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Abstract

Geometric computing has recently found a new field of applications, namely the various geometric problems which
lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report
on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions
(which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is
related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical
optimization and geometric knowledge.

1 Background
The time of writing this survey paper coincides with
the summing up of a six-year so-called national re-
search network entitled Industrial geometry which
was funded by the Austrian Science Fund (FWF).
By serendipity at the same point in time where the
first Ph.D. students started their work in this project,
a whole new direction of research in applied geom-
etry turned up: meshes and three-dimensional geo-
metric structures which are relevant for rationaliza-
tion and construction-aware design in freeform archi-
tecture. It turned out to be fruitful and rewarding,
and of course it is also a topic which perfectly fits
the heading of ‘Industrial Geometry’.

It seems that everybody who is in the business
of actually realizing freeform architectural designs
as a steel-glass construction, or in concrete, or by
means of a wooden paneling, quickly encounters the
limits of the tools which are commercially available.
Some of the problems whose solutions are on top of

the list of desiderata are in fact very hard. As a
consequence there is great demand for a systematic
approach and, most importantly, a full understand-
ing of the geometric possibilities and obstructions
inherent in obstacles which present themselves.

We were able to expand knowledge in this di-
rection by applying geometry, differential geometry,
and geometric algorithms to some of those prob-
lems. Cooperation with industry was essential here.
We were fortunate to work with with Waagner-Biro
Stahlbau (Vienna), RFR (Paris), and Evolute (Vi-
enna), who provided much-need validation, informa-
tion on actual problems, and real-world data. Re-
markably the process of applying he known theory
to practical problems also worked in reverse: appli-
cations have directly led to research in pure mathe-
matics. In this paper we survey some developments
which we see as significant:

— The discrete differential geometry of quadri-
lateral meshes and the sphere geometries of Möbius,
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Figure 1: Node with Torsion. Manufacturing a vertex
where symmetry planes of incoming beams do not inter-
sect properly is demanding, especially the central part
(image courtesy Waagner-Biro Stahlbau).

Figure 2: Nodes without Torsion. If we can align symme-
try planes of beams along edges such that they intersect
in a common axis, node construction is much simplified.

Laguerre, and Lie, are closely related to the realiza-
tion of freeform shapes as steel-glass constructions
with so-called torsion free nodes.

— Conformal uniformization appears in connec-
tion with circle-packing meshes and derived triangle
and hexagonal meshes.

— Optimization using various ideas ranging from
combinatorial optimization to image processing is in-
strumental in solving the paneling problem, i.e., the
rationalization of freeform shapes via decomposition
into simple and repetitive elements.

Our research is part of the emerging interdisci-
plinary field of architectural geometry. The inter-
ested reader is referred to the proceedings volume
[1] which collects recent contributions from differ-
ent areas (mathematics, engineering, architecture),

the textbook [2], and the articles [3–5]. Our aim is
to convince the reader that many issues in freeform
architecture can be dealt with by meshes or other
geometric structures with certain local properties.
Further, that we are capable of formulating target
functionals for optimization which – if successful –
achieve these properties. It is however important to
know that in many cases optimization without addi-
tional geometric knowledge (utilized e.g. by way of
initialization) does not succeed.

2 Multilayer Structures
In this section we deal with the remarkable inter-
relation between the discrete differential geometry
of polyhedral surfaces on the one hand, and prob-
lems regarding multilayer structures and torsion-free
nodes in steel-glass constructions on the other hand.

2.1 Torsion-Free Nodes
In order to realize a designer’s intended shape as a
steel-glass construction, it is in principle easy to find
a triangle mesh which approximates that shape, and
let beams follow the edges of this mesh, with glass
panels covering the faces. This is in fact a very com-
mon method. Experience shows that here often the
manufacturing of nodes is more complex than one
would wish (see Figures 1 and 2), which is caused by
the phenomenon that the symmetry planes of beams
which run into a vertex do not intersect nicely in a
common node axis. The basic underlying geometric
question is phrased in the following terms:

Definition. Assume that all edges of a mesh are
equipped with a plane which contains that edge. A
vertex where the intersection of planes associated with
adjacent edges is a straight line is called a node with-
out torsion, and that line is called the node axis.

Problem. Is it possible to find meshes (and associ-
ated planes) such that vertices do not exhibit torsion,
possibly by minimally changing an existing mesh?

The answer for triangle meshes is no, there are
not enough degrees of freedom available. For a quadri-
lateral mesh this is different, and we demonstrate an
example which has actually been built: The outer
skin of the Yas Island hotel in Abu Dhabi which was
completed in 2009 exhibits a quadrilateral mesh with
non-planar faces which are not covered by glass in a
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Figure 3: Mesh Design. Top: In order to achieve a mesh
which follows the architects’ design one can employ an
iterative procedure which consists of a subdivision pro-
cess [6], a switch to diagonals, and mesh optimization
such that the resulting mesh can be equipped with beams
without node torsion (image courtesy Evolute GmbH).
Bottom: final mesh corresponding to Figure 4 (image
courtesy Waagner-Biro Stahlbau, cf. [7]).

watertight way. Figure 3 illustrates the tools from
Geometric Modeling (subdivision) employed in gen-
erating the mesh, the final result is illustrated by
Figure 4.

2.2 Meshes with Planar Faces
Very often a steel construction is required to have
planar faces for the simple reason that its faces have
to be covered by planar glass panels. The planarity
is of course easy to fulfill in case of triangle meshes
(which do not admit torsion-free nodes), but this is
not the case for quad meshes. From the architects’
side quad meshes have therefore become attractive
(see e.g. [8, 9]), but actual designs relied on simple
constructions of meshes, such as parallel translation
of one polyline along another polyline. The following
problem turned out to be not so easy:

Problem. Approximate a given surface by a quad
mesh v : Z2 → R3 with planar faces. The same
question is asked for slightly more general combina-
torics (quad-dominant meshes).

We call such meshes PQ meshes. R. Sauer (see the

Figure 4: Yas Island Hotel during construction. At bot-
tom left one can see a detail of the outer skin which ex-
hibits torsion-free nodes (images courtesy Waagner-Biro
Stahlbau).

monograph [10]) has already remarked that a dis-
crete surface’s PQ property is analogous to the con-
jugate property of a smooth surface x(u, v), which
reads

det(∂ux, ∂vx, ∂uvx) = 0. (1)

In [11] the convergence of PQ meshes towards smooth
conjugate surfaces is treated in a rigorous way. Nu-
merical optimization of a mesh towards the PQ prop-
erty has been done by [12]. Meanwhile it has turned
out that from the viewpoint of numerics, planarity
of quads is best achieved if we employ a target func-
tional which penalizes non-intersecting diagonals of
quadrilaterals:∑

faces v1v2v3v4
dist(v1 ∨ v3, v1 ∨ v4), (2)

where the symbol “∨” means the straight line spanned
by two points. In practice this target functional has
to be augmented by terms which penalize deviation
from the reference surface and by a regularization
term (e.g. one which penalizes deviation of 2nd or-
der differences from their previous values).
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Figure 5: Surface Analysis — Islamic Art Museum in
the Louvre, Paris (Bellini Architects). Top: A quad-
dominant mesh which follows a so-called network of con-
jugate curves can be made such that faces are planar.
Unfortunately this surface geometry does not leave us
sufficient degrees of freedom to achieve a satisfactory
quad mesh [14]. Bottom: Hybrid tri/quad mesh solu-
tions with planar faces posses more degrees of freedom
(images courtesy A. Schiftner). The one at bottom right
has been realized.

Since (2) – like any other equivalent target func-
tional whose minimization expresses planarity – is
highly nonlinear and non-convex, proper initializa-
tion is important. Essential information on how to
initialize is provided by (1): A mesh covering a given
surface Φ can be successfully optimized to become
PQ only if the mesh polylines follow the parameter
lines of a conjugate parametrization of the surface
Φ. One example of such a curve network is the net-
work of principal curvature lines, as demonstrated
by Figure 5.

Caveat. Design of freeform architecture does not
work such that an amorphous ‘shape’ is created, and
this shape is subsequently approximated by a PQ
mesh for the purpose of making a steel-glass struc-
ture. The edges of such a decomposition into planar
parts are highly visible and therefore must be part
of the original design process. Nowadays it is pos-
sible to incorporate the PQ property already in the
design phase, for instance by a plugin for the widely
used software Rhino (see [13]).

Figure 6: Relation Torsion-free Nodes — Multilayer
Structures. This image shows an ‘outer’ layer in front
and an ‘inner’ layer behind it; these two layes are based
on parallel meshes. One can clearly observe that the
planes which connect corresponding edges serve as the
symmetry planes of beams, and for each vertex these
planes intersect in a node axis, which connects corre-
sponding vertices (image courtesy B. Schneider).

2.3 Meshes with Offsets
For multilayer constructions the following question
is relevant:

Problem. Find an offset pair M,M ′ of PQ meshes
which approximate a given surface (meaning these
meshes are at constant distance from each other).

The distance referred to here can be measured be-
tween planes (which are then parallel), leading to a
face offset pair of meshes; or it can be measured
between edges (an edge offset pair, implying the
same parallelity) or between vertices (if correspond-
ing edges are parallel, we call this a vertex offset
pair). For a systematic treatment of this topic we
refer to [15]. A weaker requirement is the existence
of a parallel mesh M ′ which is combinatorially equiv-
alent to M but whose edges are parallel to their re-
spective corresponding edge in M (here translated
and scaled copies of M do not count).

There are several nice relations and characteriza-
tions of the various properties of meshes mentioned
above. We use the term ‘polyhedral surface’ to em-
phasize that the faces of a mesh are planar.

— A polyhedral surface is capable of torsion-free
nodes essentially if and only if it has a nontrivial
parallel mesh. This is illustrated by Figure 6.

— A polyhedral surface has a face/edge/vertex
offset if and only if there is a parallel mesh whose
faces/edges/vertices are tangent to the unit sphere.
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Figure 7: This mesh which possesses a face-face offset
at constant distance has been created by an iterative
design process which employs subdivision and optimiza-
tion using both (2) and (3) in an alternating way (image
courtesy B. Schneider).

— A PQ mesh has a face offset if and only if
in each vertex the two sums of opposite angles be-
tween edges are equal. Optimization of a quadri-
lateral mesh such that its faces become planar, and
such that in addition it has a face-offset, is done by
augmenting (2) further by the functional∑

angles ω1,...,ω4 at vertex

(ω1 − ω2 + ω3 − ω4)2. (3)

— Similarly, a PQ mesh with convex faces has a
vertex offset if and only if in each face the sums of
opposite angles are equal (these sums then equal π).

— Any surface can be approximated by a PQ
mesh which has vertex offsets, and the same for face
offsets: initialize optimization from the network of
principal curves. The class of meshes with edge off-
sets is more restricted. For more details see [12,15].

2.4 Curvatures of Polyhedral Surfaces
A pair of parallel meshes M,M ′ which are thought
to be at distance d can be used to define curvatures
of the faces of M . Note that the set of meshes com-
binatorially equivalent to M is a linear space, and
the meshes parallel to M constitute a linear sub-
space. Consider the vertex-wise linear combination
Mr = (1− r

d )M + r
dM

′ and the area A(fr) of a face
of Mr as r changes: it is not difficult to see that we
have

A(fd) = A(f)(1− 2dHf + d2Kf ). (4)

The coefficients Hf ,Kf are expressible via areas and
so-called mixed areas of corresponding faces inM,M ′.
This expression is analogous to the well-known Stei-
ner’s formula: The area of an offset surface Φr at
distance r of a smooth surface Φ is given by the sur-
face integral

A(Φd) =
∫

Φ

(1− 2dH(x) + d2K(x))dω(x), (5)

where H,K are Gaussian and mean curvatures, re-
spectively. It therefore makes sense to call Hf ,Kf

in (4) the mean curvature and Gaussian curvature
of the face f (w.r.t. to the offset M ′).

This definition is remarkable in so far as notable
constructions of discrete minimal surfaces such as
[16] turn out to have zero mean curvature in this
sense. For details and further developments we refer
to [11,17,18].

3 Conformal Uniformization
Uniformization in general refers to finding a list of
model domains and model surfaces such that ‘all’
domains/surfaces under consideration can be con-
formally mapped to one of the models. The unit
disk and the unit sphere serve this purpose for the
simply connected surfaces with boundary and for the
simply connected closed surfaces without boundary,
respectively.

Surfaces which are topologically equivalent to an
annulus are conformally equivalent to a special an-
nulus of the form {z ∈ C | r1 < |z| < r2}, but the
ratio r1 : r2 is a conformal invariant, and there is a
continuum of annuli which are mutually non-equiv-
alent via conformal mappings. A classical theorem
states that planar domains with n holes are confor-
mally equivalent to a circular domain with n circu-
lar holes, and that domain is unique up to Möbius
transformations. A similar result, whose statement
requires the concept of Riemann surface, is true for
surfaces of higher genus with finitely many boundary
components.

3.1 Circle-packing Meshes
It is very interesting how the previous paragraph is
related to the following question, which for designers
of freeform architecture is interesting to know the
answer to:
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Problem. Find a covering (within tolerance) of a
surface by a circle pattern of mainly regular-hexago-
nal combinatorics.

It turns out that this and similar questions can be
answered if one can solve the following:

Problem. Given is a triangle mesh M . Find a tri-
angle mesh M ′ such that all pairs of neighbouring
incircles of M ′ have a common point, but such that
M ′ approximates M .

The property involving incircles is called the circle-
packing (“CP”) property, and it is not difficult to
see that such meshes are characterized by certain
edge length equalities as shown by Figure 9. We can
therefore set up a target functional for optimization
of a mesh M which approximates a surface Φ:

F (M) =
∑

lengths l1,...,l4
of triangle pair

(l1 + l3 − l2 − l4)2

+
∑

vertices v
t-dist(v,Φ)2

+
∑

bdry vertices v
t-dist(v, ∂Φ)2. (6)

The distances are measured to the tangent plane in
the closest-point projection onto Φ; and similarly for
the boundary curve’s tangent.

We can further see from Figure 9 that a vertex
has the same distance from all incircle contact points
on adjacent edges: It follows that the CP property
is equivalent to the existence a packing of vertex-
centered balls: balls touch each other if and only if
the corresponding vertices are connected by an edge
(see Figure 10).

In [19] we discuss the relevance of these meshes
for freeform architecture which is mainly due to the
fact that we can cover surfaces with approximate cir-
cle patterns of hexagonal combinatorics, with hybrid
tri-hex structures with excellent statics, and other
derived constructions (see Figures 11 and 12).

=⇒

Figure 8: Optimization of an irregular triangle mesh to-
wards the circle-packing (CP) property.

l1

l2

l3
l4

Figure 9: A triangle pair as shown has the incircle-pack-
ing property ⇐⇒ l1 + l3 = l2 + l4.

Figure 10: The CP property is equivalent to the existence
of a ball packing with centers in the vertices. Here red
balls correspond to vertices with valence 6= 6.

Numerical experiments show that optimizing a
triangle mesh towards the CP property works in ex-
actly those cases where topological equivalence im-
plies conformal equivalence, but does not work oth-
erwise. In the case of a surface topologically equiv-
alent to an annulus (Figure 13) optimization works
only if one of the two boundary curves is allowed to
move freely.

3.2 Discrete Conformal Mappings
If we had optimized triangular subdivisions of pla-
nar domains instead of spatial triangle meshes, the
reason for the behaviour of numerical optimization
mentioned in the previous paragraph would be clear.
This is because in the planar case the CP meshes
and associated ball packings are the same as the cir-
cle packings as studied by [20], and for these much is
known: Two combinatorially equivalent circle pack-
ings constitute a discrete-conformal mapping of do-
mains, and one can show convergence to the classical
conformal mappings when packings are refined (in
fact, this approach to conformal mappings was used
in the proof of an extension of the Koebe normal
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Figure 11: Structures derived from CP meshes: Approxi-
mate circle packing with hexagonal combinatorics which
covers a freeform design.

Figure 12: Structures derived from CP meshes: Hybrid
tri-hex structure with planar facets and support struc-
ture derived from a CP mesh [19].

form theorem to more general domains by He and
Schramm in [21]).

To sum up, if a planar CP mesh M covers a do-
main D, then the conformal equivalence class of D
is stored in M ’s combinatorics. We can optimize a
general triangle mesh which overs D towards the CP
property only if the conformal class of D agrees with
the conformal class stored in the combinatorics of the
mesh. Except for topological disks and topological
spheres, it is unlikely that this equality happens. As
to surfaces, we state

Problem. Show that the natural correspondence be-
tween combinatorially equivalent CP meshes approx-
imates a conformal mapping of surfaces (and make
this statement precise by using an appropriate notion
of refinement).

Figure 13: CP-optimization. Top: Great Court Roof,
British Museum, London. Triangle mesh by Chris Wil-
liams (as built). Bottom: Combinatorially equivalent
mesh with the CP property which approximates the same
surface and its outer boundary. The inner boundary
could move freely during optimization.

Unfortunately this problem – the only one in this pa-
per which involves mathematics and not applications
– is currently unsolved. There is, however, strong
numerical evidence for an affirmative answer, and
there is the known analogous planar case.

4 The paneling problem
An important part of the realization process of free-
form skins is their decomposition into smaller parts
(called panels) such that the entire cost of manu-
facturing and handling is as small as possible, and
such that the numerous side-conditions concerning
dimensions, overall smoothness, etc. are satisfied. In
addition any resolution of the given design into pan-
els must not visibly deviate from the original archi-
tect’s design.
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Figure 14: A freeform design (National Holding Head-
quarters, Abu Dhabi, by Zaha Hadid Architects).

(a)
(b)

(c)

planar
cylindrical
paraboloid

torus
cubic
custom

gap kink cost
(a) 6 mm 1◦ 54173
(b) 6 mm 3◦ 27418
(c) 6 mm 9◦ 18672

Figure 15: Optimal Decomposition into Panels. Top:
the design of Figure 14 is cut into panels along a given
network of curves. Panels are of various types (planar,
cylindrical, etc.). The total cost depends on the required
quality.

4.1 Global panel optimization
A simple decomposition of a freeform facade typi-
cally leads to individual panels with no two of them
being identical: in the worst case, their manufactur-
ing is possible only by first manufacturing a mold for
each. [22] presents a procedure which combines both
combinatorial and continuous optimization in an ef-
fort to reduce the total cost, and which is based on
the concept of mold reuse. The idea is that a guid-
ing curve network is given. Such guiding curves are
highly visible on the finished building so it is safe to
assume the architect has firm ideas on their shape!
We seek a decomposition of the facade into pieces

which are easily manufacturable.
The production processes employed here may be

of different kinds: Flat pieces are easily made by cut-
ting them out from readily available panels; cylinder-
shaped pieces have to be bent by a machine which is
not cheap; truly freeform pieces have to be shaped
by hot bending, using a mold which has to be spe-
cially made and which is far from cheap. Note that
once a mold is available, we can use it to manufac-
ture any surface which by a Euclidean congruence
transformation can be moved so as to be a subset
of the mold surface. Using the word ‘mold’ for all
kinds of production processes, we state:

Problem. Find out how the given panels may be
replaced by other panels which can be produced by a
small number of molds, thereby minimizing produc-
tion cost under the side condition that the overall
surface does not change visibly.

A more precise problem statement is the following:
Given a network of curves on a freeform surface
which is thereby dissected into a collection P of pan-
els,

(1) specify a set M of admissible molds. Each
mold m has an integer type i(m) and a shape σ(m)
which typically is some n-tuple of reals. There are
costs αi of providing a mold of type i, and costs βi
of producing a panel from such a mold;

(2) Find an assignment µ : P → M of molds to
panels, such that the total cost∑

m∈µ(P )

αi(m) +
∑
p∈P

βi(µ(p))

is minimal, under the side-conditions of bounded de-
viation from the curve network and bounded kink
angles.

orig. (a)

(b) (c)

Figure 16: Reflection lines help in visually inspecting the
achieved surface quality for the three examples (a)–(c)
shown by Figure 15.
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An implication of this simple cost model is that
one should favour cheap production processes/molds,
and if an expensive one is necessary it should be
used to produce more than just one panel. Opti-
mization contains a discrete part similar to set cover
(the mold type assignment) and a continuous part
(choosing the mold shapes). An example is shown
by Figures 14–16.

The high complexity of this optimization task is
caused by the sheer number of panels (thousands)
and the coupling of different panels if they are as-
signed to the same mold. It turns out that it con-
tains an NP hard subproblem. Several devices for
acceleration are employed, e.g., fast estimates from
above of the distance of molds in shape space. For
details we refer to [22,23].

Figure 17: Experimental Geodesic Pattern [24].

4.2 Wooden Panels: Level Set Methods
If a bendable rectangle is forced to lie on a surface, it
roughly follows a geodesic curve on that surface (see
e.g. [25]). These geodesics are defined by having zero
geodesic curvature, and at the same time they are
the shortest paths on the surface. The covering of
a surface by such panels requires the solution of the
following geometric problem:

Problem. Find a layout of a pattern of geodesics
which are (within tolerance) at equal distance from
each other.

The literature contains suggestions for experi-
mental solutions of this problem (see Figure 17).
Firstly it must be said that very few surfaces possess
patterns of geodesics which run parallel at constant
distance: They exist precisely on the intrinsically
flat surfaces with vanishing Gaussian curvature. For

infinitesimally close geodesics, the distance has the
form ε ·w(s), where ε� 1, s is an arc length param-
eter, and w(s) obeys the Jacobi differential equation
w′′+Kw = 0, where K is the Gaussian curvature. If
K > 0 it is not difficult to show that every interval
longer than π/

√
K contains a zero of w(s), so it is

not even possible that two geodesics run side by side
without intersection [26].

In [27,28] we have shown how to algorithmically
approach the problem of laying out a pattern of
near-geodesics which have approximately constant
distance from each other. A level set method turns
out to be useful: It is well known that equidistant
curves may be seen as level sets of a function φ for
which

‖∇φ‖ − 1 (7)

vanishes (i.e., φ fulfills the eikonal equation). The
geodesic property of level sets is expressed by van-
ishing of

div
( ∇φ
‖∇φ‖

)
(8)

(see [26, p. 142]). We accordingly minimize a target
functional which combines the competing L2 norms
of both (7) and (8) together with ‖∆φ‖L2 and ad-
ditional terms which penalize deviation from other
desired properties like prescribed directions, etc.

This is numerically done by describing the un-
derlying surface as a triangle mesh with typically
< 106 vertices, and considering φ as function on the
vertices, with piecewise-linear interpolation in the
faces of the mesh. The gradient of such a function is
then piecewise constant, and for any vector field X
and vertex v, we evaluate (divX)(v) from the flux
of X through the boundary of v’s intrinsic Voronoi
cell. The resulting optimization problem is solved
by standard Gauss-Newton methods (similar to the
other problems of numerical optimization we con-
sidered above), augmented by Cholmod for sparse
Cholesky factorization [29].

4.3 Segmentation: Image Processing Methods
In general it is not possible to cover a surface by
a smooth pattern of panels which in their un-bent
state are rectangular or at least cut from rectangles.
It is necessary to perform segmentation into panel-
izable parts. This can be formulated as follows:

Problem. Decompose a given surface Φ into a fi-
nite number of domains with piecewise-smooth bound-

9



Figure 18: Piecewise-Geodesic Vector Fields. Left: A de-
sign vector field W . Right: A piecewise-geodesic vector
field V which approximates W and whose discontinuities
lead to segmentation of the underlying surface [27].

aries each of which may be covered by a (within tol-
erance) constant-distance pattern of geodesics.

For that purpose we describe families of curves as
integral curves of a unit vector field. It turns out that
the geodesic property can be characterized by the
symmetry of the covariant derivative mapping X 7→
∇XV , which is linear within each tangent space:

γV,p(X,Y ) = 〈∇XV, Y 〉p − 〈X,∇Y V 〉p = 0. (9)

The dependence on the point p ∈ Φ is indicated
by the subscript to the scalar products. The norm
‖γV,p‖measures how far V deviates from the geodesic
property locally around the point p.

Any unit vector field W , and in particular one
which has been created interactively by a designer,
can now be approximated by a piecewise geodesic
vector field V which occurs as a minimizer of a target
functional suitable constructed from weighted inte-
grals of the functions

ρ
(
‖γV,p‖

)
, where ρ(x) =

x2

1 + αx2
,

‖V −W‖2

together with regularizing terms. For details we refer
to [27]. The function ρ could be any of the heavy-
tailed functions used in image sharpening (cf. [30]),
we used the Geman-McClure estimator [31]. This
causes high values of ‖ρp,V ‖ to be concentrated along
curve-like regions which become the boundaries of
domains. For the actual segmentation we employed
the method of [32]. An example is shown by Figures
18 and 19.

Figure 19: A design with bent rectangular panels based
on segmentation of the surface of Figure 18. The under-
lying patterns of geodesics have been found by a further
method not described in this paper (see [27]).
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