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An angle criterion for conical mesh vertices
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Abstract. A vertex in a mesh surface with planar faces may have the property
that offsetting all the face planes incident with the vertex by a constant distance
leads to planes which intersect again in a common point. This is equivalent to
the property that the planes, consistently oriented via the connectivity of the
mesh, are tangent to an oriented cone of revolution. We show that for vertices
of valence 4, this conical property is characterized in terms of the interior angles
of the faces adjacent to the vertex: The two sums of opposite angles are equal.
For a convex vertex this angle criterion follows directly from known results in
spherical geometry concerning convex spherical quadrilaterals. For other types of
vertices, however, the occurrence of non-convex spherical quadrilaterals makes it
necessary to exhaustively enumerate and study a number of cases. The present
short note resolves this combinatorial difficulty and proves that all conical vertices
are characterized by this same angle criterion. This result is especially relevant in
the context of modeling with conical meshes.
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Introduction

The concept of conical meshes was introduced in [3], thus laying the foundation for significant
new research in the geometry of freeform designs realized as steel/glass constructions (see [4]
and the textbook [5]). This paper deals with an important detail, namely the proof that the
angle-based condition which characterizes conical meshes (Theorem 1 below), is indeed true
in all cases. This condition was first discovered in the case of a convex mesh vertex by H.
Pottmann.

1. Conical vertices

In a mesh with planar faces, each face is equipped with a unit normal vector. These normal
vectors can be consistently oriented only if the mesh surface is orientable, but anyway a
consistent orientation is possible for the faces adjacent to a fixed vertex v. A mesh vertex is
said to be conical if the oriented planes adjacent to v are tangent to a common oriented cone

ISSN 1433-8157/$ 2.50 c© YEAR Heldermann Verlag, Berlin



2 W. Wang, J. Wallner, Y. Liu: An angle criterion for conical mesh vertices

Γ

G

R1

L1

R2

L2 R3

L3

R4

L4

ω1

ω2

ω3

ω4

Figure 1: Conical vertex of valence four. The faces touch the common cone Γ with axis G
along rulings R1, R2, R3, R4, and have interior angles ω1, ω2, ω3, ω4.

of revolution. The axis of this cone can be regarded as a discrete surface normal at the vertex
v. For geometry and applications of meshes all of whose vertices are conical, see [3].

Consider a vertex v of valence 4 as shown in Fig. 1. Let Li be the edges incident with
v, i = 1, 2, 3, 4. Let ωi denote the unsigned angle formed by Li and Li+1 (indices mod 4),
i = 1, 2, 3, 4. We assume that no face is degenerate, i.e., any two consecutive edges are not
parallel, and ωi > 0. The main result of this note is the following geometric fact.

Theorem 1 A vertex v of valence 4 is conical if and only if the sums of opposite angles are
equal, i.e., ω1 + ω3 = ω2 + ω4.

Before giving the proof of Theorem 1 at the end of the paper, as preparation, we shall
first present several results concerning the conical property, the existence of offset meshes of
a mesh, and spherical quadrilaterals which have an incircle.

A mesh with planar faces usually does not have an offset mesh consisting of planar faces
which are at constance distance from the original ones. That is because planes intersecting in
a common point in general lose this property when each of them is moved by a fixed distance.
The following result shows that the existence of an offset mesh is equivalent to the property
that all vertices of the mesh are conical.

Theorem 2 Suppose that planes ε1, . . . , εk, k ≥ 4, with unit normal vectors n1, . . . ,nk con-
tain the faces of a mesh which are incident with a common vertex v. Translating each plane
εi in the direction of ni by a fixed distance d 6= 0 yields its offset plane εd

i . Then the following
statements are equivalent:

1. The offset planes εd
i have a point in common for some d 6= 0;

2. The offset planes εd
i have a point in common for all d;

3. The planes ε1, . . . , εk are tangent to a common cone of revolution, including the plane as
limit case (the limit case of a straight line does not occur).

4. The normal vectors n1, . . . ,nk, regarded as points on the unit sphere S2, satisfy a linear
equation 〈ni,x0〉 = d, for some x0 6= 0 (the case d = 0 does not occur).
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Proof: We first show the equivalence of statements 3 and 4. Note that the oriented planes
εi are tangent to a common oriented cone of revolution (including the limit cases of line and
plane) if and only if the unit normal vectors ni lie on a circle contained in the unit sphere
S2, including the limit case of zero radius. This happens if and only if they satisfy a linear
equation 〈ni,x0〉 = d for some x0 6= 0.

The case d = 0 is a limit case where the cone degenerates into a line, and the circle in
question is a great circle. This would imply that all the edges of the mesh emanating from
the vertex are parallel, which contradicts the assumption that we work in a mesh. Therefore,
the case of d = 0 does not occur.

We are now going to show 1 ⇐⇒ 4. We choose a coordinate system such that v = 0.
The equation of the plane εi is x ∈ εi ⇐⇒ 〈ni,x〉 = 0, where ni is the oriented unit normal
vector. The offset plane εd

i has the equation 〈ni,x〉 = d. Clearly, the k planes εd
i have a

common point x0 if and only if the k normal vectors ni satisfies the equation 〈n,x0〉 = d.
Assuming 1, d 6= 0 implies x 6= 0, so 4 follows. Conversely, 4 implies that x0 ∈ εd

i for all i.
For all λ 6= 0, the equations 〈ni, λx0〉 = λd are equivalent. This shows that 1 ⇐⇒ 2. 2

2. Convex spherical quadrilaterals

Let S be a sphere centered at a mesh vertex v of valence 4. Then the four faces incident
with v cut out four circular arcs on S which form a spherical quadrilateral Q(v). We choose
units such that S is the unit sphere. Clearly, the vertex v is convex if and only if Q(v) is a
convex spherical quadrilateral. In this connection, the next result relates to the special case
of Theorem 1 where the vertex under consideration is convex.

Theorem 3 Suppose that a spherical convex quadrilateral with consecutive sides e1, . . . , e4

has an incircle. Let αi be the length of the side ei. Then α1 + α3 = α2 + α4. Conversely, a
convex spherical quadrilateral with the property α1 + α3 = α2 + α4 has an incircle.

According to p. 1038 of [6], the first part of Theorem 3 together with its dual version (i.e.,
a convex spherical quadrilateral has a circumcircle if and only if the two sums of opposite
angles are equal) is due to Anders Johan Lexell [2], and the converse is due to M. J. B.
Durrande [1]. However, we found it difficult to locate recent references, and so for the sake of
completeness we give a proof below. As the proof of Theorem 3 does not refer to properties
of the sphere which are different from those of the Euclidean plane, this result is also true in
Euclidean geometry, as well known. For brevity, we will often use quad for quadrilateral.

Proof: We begin with a convex quad that has an incircle. Suppose that the incircle touches
the four sides ei at the points pi ∈ ei, as shown in Fig. 2a. Let ui denote the vertex which is
the intersection of the sides ei and ei+1 (mod 4). Let ab denote the spherical distance between
two points a and b, which is the angle of the smallest arc of a great circle on S2 connecting
a and b.

Because the two sides incident with a vertex are tangents of the same incircle, we have

u1p1 = u1p2, u2p2 = u2p3, u3p3 = u3p4, u4p4 = u4p1.

It follows that

α1 + α3 = u1p1 + u4p1 + u2p3 + u3p3

= u1p2 + u4p4 + u2p2 + u3p4 = α2 + α4.
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Figure 2: (a) A convex spherical quad having an incircle. This schematic illustration shows
great circles as straight lines. (b) A convex spherical quad satisfying the angle criterion.

Conversely, suppose that
α1 + α2 = α3 + α4. (1)

We shall prove by contradiction that the quad Q : u1u2u3u4 under consideration has an
incircle. Assume that Q does not have an incircle. Consider the family of the circles that
are contained in the convex quad Q and tangent to e2 and e3. Obviously this family either
contains a circle, denoted by C, which is tangent to e1 but not e4, or a circle tangent to e4

but not e1. Without loss of generality, suppose that the former case occurs (see Fig. 2b).
Let u′

4 be the unique point on e1 between p1 and u4 such that the side e′4 = u3u
′

4 is tangent
to the circle C at p4. Then, by the first part of the proof, the convex quad Q′ : u1u2u3u

′

4

satisfies the angle criterion, i.e.,
α′

1 + α2 = α3 + α′

4, (2)

where α′

1 = u1u
′

4 and α′

4 = u3u
′

4. Subtracting Eqn. (2) from Eqn. (1) yields

α1 − α′

1 = α4 − α′

4.
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Figure 3: From left: elliptic(upper left), parabolic(upper right), and hyperbolic (lower) ver-
tices, and their associated spherical quadrilaterals Q(v). The vertex v is the center of the
sphere.

It follows that α4 = α′

4 + α1 −α′

1 = α′

4 + u4u
′

4. On the other hand, by the triangle inequality,
we have α4 < α′

4 + u4u
′

4. This is a contradiction, implying that the quadrilateral Q has an
incircle. This completes the proof. 2

3. General spherical quadrilaterals

We consider in this section general conical vertices of valence 4, i.e., vertices incident with
four planar faces. There are three types of mesh vertices of valence 4, as defined below.

Definition 1 Consider a mesh vertex v of valence 4 and its associated quadrilateral Q(v).
1. v is an elliptic vertex if the vertices of Q(v) are contained in a hemisphere, and no vertex is

contained in the spherical triangle formed by the other three vertices (note that the interior
of a spherical triangle is naturally defined once we restrict ourselves to a hemisphere).

2. v is a parabolic vertex if it is not elliptic but the vertices of Q(v) are still contained in a
hemisphere.

3. v is a hyperbolic vertex if the four vertices of Q(v) are not contained in any hemisphere.

Examples of these three types are shown in Fig. 3. Note that Q(v) is convex if and only
if v is elliptic.

In the following we talk about ‘oriented planes’ ε and ‘oriented circles’ S ∩ ε. Generally,
a two-sided curve in a 2-manifold, or a two-sided surface in a 3-manifold are oriented if one
side is distinguished (which can be done e.g. by the choice of a normal vector pointing to
that side). Curve segments inherit orientation from their mother curve. In particular, ε is
oriented by distinguishing one half-space H whose boundary is ε. Then H ∩ S fills one of the
two sides of S ∩ ε. This gives an orientation to the circle S ∩ ε. If we map S ∩ H together
with S ∩ ε under subsequent transformations (e.g. stereographic projection), we can pass on
the orientation to the transformed circles.

The four planar faces incident with v have consistent normal vectors, which give rise to
four oriented planes with the same normal vectors. These planes intersect the sphere S in
four oriented great circles, denoted by Ci, i = 1, 2, 3, 4 These four circles cut each other into
a number of oriented circular arcs. The two sides of each arc are distinguished as the outside
and the inside, as indicated by the orientation of the plane containing the arc.
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Figure 4: Stereographic images of four oriented great circles on the unit sphere. These
four oriented circles correspond to four oriented planes incident with a vertex v. The four
figures show 4 of the total 12 admissible quads. Circle orientations are indicated by hatched
boundaries.

Definition 2 A quadrilateral with sides e1, . . . , e4 contained in the oriented great circles
C1, . . . , C4 is admissible if the orientations of the four sides are consistent. This means the
following: The quadrilateral decomposes the unit sphere into two connected components. Then
it is required that the normal vectors of the four oriented planes containing to C1, . . . , C4, when
positioned along the sides e1, . . . , e4, point consistently towards one of these two components.

Figure 4 shows some of admissible spherical quads. Here the sphere S is mapped onto the
plane via stereographic projection, which maps the four oriented great circles on S to four
oriented circles in the plane, indicated by hatched boundaries. The center of projection is
chosen not to be on any of the four great circles.

By saying that an admissible spherical quad has an incircle, we mean that the four oriented
planes containing the four sides of the quad are tangent to a common oriented cone. Then
the following is obvious: The vertex in question is conical ⇐⇒ the four oriented face planes
are tangent to an oriented cone ⇐⇒ the oriented great circles are tangent to an oriented
circle ⇐⇒ the convex ones among the admissible quads have an incircle ⇐⇒ the convex
admissible quads satisfy the angle criterion. The last equivalence in this statement follows
from Theorem 3.

The next theorem states that any admissible spherical quad has an incircle if and only if
it satisfies the angle criterion.
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Figure 5: Converting an elliptic configuration Qe : u1u2u3u4 into a parabolic configuration
Q1,p : u1u6u3u5.

Theorem 4 For four oriented great circles C1, C2, C3, C4, in the unit sphere there are in total
12 admissible quadrilaterals, including reflections in the center of the unit sphere. If the four
oriented planes which carry C1, . . . , C4 are tangent to a common oriented cone, then all these
12 quads satisfy the angle criterion, i.e.,

ω1 + ω3 = ω2 + ω4,

where ωi is the unsigned length of the i-th side of an admissible quad. Also the reverse
implication is true: If any of the 12 admissible quads satisfies the angle criterion, the four
oriented planes are tangent to a common oriented cone.

Proof: The four circles Ci have in total 12 pairwise intersection points, since 2·
(

4

2

)

= 2·6 = 12.
Pick one of these 12 intersection points. Without loss of generality, suppose that this point is
u4 ∈ C1∩C4. Now we count how many admissible quad contain u4. In view of the assumption
of consistent orientations, there are two ways to choose the arcs of C1 and C4 which start at
u4 and are part of an admissible quad. For each of these choices, we have either a quad with
sides traversing the four circles in the order C1C2C3C4 or in the order C1C3C2C4 (see Fig. 4).
Thus, there are in total 4 quads passing through u4. Since there are 12 pairwise intersection
points among the four circles, we have counted 12 · 4 = 48 admissible quads. Since each
quad has four vertices, it is counted 4 times. So the number of distinct admissible quads is
48/4 = 12. This proves the first part of the theorem.

Obviously, there is a convex quad among the 12 admissible ones; in fact, there are two,
which are reflections of each other. We are going to show that all admissible quads can be
obtained from a convex admissible quad Qe by operations which preserve the angle balance
in both directions.

Let Qe be a convex admissible quad with vertices ui, i = 1, 2, 3, 4. Suppose that the
sides ei of Qe are on the circles C1, C2, C3, C4 (in this order) and that ui ∈ Ci ∩Ci+1 (indices
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Figure 6: An admissible parabolic quad having an incircle.

modulo 4). Then a parabolic admissible quad Q1,p : u1u6u3u5 can be derived from Qe by
traversing the circles in the order C1, C3, C4, C2, thereby making u1 a concave vertex (see Fig.
5). Similarly, we can derive three other admissible parabolic quads Q2,p, Q3,p, and Q4,p. By
reflecting the Qi,p in the center of the sphere, i = 1, 2, 3, 4, we obtain in total 8 parabolic
quads.

Now we derive hyperbolic quads from Qe. We replace the vertices u1 and u3 of Qe by their
diametrically opposite points u∗

1 and u∗

3 and arrive at the admissible quad Qh : u∗

1u2u
∗

3u4 of
hyperbolic type. If we flip u2 and u4 instead, we get the quad Q∗

h : u1u
∗

2u3u
∗

4, which is the
reflection of Qh. In this way, 2 hyperbolic quads are derived.

Together with Qe and its reflection Q∗

e, we have obtained 12 admissible quads, which, in
view of the total number 12 shown earlier, already exhaust the set of all admissible quads.
Hence, we conclude that any admissible quad can be obtained from a convex admissible quad
with the above operations.

Next we are going to show that, for any of the nonconvex admissible quads obtained
above, the angle criterion characterizes the property that C1, . . . , C4 are tangent to a common
oriented circle. First consider the case of parabolic admissible quads, using the quad Q1,p :
u1u6u3u5 in Fig. 6 for illustration. Denote the lengths of the sides of Q1,p by ω1 = u5u1,
ω2 = u1u6, ω3 = u6u3 and ω4 = u3u5. First suppose that an incircle exists, which means that
the convex quad Qe : u1u2u3u4 has an incircle. Using the fact that the two tangents from a
vertex to a circle have equal lengths, we have

ω1 + ω3 = u5u1 + u3u6 = p4u5 − p4u1 + u3p3 + p3u6 = p2u5 − p1u1 + u3p2 + p1u6

= p1u6 − p1u1 + u3p2 + p2u5 = u1u6 + u3u5 = ω2 + ω4.

It follows that Q1,p satisfies the angle criterion.

Conversely, suppose that Q1,p satisfies the angle criterion, i.e.,

ω1 + ω3 = ω2 + ω4. (3)
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Figure 7: A parabolic admissible quad satisfying the angle criterion.

We shall prove by contradiction that Q1,p has an incircle. Assume otherwise, i.e., Qe has
no incircle. Similar to the proof of Theorem 3, consider the family of the circles that are
contained in the convex quad Qe and tangent to e3 = u2u3 and e4 = u3u4. Then, there is
a circle C in this family that is either tangent to e1 but not e2 or tangent to e2 but not e1.
Without loss of generality, we suppose the former to be the case, as shown in Fig. 7.

Let u′

1 be the unique point on the side u1p1 such that the the great circle containing
the side u′

1u5 is tangent to the circle C inside the convex quad Qe. Then the new convex
quad Q′

e : u′

1u2u3u4 has an incircle. By the preceding argument, the new parabolic quad
Q′

1,p : u′

1u6u3u5 satisfies the angle criterion, that is,

ω′

1 + ω3 = ω′

2 + ω4, (4)

where ω′

1 = u5u
′

1 and ω′

2 = u′

1u6. Subtracting Eq. (4) from Eq. (3) yields

ω1 − ω′

1 = ω2 − ω′

2.

It follows that
ω′

1 = ω1 + ω′

2 − ω2 = ω1 + u′

1u1.

On the other hand, by the triangle inequality, we have

ω′

1 < ω1 + u′

1u1.

This is a contradiction, implying that Q1,p has an incircle. It follows that the angle criterion
characterizes the existence of an incircle also for parabolic quads.

Next we consider the case of hyperbolic quads. We are going to show that Qh : u∗

1u2u
∗

3u4,
which is constructed from Qe, has an incircle if and only if Qh satisfies the angle criterion.
This is easier than in the parabolic case, because the side lengths of Qh are given by π − αi,
where the αi are the side lengths of Qe. Hence, Qh satisfies the angle criterion if and only if
Qe does, i.e., if and only if an incircle exists. This completes the proof. 2
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Remark 1: It is possible that a non-admissible quad also enjoys the angle balance,
because it might be admissible for a different assignment of orientations, and so the four
corresponding planes are tangent to a different oriented cone. This, however, does not diminish
the value of Theorem 4 for applications if we consider admissible quads only. This is the case
if the quads under consideration come from a consistently oriented quad mesh, like in [3].

Remark 2: In a quad mesh with planar faces which approximates a smooth surface
and where almost all vertices have valence four, vertices are typically elliptic or hyperbolic,
whereas parabolic vertices occur not as often. This is similar to the distribution of parabolic
points in smooth surfaces. The fact that most of the 12 admissible quads discussed in Theorem
4 are parabolic does not contradict this behavior.

Proof of Theorem 1

Proof: The planar faces incident with a mesh vertex v of valence 4 are consistently oriented
such that the spherical quad Q(v) is admissible in the sense of Definition 2. The side lengths
of the spherical quad Q(v) are equal to the interior angles of the faces mentioned in the
statement of Theorem 1. Hence, the proof follows from Theorem 4. 2
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