aj−2i(xi − bj), j ∈ Z; for any base point sequence (bi)i∈Z.

This alternative definition is useful when transferring the definition of refinement rules to
situations where a difference vector of points and its inverse construction — the addition
of point and vector — may be defined. In a Riemannian manifold M , it is natural to
employ the definitions

p⊕ v = expp(v), q 	 p = exp−1
p q,

where t 7→ expp(tv) is the geodesic emanating from p with initial tangent vector v
contained in the tangent space TpM [4]. The subtraction operation v = q 	 p results in
a tangent vector v attached to p which “points to q” in the Riemannian way: starting
in p and traveling along a geodesic emanating from p in direction v will reach the point
q, if the distance travelled equals ‖v‖. Setting aside for a moment the topic of well-
definedness of 	, the operations ⊕, 	 now lead to a definition of subdivision rules in
Riemannian manifolds:

Definition 1.2. For data x : Z → M and base points b : Z → M the log-exponential
version of the refinement rules (1), (2) is given by

(Sx)j = bj ⊕
∑
i∈Z

aj−2i(xi 	 bj), j ∈ Z.

As to notation, the linear rule (2) which inspired the definition of S is denoted by S lin.

This idea has been first presented for the Lie group case by [6], and has been published
by [17]. A refined version with a clever choice of base points produces limit functions of
the same smoothness as those of the linear model rule [20, 12].

Remark. Other expressions equivalent to (1) have been used to define and analyze non-
linear analogues of linear refinement rules. These include (Sx)j as the Riemannian
barycenter of masses aj−2i located at points xi (see e.g. [12] where it occurs as a special
log/exp construction). In case of nonnegative mask, (Sx)j can be seen as the expected
value of a random variable which assumes the value xi with probability aj−2i [10, 11].

Well-definedness and properties of subdivision rules. The aim of this paper is
to analyze the limit curve which emerges while iterated application of a subdivision rule
produces denser and denser data. For a nonlinear rule S, however, other questions have
to be investigated before:

(i) Is S globally and unambiguously defined?
(ii) Do individual points (Sx)j depend continuously, even smoothly, on the xi’s?
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Obviously, for linear rules the answers are affirmative, and when investigating conver-
gence of manifold subdivision rules for “dense enough” input data (as most previous
work does) one can assume an affirmative answer without loss of generality. In this
paper we do not restrict ourselves in this way, so we address questions (i), (ii) in the
following paragraphs. We summarize our findings in Lemma 1.3.

The right setting to work in is a complete Riemannian manifold M . Since we do not
want a lack of smoothness of M to interfere with our analysis of the finite degree of
smoothness enjoyed by the limit curves generated by subdivision, we assume that M is
C∞, or “smooth”, in differential geometry terminology. In that case ⊕ is C∞ as well.
Completeness is equivalent to any of the following properties, cf. [4, §7, 2.5]:

(a) each geodesic extends to arbitrary length;
(b) M is complete as a metric space;
(c) For subsets K of M we have: K is bounded and closed ⇐⇒ K is compact.

Property (a) in particular says that p⊕v is defined for all p, v. The Hopf-Rinow theorem
[4, §7, 2.5] states that for a complete Riemannian manifold M , and all p, q ∈ M there
is a shortest curve c(t) in M connecting p = c(0) with q = c(1), and that curve is an
unbroken smooth geodesic of the form expp(t · v), so that v = q 	 p. We conclude that
	 is globally definable. To resolve ambiguities we require that 	 is made a mapping

(p, q) ∈M ×M 	7−→ q 	 p ∈ TpM,

by choosing v = q 	 p once and for all, for all instances (p, q) where the Hopf-Rinow
theorem provides more than one solution v.

The Riemannian injectivity radius ρinj(p) is the maximal radius of an open ball for
which expp is a diffeomorphism. It encodes the local topology and geometry of M , is
always positive, and might be infinite. Further it is known that for radii ε ≤ ρinj(p), the
open ε-ball around 0 in TpM is mapped by expp to the ball B(p, ε) of p in the metric
space M . By the inverse function theorem, the mapping q 7→ q	p is as smooth as expp,
when restricted to B(p, ρinj(p)). We summarize:

Lemma 1.3. In a complete Riemannian manifold M , any log/exp rule S is globally
definable. In the notation of Def. 1.2, the point (Sx)j depends on those data points xi
for which aj−2i 6= 0, and this dependence is as smooth as the Riemannian exponential
mapping, provided the distance of these data points xi from the base point bj does not
exceed ρinj(bj).

If the shortest geodesic which joins p and q is unique, then the geodesic midpoint
“mp,q” of p, q is unique. It can be written equivalently as

mp,q = p⊕ 1
2

(q 	 p) = q ⊕ 1
2

(p	 q).

Then also the shortest geodesic joining mp,q with either p, q is unique. Even without
uniqueness, we have equality up to sign of the two vectors “endpoint minus midpoint”,
both of which are contained in the tangent space Tmp,qM :

(3) (p	mp,q) + (q 	mp,q) = 0.
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Otherwise there would be shortest path connecting p, q which is broken (being not C1)
in mpq, an obvious contradiction. As explained in more detail below, our conclusions do
not require uniqueness of shortest geodesics.

Example 1.4. For certain kinds of refinement rules, it is natural how to choose the
base point sequence. For interpolatory rules, the choice of b2i is arbitrary, since (Sx)2i =
b2i⊕ (xi	 b2i) = xi anyway. A natural choice of base point for the computation of x2i+1

is the edge midpoint mxi,xi+1 . We compute

(Sx)2i+1 = mxi,xi+1 ⊕
∑

j∈Z
a1−2j(xi+j 	mxi,xi+1) =⇒

(Sx)2i+1 = mxi,xi+1 ⊕
(

(a1 − a−1)(xi 	mxi,xi+1) +
∑
j 6=0,1

a1−2j(xi+j 	mxi,xi+1)
)
.(4)

We have used (3) for grouping the terms involving a1, a−1. Since the mask of the
Deslauriers-Dubuc schemes and the four-point scheme is symmetric, we get the following
Riemannian versions of these schemes:

(Ddx)2i+1 = mxi,xi+1 ⊕
(∑

j 6=0,1
a1−2j(xi+j 	mxi,xi+1)

)
, (i ∈ Z).

(Fωx)2i+1 = mxi,xi+1 ⊕
(
− ω

(
xi−1 	mxi,xi+1 + xi+2 	mxi,xi+1

))
, (i ∈ Z).

The “simplest scheme” reads (D0x)2i = xi, (D0x)2i+1 = mxi,xi+1 .

The cancellation of terms involving a1, a−1 is very welcome for later convergence anal-
ysis. Thus we give the following definition of a Riemannian version of an interpolatory
rule S lin which coincides with Definition 1.2, if the geodesic midpoints mxi,xi+1 of suc-
cessive data items are uniquely defined and are chosen as base points. By abuse of
language we still refer to “the” Riemannian version of S lin, even if there is ambiguity in
the definition of 	 and consequently in the definition of S.

Definition 1.5. The Riemannian version S of an interpolatory rule S lin with mask (ai)
is defined by Equation (4).

2. Convergence of Riemannian interpolatory subdivision rules

Convergence of interpolatory rules. For interpolatory rules, where half of Sx coin-
cides with x, the definition of convergence is not difficult:

Definition 2.1. Consider data x = (xi)i∈Z and the sequences Sx, S2x, . . . created by
iteratively applying the subdivision rule S. Formally S0x = x. Since S is interpolatory
and (Sk1x)i1 = (Sk2x)i2 whenever i1/2k1 = i2/2k2, we may unambiguously define the
limit function S∞x for any dyadic rational number by letting

(S∞x)(
i

2k
) = (Skx)i, i ∈ Z, k = 0, 1, 2, . . .

If S∞x extends to a continuous function on the reals, then S is said to converge, for the
given input data x, to this continuous limit function, again denoted by S∞x.

Example 2.2. The linear Deslauriers-Dubuc rules Dd of Example 1.1 converge to a
continuous limit for all d ≥ 0 when acting on data in vector spaces. This limit for d ≥ 1
is r times continuously differentiable (Cr) with r increasing as d does, see e.g. [2, Table
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2]. In particular the critical Hölder smoothness αmax(Dd), d = 1, 2, 3 of limit functions
has the values 2, ≈ 2.83 and ≈ 3.55, respectively. This implies that the limits of Dd
enjoy Cd smoothness for d = 1, 2, 3.

The four-point rule Fω produces C1 limits for ω ∈ (0, ωmax), with 32ω3
max+4ωmax = 1,

i.e., ωmax ≈ 0.19273 [15]. We therefore have αmax(Fω) > 1 for ω ∈ (0, ωmax). No scheme
Fω has C2 limits, not even F1/16 = D1, where limits are C2−ε.

Contractivity. It has been shown by several authors that certain contractivity prop-
erties of refinement rules — linear and nonlinear — imply convergence to a continuous
limit. One particular such property is to require that edgelengths contract by some
factor γ < 1 when subdivision is applied:

(5) sup
i∈Z

δi(Sx) ≤ γ sup
j∈Z

δj(x) where γ < 1, δi(x) = dist(xi, xi+1).

The metric “dist” is the one of the complete Riemannian manifold under consideration.
Condition (5) is known to imply convergence to a continuous limit for univariate in-

terpolatory schemes in Euclidean spaces [9] and also for the “barycentric” Riemannian
analogues of univariate schemes with nonnegative coefficients in Hadamard manifolds
[19]. A general result which applies to multivariate refinement in complete metric spaces
states that a more general kind of contractivity together with proximity of S to a con-
vergent rule with certain properties implies convergence of S [10].

In this paper we verify that the result of [9] is valid for complete metric spaces. We
start by testing some examples of Riemannian refinement rules.

Lemma 2.3. Consider a linear interpolatory subdivision rule S lin with mask (ai). Let

γ =
1 + |a1 − a−1|

2
+
∑
j≥2

(
|a1−2j |+ |a2j−1|

)(
j − 1

2
)
.

Then the Riemannian version S of S lin, in a complete Riemannian manifold obeys the
inequality

δ2i(Sx) ≤ γmax
j
δj(x) δ2i+1(Sx) ≤ γmax

j
δj(x), for all i,

where the maximum is taken over those finitely many values δj(x) which involve at least
one data point contributing to the computation of (Sx)2i+1.

Proof. Let δ equal the maximum which occurs on the right hand side of the inequalities
above. Then the distance of the midpoint mxi,xi+1 from points xi, xi−1, . . . is bounded
by δ

2 ,
3δ
2 , . . . and similar for the points xi+1, xi+2, . . . . Using the inequality

dist(x, x⊕ v) ≤ ‖v‖,
we conclude that the distance of xi from the point (Sx)2i+1 created by subdivision is
bounded by

dist
(
xi,mxi,xi+1

)
+
∥∥∥(a1 − a−1)xi 	mxi,xi+1 +

∑
j 6=0,1

a1−2j(xi+j 	mxi,xi+1)
∥∥∥

≤ δ

2
+ |a1 − a−1|

δ

2
+
∑

j≥2

(
|a1−2j |+ |a2j−1|

)(
j − 1

2

)
δ.

The same applies to the distance of xi+1 from (Sx)2i+1. �



CONVERGENT INTERPOLATORY SUBDIVISION IN RIEMANNIAN GEOMETRY 7

Example 2.4. We compute the constant γ mentioned in the previous lemma for the
Deslauriers-Dubuc schemes Dd and the four-point rule Fω of Ex. 1.4. We get

D0 : γ =
1
2
, D1 : γ =

11
16
, D2 : γ =

109
128

, D3 : γ =
2039
2048

, Fω : γ =
1
2

+ 3|ω|.

Convergence from contractivity. If the constant γ which occurs in Lemma 2.3 hap-
pens to be smaller than 1, then the corresponding Riemannian subdivision rule enjoys
edgelength contractivity. In the case of subdivision acting on vector space data, this
property is known to imply convergence [9]. We formulate a version of this result which
applies to complete metric spaces:

Proposition 2.5. The limit S∞x of an interpolatory univariate scheme S acting on
data in a complete metric space is continuous, if S is contractive in the sense that there
is γ < 1 such that for all j,

δj(Sx) ≤ γ sup
i
δi(x),

where the supremum is taken over all data points which influence the left hand expression.
The limit is uniformly continuous, if δi(x) is globally bounded.

Proposition 2.6. Under the same assumptions, S∞x has Hölder continuity

− log γ/ log 2.

Proof of Propositions 2.5 and 2.6. Recalling Def. 2.1, we define the limit function f =
S∞x on the dyadic rationals and show that an inequality of the kind dist(f(α), f(β)) ≤
C|α− β|r holds for all dyadic rationals α, β.

Assume w.l.o.g. α < β and choose k such that the length of the interval [α, β] is
contained in [ 1

2k+1 ,
1
2k ]. The interval [α, β] contains a common element with 1

2k+1 Z,
which is called αk+1 = βk+1. Now there is a decreasing sequence of dyadic rationals
(αj)j>k with αj ∈ 1

2j Z approaching α from above (note that there exists an index j0
such that for all j ≥ j0, we have αj = α). Analogously one finds an increasing sequence
of (βj)j>k with βj ∈ 1

2j Z approaching β from below. We estimate

dist
(
f(α), f(β)

)
≤ dist

(
f(α), f(αk+1)

)
+ dist

(
f(βk+1), f(β)

)
≤
∑
j>k

dist
(
f(αj), f(αj+1)

)
+
∑
j>k

dist
(
f(βj), f(βj+1)

)
.

If αj 6= αj+1, the corresponding contribution to the first sum is an edge length of Sj+1x;
otherwise that contribution is zero. A similar argument applies to the second sum. In
any case the respective summand is bounded by δi(Sj+1x) ≤ γj+1 supi δi(x):

dist
(
f(α), f(β)

)
≤

∞∑
j=k+2

2γj sup
i
δi(x) ≤ 2γk+2

1− γ
sup
i
δi(x).

The inequality 2−k ≥ |β − α| implies k ≤ − lg |β − α|, so

γk ≤ γ− lg |α−β|

(here lg x = log x/ log 2 is the dyadic logarithm). We can thus continue to estimate

dist
(
f(α), f(β)

)
≤ Cγk ≤ C(2lg γ)lg |α−β| = C|α− β|lg γ .
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If δi(x) is bounded, so is the constant C. This shows Hölder continuity (locally) for the
function f on the dyadic rationals. By completion we extend f to a continuous function
on R which enjoys the same Hölder regularity. Since for any compact interval I, (S∞x)|I
depends only on finitely many data points xi, the statement follows. �

Combining Ex. 2.4 with Proposition 2.5, we get the following result:

Theorem 2.7. The Deslauriers-Dubuc refinement rules D0, . . .D3, acting on data in
a complete Riemannian manifold according to Ex. 1.4 and Def. 1.5, possess continuous
limits for all input data. So does the four-point rule Fω, if the weight ω is chosen in the
interval (−1

6 ,
1
6).

3. Riemannian multiresolution analysis

Multiresolution analysis of functions, meaning a representation by a discrete coarse level
description and a hierarchy of detail coefficients, has been transferred to the setting of
Lie groups and similar geometries by [6, 17]. A general version of such constructions has
been analyzed by [13]. It has also been shown that under certain assumptions on the
nature of the decomposition (no redundancy, perfect reconstruction) the greater part
of the constructions available in the linear case do not transfer to general Riemannian
manifolds [14]. One of the few which do is interpolatory wavelets, defined by sampling and
an interpolatory subdivision rule S as predictor [5]. This construction, described below,
turns out to be globally defined in complete Riemannian manifolds. Its construction
uses restriction Rkf of a function to 1

2k Z:

(Rkf)i = f(2−ki), i ∈ Z.

Now a continuous function f : R → M is discretely represented by coarse samples
x0 : Z→M and detail coefficients wk : Z→ TM which are tangent vectors:

(6) x0 = f |Z = R0f, wk = Rkf 	 SRk−1f (k > 0).

Here the 	 operator is applied element-wise. Reconstruction of f from x0, w1, w2, . . .
works via iteratively reversing the decomposition. We define f on the dyadic rationals
via

(7) xk = Sxk−1 ⊕ wk, f(
i

2k
) = xki .

If f extends continuously to the reals, then this extension, again denoted by f , is unique
and is called the limit of the reconstruction procedure.

Remark. Any interpolatory rule S can be used here. In any case all even coefficients wk2i
which occur in (6) are zero. When speaking about reconstructing an unknown function
from its detail coefficients, this property of the detail coefficients is therefore always
assumed.

Lemma 3.1. In complete Riemannian manifolds, decomposition and reconstruction ac-
cording to Equations (6), (7) have the following properties:

(i) Both decomposition and reconstruction are globally defined.
(ii) For all continuous f : R→M , reconstruction after decomposition restores f .
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(iii) Each coefficient wki is computed from finitely many values of f on the grid 2−kZ.
As k increases, this dependence is smooth. More precisely, for every interval
[α, β] there is k0 > 0 such that for every integer k ≥ k0, and for all i ∈ Z with
i

2k ∈ [α, β], this dependence is as smooth as the exponential mapping.

Proof. Global definability of ⊕, 	, S directly implies (i). For (ii) we observe that
p⊕

(
q 	 p

)
= q and that x = y =⇒ Sx = Sy because we required 	 to be a mapping.

This implies that f(t) is perfectly reconstructed for all dyadic rationals t. By continuity,
this follows for all t ∈ R.

The idea of proving (iii) is to increase k such that all 	 operations needed for wki
involve points which are close enough for 	 to be smooth. The technical details are as
follows. First choose a positive integer k0 and find a compact interval I ⊃ [α, β] such
that all data needed to compute wk0i , i

2k0
∈ [α, β], are samples of f |I . This property then

holds for all k ≥ k0. Secondly observe that there is an upper bound δk0 for the distance
of samples f( i

2k ), f( i+1
2k ) in I, for all k ≥ k0. By finiteness of the mask and Lemma

2.3, there is l > 0 such that all 	 operations needed to compute wki , i
2k ∈ [α, β] involve

points whose distance does not exceed lδk0 . Now the set {p ∈ M | dist(p, f(I)) ≤ lδk0}
is compact, and there is a lower bound ρ > 0 for the injectivity radius in this set [16,
2.1.10]. We now increase k0 such that lδk0 < ρ, and all 	 operations are smooth. �

Remark. Note that the detail coefficient wk2i+1 is contained in the tangent space of the
point (Sxk−1)2i+1 which depends on the entire data hierarchy below level k. Only if
reconstruction up to level k is already performed, it makes sense to choose the detail
coefficients wki . This property implies that usual operations on detail coefficients like
thresholding, quantizing, etc. are restricted. However it is possible to overcome this
problem by attaching detail coefficients to other data points — say, the nearest point
of x0 — by Riemannian parallel transport which could be along the broken geodesic
defined by data xk or along the shortest unbroken geodesic. We do not care about this
here, since parallel transport is an isometry of tangent spaces and we are only concerned
with the norms of detail coefficients. The interested reader is referred to [13].

It has been shown by [13], for slightly different decomposition and reconstruction
procedures, that the Hölder regularity of a function is characterized by the decay rate
of its detail coefficients. The following statement, to be improved in the next section, is
a weaker version of this statement.

Theorem 3.2. Consider a complete Riemannian manifold M , samples x0 : Z → M
and detail coefficients wk : Z → TM , k ≥ 0 which via the reconstruction procedure (7)
are to define a function f : R → M . Assume that the detail coefficients contract by
‖wki ‖ ≤ Cµk with µ < 1, and that the interpolatory refinement rule S in (7) has edge
length contractivity constant γ < 1. Then reconstruction recovers a continuous function
f . For any γ̃ with max(γ, µ) < γ̃ < 1, the function f has Hölder regularity

− log γ̃/ log 2 ∈ (0, 1).

Proof. We use the notation Dk = supi δi(xk) for the supremum of edge lengths of the
discrete reconstruction at level k. Because of xk2i = xk−1

i = (Sxk−1)2i,

δ2i(xk) ≤ dist
(
xk2i, (Sxk−1)2i+1

)
+ ‖wk2i+1‖ ≤ γDk−1 + Cµk.
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The same holds for δ2i+1(xk). We choose an auxiliary constant γ̃ which obeys max(γ, µ) <
γ̃ < 1 and find a constant C ′ such that kmax(γ, µ)k ≤ C ′γ̃k for all k. We now recursively
estimate Dk:

Dk ≤ γDk−1 + Cµk ≤ γ
(
γDk−2 + Cµk−1

)
+ Cµk ≤ · · · ≤ γkD0 + C

∑k−1

j=0
γjµk−j

≤ γkD0 + Ckmax(γ, µ)k ≤ (D0 + CC ′)γ̃k.

Analogous to Proposition 2.6 this implies that the limit is continuous with Hölder reg-
ularity − log γ̃/ log 2. �

Apparently the conclusions of Theorem 3.2 are valid for interpolatory wavelets defined
by the Dubuc-Deslauriers schemes D0, . . . ,D3, or by the four-point rule Fω, with ω ∈
(−1

6 ,
1
6).

4. Smoothness

Once a subdivision scheme S is known to possess continuous limits (cf. Def. 2.1), it is
natural to ask how smooth these limits are. More precisely we ask for the degree of
smoothness of the function t 7→ (S∞x)(t), which can mean either being Cr, for some
r > 0, or having a certain Hölder regularity. For simplicity, we still assume that the
intrinsic smoothness of the underlying manifold is C∞.

Fortunately, general results of the form “dense enough input data =⇒ smoothness”
are available for many subdivision schemes S, and of course convergence implies that
eventually we have dense enough input data. In many cases it has been possible to show
that the limit functions produced by S are at least as smooth as the limits of the linear
rule S lin it is derived from. [21] show this for interpolatory rules which are transferred
to the Lie group setting by the log/exp construction (using base point xi for computing
x2i+1). In the non-interpolatory case and with smoothness higher than C2, the choice
of base point sequence is crucial for the smoothness of limits, see the detailed study by
[20, 12].

We are going to derive results on the smoothness of limits curves after a detour where
we study the properties of the “interpolatory wavelets” decomposition and reconstruction
procedures associated with an interpolatory subdivision rule. These properties, stated
below, essentially say that the degree of Hölder regularity of a function is characterized
by the decay rate of its detail coefficients. We measure the decay and generally the
magnitude ‖wki ‖ of detail coefficients wki in the canonical way, by using the Riemannian
scalar product on the tangent vectors wki . We have the following result:

Theorem 4.1. Consider an interpolatory subdivision rule S according to Definition 1.5,
which operates in a complete Riemannian manifold and which has edgelength contractiv-
ity γ < 1. Then the reconstruction and composition procedures associated with S have
the following properties:

(i) For any α < αmax(S lin), the limit function f reconstructed from samples x0 and
a hierarchy w0, w1, . . . of detail coefficients exists and enjoys Hölder continuity
α, if the detail coefficients decay with ‖wki ‖ ≤ C2−kα.

(ii) For any α < deg(S lin), the detail coefficients w0, w1, . . . of a Hölder α function
f : R→M decay with ‖wki ‖ ≤ C2−αk.
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The constants C are understood to be uniform for data in compact intervals.

Proof. A proof of this statement from scratch would be rather long. Fortunately a proof
can also be given by indicating in what way the proof of a similar statement can be
modified, but this causes this paper to be no longer self-contained.

Conclusions (i), (ii) have been shown for subdivision rules analogous to ours by [13,
Theorem 8], under the stronger assumptions that all procedures are defined and that the
continuous limit f in (i) exists. They consider subdivision rules according to Definition
1.2, but with a base point sequence different from ours.

If [13, Theorem 8] holds also for our rules, the proof would be complete, since its
assumptions are fulfilled thanks to Lemma 3.1 and Theorem 3.2. A look at the proof
now reveals that the choice of the base point sequence is relevant only in so far as it
affects “proximity” of subdivision rules S and S lin.

Using local coordinates in the Riemannian manifold, this proximity is expressed as
‖(Sx)i−(S linx)i‖ ≤ CΩn(x), where n = deg(S lin), C is a constant valid for all input data
in a compact set, the norm refers to the usual Euclidean norm in the coordinate chart,
and the symbol Ωn(x), which is used by [20, 12], means a rather involved combination
of iterated differences of the sequence (xi)i∈Z. Since our rules satisfy the proximity
inequality by [12, Theorem 3.3], we conclude that (i), (ii) hold. �

Remark. Theorem 4.1 is obviously stronger than Theorem 3.2 which claims only low
Hölder regularity. This is consistent with the fact that the proof of [13, Theorem 8]
is rather involved. The important point however is that Theorem 3.2 establishes well-
definedness of decomposition and reconstruction for all input data (xi)i∈Z and for all
detail coefficients enjoying a certain mild decay condition. In contrast, the results of [13]
refer to input data which are “dense enough” in an unspecified way. So the strength of
Theorem 4.1 rests on Theorem 3.2.

Remark. It is not difficult to see that the statements in Theorem 4.1 concerning Hölder
regularity α hold true not only for C∞ manifolds, but also for manifolds where the
exponential mapping enjoys smoothness higher than α.

Corollary 4.2. The critical Hölder regularity αmax of limit functions produced by the
refinement schemes Dd, d = 1, 2, 3, in Riemannian manifolds has the following values:

d = 1 : αmax = 2, d = 2 : αmax ≈ 2.83, d = 3 : αmax ≈ 3.55.

In particular, limit curves produced by Dd are d times continuously differentiable, for
d = 0, . . . , 3. For the four-point scheme Fω with ω ∈ (0, 1

6), limits are C1.

Proof. The limit functions in question, denoted by S∞x, are continuous by Theorem 2.7.
Since S∞x is also constructed via the reconstruction procedure (7) if we let x0 = x and
w0 = w1 = · · · = 0, the conclusion follows from Theorem 4.1. The values of αmax are
taken from Ex. 2.2. �
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