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Abstract. In the category of semidiscrete surfaces with one discrete
and one smooth parameter we discuss the asymptotic parametrizations,
their Lelieuvre vector fields, and especially the case of constant negative
Gaussian curvature. In many aspects these considerations are analogous
to the well known purely smooth and purely discrete cases, while in
other aspects the semidiscrete case exhibits a different behaviour. One
particular example is the derived T-surface, the possibility to define
Gaussian curvature via the Lelieuvre normal vector field, and the use
of the T-surface’s regression curves in the proof that constant Gauss-
ian curvature is characterized by the Chebyshev property. We further
identify an integral of curvatures which satisfies a semidiscrete Hirota
equation.
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1. Introduction

An important topic in discrete differential geometry is the study of smooth
surface parametrizations g : Rd → Rn which arise as limits of discrete map-
pings (nets) of the form x : εZd → Rn, as ε→ 0. This approach was initiated
by R. Sauer, whose work is summarized in his textbook [16]. For instance,
the conjugate parametrizations g characterized by the condition

{∂ig, ∂jg, ∂ijg} linearly dependent (1.1)

for all i, j = 1, . . . , d, i 6= j arise as limits of Q-nets which are characterized
by planarity of each elementary quadrilateral. This planarity is equivalently
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Figure 1. Left: A Q-net x : Z×{0, 1} → R3 with regression
points r. Right: A semidiscrete Q-surface x : {0, 1}×R with
regression curve r is realized as a developable strip whose
singularity is the curve r.

expressed in terms of forward differences as

{∆ix,∆jx,∆ijx} linearly dependent. (1.2)

Another example are asymptotic parametrizations g, characterized by

{∂ig, ∂jg, ∂iig, ∂jjg} co-planar,

and which arise as limits of discrete A-nets which have planar vertex stars.
With the notation ∆i and ∆i for the forward and backward differences, this
is expressed as

∆ix,∆jx,∆ix,∆jx co-planar.
An important aspect is the study of surface transformations in the sense of
[8] which means a pair or sequence of surfaces which are in some relation.
This can be formalized as the study of mappings Z × Rd → Rn. It turns
out the these, like surfaces, can be seen as limits of discrete objects. The
possibility of such a semidiscrete limit has been first treated by by [3] and
[4]. A systematic textbook treatment of this theory and the modern viewpoint
of integrable systems is contained in [7].

Partial limits of d-dimensional nets being established as a device for treating
surface transformations, it is natural to ask general questions about the limit
of d-dimensional nets which appear when d1 coordinates remain discrete and
d2 = d − d1 coordinates go to a continuous limit. It is especially the case
d1 = d2 = 1 of mappings x : R × Z → Rn that did not receive much
attention so far, which is presumably because it does not contribute much to
transformation theory. Such mappings can be seen as a sequence of curves,
or as a smooth family of polygons. We refer to them as semidiscrete surfaces.
In particular the semidiscrete analogs of Q-nets have a great potential for
applications, as demonstrated by [12, 13]. Their theory, and the theory of
their circular and conical reductions, is similar to the respective theory of
circular and conical meshes [9, 14, 6].

The present paper investigates the class of asymptotic semidiscrete surfaces
which arise as partial limits of A-nets, and the interesting class of surfaces
of constant Gaussian curvature, whose discrete counterpart is the K-nets
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[5, 7]. The semidiscrete theory combines, as is to be expected, elements of
the smooth and the discrete theories. Part of this paper will come as no
surprise if one realizes that asymptotic surfaces and their transforms, and
in particular K-surfaces and their Bäcklund transforms, are approximated
by their respective discrete analogues [7, Ch. 5]. It is however interesting to
observe the interplay of features not present in the discrete case (like a well-
defined Gauss curvature) with features not present the continuous case (like
T-nets derived from A-nets). It is also interesting to see how the equivalence
“Chebyshev A-net ⇐⇒ constant Gauss curvature” is shown via the special
developable surfaces derived from T-nets.

Part of the paper is based on the relation between K-surfaces and the sine-
Gordon equation and its relatives. For the discrete case we again refer to the
textbook [7], but we also mention that already [10, 11] treated discrete and
semidiscrete versions of the sine-Gordon eqation.

2. Semidiscrete asymptotic surfaces.

2.1. Basic definitions.

For a semidiscrete surface x(k, t) where k is an integer parameter and t runs
in the reals, we use the notation

(∂x)(k, t) =
d

dt
x(k, t),

x1(k, t) = x(k + 1, t), x1(k, t) = x(k − 1, t), ∆x = x1 − x.
For visualization purposes, we associate with x a piecewise ruled surface, con-
sisting of the union of segments x(k, t)x(k+ 1, t) This strip model associated
with x is interesting also for other reasons. In case of semidiscrete Q-surfaces,
which are defined by

{∆x, ∂x, ∂∆x} linearly dependent, (2.1)

the associated ruled surface strips are developable (see Figure 1). The locus
of their singularities is given by

r = x+ u∗∆x, where u∗ = − ∂x×∆x
∆∂x×∆x

= − area(∂x,∆x)
area(∂x1,∆x)

. (2.2)

The analogy of (2.1) with Equations (1.1) and (1.2) is obvious (the applica-
tion potential of such developable strip models for geometry processing has
been shown by [12, 13]). We proceed with the definition of semidiscrete A-
surfaces, which is the main topic of the present paper.

Definition 2.1.1. A semidiscrete surface is asymptotic, i.e., an A-surface, if
and only if vectors

∂x, ∂2x, ∆x = x1 − x, ∆x1 = x− x1

are co-planar.
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Figure 2. A semidiscrete A-net. Left: Rulings connecting
points x(k, t) and x(k + 1, t). Right: Reflection of a striped
pattern shows that this surface is globally C1, since reflection
lines are continuous.

Note that an equivalent definition is co-planarity of {∂x, ∂2x,∆x,∆2x1}. Like
for Q-surfaces, there is a direct analogy to both the smooth and discrete
cases. In contrast to the developable strip models which are only piecewise
smooth, the defining property of A-surfaces implies that each point, even on
the boundary of strips, has a unique tangent plane. Thus the strip model is a
C1 surface, provided each single strip is a regular ruled surface parametriza-
tion, and successive strips lie to either side of their common boundary curve.
This is the case in Figure 2, but for instance the discrete pseudospheres of
Figure 5 do not everywhere obey this condition.

2.2. Lelieuvre vector fields

Lelieuvre vector fields (L-fields) are a device useful for the study of A-nets.
They can already be defined for a curve c(t), as a normal vector field u(t)
with

ċ = ±u× u̇.

Such an L-vector field is almost determined by its direction. If n is some unit
normal vector field n, then u = λn is found by u×u̇ = λn×(λ̇n+λṅ) = λ2n×ṅ
=⇒ ±〈ċ, ċ〉 = det(n, ṅ, ċ)λ2. It follows that

ċ = εu× u̇ =⇒ u = ±
(
ε
〈ċ, ċ〉

det(n, ṅ, ċ)

)1/2

· n (ε = ±1). (2.3)

Apparently the choice of ε is determined by the sign of det(n, ṅ, ċ). It is well
known that smooth asymptotic parametrizations possess normal vector fields
which are multiple L-fields. The following is taken from [2]:

Proposition 2.2.1. Assume that x(t1, t2) is a smooth asymptotic parametri-
zation such that ∂1x, ∂2x, ∂12x constitute a positive basis. Then the vector
field u = ∂1x×∂2x

F , where F = det(∂1x, ∂2x, ∂12x)1/2, has the Lelieuvre prop-
erty with respect to both parameter lines: u × ∂1u = ∂1x, u × ∂2u = −∂2x.
Either condition determines u up to sign. The Gaussian curvature K of x
obeys K = −‖u‖−4

.
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The orientation of the above mentioned basis can be reversed by applying
a mirror reflection to the surface. Discrete surfaces possess Lelieuvre vector
fields similar to smooth ones. We state the result found e.g. in [7]:

Proposition 2.2.2. Suppose x : Z2 → R3 is a discrete asymptotic parame-
trization. Then there exists a Lelieuvre vector field u : Z2 → R3 such that
∆1x = u×∆1u, ∆2x = −u×∆2u. It is unique up to rescaling with a factor
α(i, j) = const · (−1)i+j.

We show below that for semidiscrete surfaces a Lelieuvre vector field u can be
found, provided det(∂∆x, ∂x,∆x) > 0. If this is not the case, apply a mirror
reflection to x to make this construction work.

Proposition 2.2.3. For a semidiscrete asymptotic surface x : Z × R → R3,
define the Lelieuvre vector field u : Z× R→ R3 by

u =
∂x×∆x

F
where (2.4)

F = det(∂x1, ∂x,∆x)1/2 = det(∂∆x, ∂x,∆x)1/2. (2.5)

It has the properties

∂x = u× ∂u, ∆x = −u×∆u, (2.6)

and is determined uniquely up to sign by (2.6). The expression

u =
1
F 1

(∂x×∆x1). (2.7)

is an alternative description of the same surface.

Proof. The desired relation ∂x = u × ∂u implies u = ∂x ×∆x/F , for some
yet unknown factor F . The computation

u× ∂u = u×
( 1
F

(∂2x×∆x+ ∂x×∆∂x)
)

=
1
F 2

(
∆xdet(∂x, ∂2x,∆x)− ∂xdet(∆x, ∂x,∆∂x)

)
,

observing det(∂x, ∂2x,∆x) = 0, implies (2.4), (2.5), which serve as the def-
inition of u. Alternatively we let u = ∂x × ∆x1/F̃ and verify the alternate
expression by an analogous computation. The right hand equality in (2.6) is
verified by

u× u1 =
(∂x×∆x)× (∂x1 ×∆x)

det(∂x1, ∂x,∆x)
=

∆xdet(∂x, ∂x1,∆x)
det(∂x1, ∂x,∆x)

= −∆x.

The vector field u(k, t) for each k is determined up to sign, and by (2.6) this
sign cannot depend on k. �

Proposition 2.2.1 states a relation between the Lelieuvre vector field and
Gaussian curvature, which is not present in the discrete case because of the
ambiguity in the vector field’s length. However, due to Prop. 2.2.3, we may
define Gaussian curvature as follows:
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Figure 3. As a quadrilateral degenerates, harmonic posi-
tion of x, x1, h

′, r remains an invariant. In the special case
that r is at infinity, h′ is the midpoint of x, x1.

Definition 2.2.4. The Gaussian curvature K of a semidiscrete asymptotic
surface x with Lelieuvre field u is given by

K = −‖u‖−4
.

We see in Section 3 that this definition is “right” in the sense that K = const.
is equivalent to the semidiscrete analogue of the Chebyshev property which
is well known in both the smooth and discrete cases.

2.3. Moutard surfaces and trapezoidal surfaces

The defining condition of M-surfaces or Moutard surfaces is ∂12u = q · u for
some function q in the smooth case, and ∆1∆2u = α(u1 + u2), for some
function α, in the discrete case. Here the subscript j indicates an index shift
by one of the j-th parameter. Semidiscrete M-surfaces are defined as follows:

Definition 2.3.1. A semidiscrete surface x with the property ∆∂x = β(x+x1)
for some β : Z× R→ R is called an M-surface.

Lemma 2.3.2. The Lelieuvre vector field of an A-surface is an M-surface.
Conversely, every M-surface u is the Lelieuvre vector field of an A-surface.

Proof. By differentiating (2.6) we obtain ∆∂x = u1× ∂u1− u× ∂u = −∂u×
∆u − u × ∆∂u =⇒ (u1 + u) × ∆∂u = 0. Conversely, if u is given, then x
can be defined by (2.6). This definition is consistent because of the Moutard
condition. The asymptotic condition is satisfied because ∂x, ∆x, ∆x1 are
orthogonal to u by construction, and so is ∂2x = u× ∂2u. �

In the discrete case it is known that multiplying every other element of a
Lelieuvre vector field by −1 creates a trapezoidal net, or T-net [7]. It has
the defining property that the diagonals of each elementary quadrilateral
are parallel. Such a construction is also possible in the semidiscrete case. In
order to find the right semidiscrete version of the T-net condition, we look at
Figure 3 and specialize to the case of parallel diagonals (r =∞). This leads
to

Definition 2.3.3. A semidiscrete surface s is a T-surface, if each associated
ruled strip is developable, with line of regression (x+ x1)/2.
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In the notation of (2.2), the T-condition reads u∗ = 1
2 and simplifies to

(∂x1 + ∂x)×∆x = 0 (2.8)

Apparently this also implies the developability condition

det(∂x,∆x, ∂x1) = 0.

Proposition 2.3.4. For a semidiscrete A-surface x and the corresponding Le-
lieuvre vector field u, the vector field v(k, t) = (−1)ku(k, t) is a trapezoidal
surface, with curve of regression given by r = (−1)k+1∆u/2.

Proof. The Moutard equation directly translates to (u1 +u)×(∂u1−∂u) = 0,
i.e., ∆v × (∂v1 + ∂v) = 0. �

Remark. A smooth A-surface x has an associated affine normal vector field
y = ∂12x/F which obeys 〈u, y〉 = 1 [2]. In the semidiscrete case an analogous
construction is possible: we let y = ∆∂x/F and have 〈u, y〉 = 1.

Remark. Quantities associated with discrete surfaces may be attached to
vertices, edges or faces. This is especially relevant for non-regular combina-
torics, but also in the regular case we can detect the type of such a quantity
by its symmetries. Semidiscrete surfaces have only vertices and edges. It turns
out that the Lelieuvre vector field is associated to edges, since any reflection
(k, t) 7→ (2k0 + 1− k, t0 − t) in the parameter domain leaves F as defined by
(2.5) invariant, and this reflection transforms the two equivalent definitions
(2.4), (2.7) of u into each other.

3. Semidiscrete surfaces of constant Gaussian curvature

Among the smooth A-surfaces, those of constant Gaussian curvature — the
K-surfaces — are characterized by an L-field u of constant norm, or equiva-
lently, by the Chebyshev property

∂2 ‖∂1x‖ = ∂1 ‖∂2x‖ = 0.

The proof of this characterization is based on the integrability conditions of
Mainardi and Codazzi [1]. After suitable re-parametrization and scaling one
obtains the sine-Gordon equation

∂12ϕ = sinϕ, where ϕ = ^(∂1x, ∂2x). (3.1)

Also in the discrete case, where u is not unique, we can define a K-net by
the existence of a Lelieuvre vector field of constant norm, or equivalently as
an A-net where ∆1 ‖∆2x‖ = ∆2 ‖∆1x‖ = 0 (i.e., edge lengths depend on one
variable only). Further, the angle ϕ = ^(∆1x,∆2x) fulfills a discrete sine-
Gordon equation, which contains the angles α1 = ^(u, u1), α2 = ^(u, u2).
These K-nets have been the object of study for a long time (see [7, 5], and
[15, 17] for earlier work). A particular reason for the interest in K-nets is
their relation to integrable systems and their Bäcklund transforms.
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For semidiscrete surfaces, we have already given a definition of Gaussian
curvature by Def. 2.2.4, so semidiscrete K-surfaces are defined. We are going
to show that they have properties similar to the smooth and discrete cases.
We start this task by collecting some relations between the Lelieuvre vector
field and curvatures.

3.1. The Chebyshev property of semidiscrete K-surfaces.

We introduce the moving frame Φ : Z×R→ SO3 associated with the curves
x(k, ·): The first rows e1, e2 are found by applying Gram-Schmidt orthonor-
malization to ∂x, ∆x, and we let e3 = e1 × e2. This leads either to the
ordinary Frenet frame of the curves x(k, ·), or to a modified frame which is
rotated by 180 degrees about the tangent, depending on whether ∆x and the
principal normal point to the same side of the tangent or not. The frame Φ
moves according to

∂Φ = v

 0 −κ 0
−κ 0 −τ

0 −τ 0

Φ, v = ‖∂x‖ . (3.2)

Here τ is the torsion of the curves x(k, ·), their curvature being given by ±κ.

Lemma 3.1.1. The Gaussian curvature K of a semidiscrete A-surface x is
related to the torsion τ of the curves t 7→ x(k, t) via K = −τ2.

Proof. The L-field u by construction is orthogonal to both ∂x and ∆x, so
u = λe3. The computation ∂x = u× ∂u = (λe3)× ((∂λ)e3 + λ∂e3) = λ2vτe1

shows that e1 = λ2τe1, which implies τ = λ−2 and

K = −‖u‖−4 = −λ−4 = −τ2. �

The following theorem states that for semidiscrete surfaces the condition
K = const implies the Chebyshev property, which is well known from the
smooth and discrete cases.

Theorem 3.1.2. If the Gaussian curvature of the semidiscrete A-surface x is
constant. then x has the Chebyshev property, namely

∆ ‖∂x‖ = ∂ ‖∆x‖ = 0. (3.3)

Both the Lelieuvre vector field u and the associated T-surface v(k, t) = (−1)k

u(k, t) have the Chebyshev property:

∆ ‖∂u‖ = 0, ∂ ‖u1 + u‖ = ∂ ‖u1 − u‖ = 0. (3.4)

The regression curves of the T-surface are spherical curves.

Proof. It is sufficient to consider K = −1. Then ‖u‖ = 1, and

0 = ‖u1‖2 − ‖u‖2 = 〈u1 + u, u1 − u〉.
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Figure 4. Illustration of Equation (3.5).

By Prop. 2.3.4, the ruled surface defined by generator curves u1 and −u is
developable with regression curve c = 1

2∆u. This means that vectors ∂c and
u+ u1 are parallel:

〈∂c,∆u〉 = 0 =⇒ 〈∂∆u,∆u〉 = 0 =⇒ ∂ ‖∆u‖ = 0.

Consequently the following derived quantities, expressed in terms of the an-
gle α between successive Lelieuvre field curves u, u1 do not depend on the
continuous parameter (see Fig. 4 for an illustration):

sin
α

2
=

1
2
‖u1 − u‖ = ‖c‖ , cos

α

2
=

1
2
‖u1 + u‖ . (3.5)

We let

e1 =
1

2 sin(α/2)
(u1 − u), e2 =

1
2 cos(α/2)

(u1 + u), e3 = e1 × e2.

This implies c = sin α
2 e

1. The frame Φ = (e1, e2, e3)T moves according to

∂Φ = v

 0 −1 0
−1 0 γ

0 −γ 0

Φ, v =
∥∥∂e1

∥∥ . (3.6)

Consequently,

u = cos
α

2
e2 − sin

α

2
e1 =⇒ ∂u = v(cos

α

2
(−e1 + γe3)− sin

α

2
e2),

u1 = cos
α

2
e2 + sin

α

2
e1 =⇒ ∂u1 = v(cos

α

2
(−e1 + γe3) + sin

α

2
e2).

We conclude ‖∂u‖ = ‖∂u1‖. Together with (3.5) this implies the Chebyshev
property for u and the derived T-surface. As to x itself, recall from the proof
of Lemma 3.1.1 that u(k, ·) is the binormal vector of the curve x(k, ·) whose
torsion equals 1. The Frenet equations then directly imply

‖∂u‖ = ‖∂x‖ , (3.7)

and so ∆ ‖∂x‖ = 0. As to ∆x = u1 × u, we compute

∆x = 2 cos
α

2
sin

α

2
e1 × e2 = sinα e3. (3.8)

This shows ∂ ‖∆x‖ = 0, which completes the proof. �
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Corollary 3.1.3. For a semidiscrete A-surface of constant Gaussian curvature
K, the length of ruling segments is bounded by

‖∆x‖ < |K|−1/2.

Proof. Scaling with C > 0 causes ‖∆x‖, K to scale with factors C, 1/C2,
resp. It is therefore sufficient to show the case K = −1, which follows from
(3.8). �

The converse of Theorem 3.1.2 requires an auxiliary lemma:

Lemma 3.1.4. Consider curves t 7→ e1(t) ∈ S2, c(t) = σ(t)e1(t), and u =
c−ρ∂c, u1 = c+ρ∂c, with positive functions σ, ρ (the meaning of this is the the
ruled strip defined by u, u1 is a T-surface with c as the curve of regression).
Then ‖u× ∂u‖ = ‖u1 × ∂u1‖ and ∂ ‖u× u1‖ = 0 =⇒ σ, ρ = const.

Proof. A parameter transform does not influence the assumptions, so we
assume

∥∥∂e1
∥∥ = 1. Extend e1 to a moving frame (e1, e2, e3)T which obeys

(3.6), i.e., ∂e1 = e2 and ∂e2 = −e1 +γe3. In the following we describe vectors
by coordinate columns with respect to this frame. We get

c =

 σ0
0

, ∂c =

 ∂σσ
0

, u× u1 =

σ − ρ∂σ−ρσ
0

×
σ + ρ∂σ

ρσ
0

 =

 0
0

2σ2ρ

.
It follows that σ2ρ is constant, so 2σρ∂σ + σ2∂ρ = 0, i.e., 2ρ∂σ + σ∂ρ = 0.
We employ this equation when simplifying the second coordinates of ∂u, ∂u1,
and get the following expression for u×∂u (in case ε = −1) and u1×∂u1 (in
case ε = +1): σ + ερ∂σ

ερσ
0

×
 ∂σ + ε∂(ρ∂σ)− εσρ

σ
εγσρ

 =

 γρ2σ2

−ε(σ + ερ∂σ)γρσ
σ2 − ρσ∂(ρ∂σ) + ρ2σ2

 .
The requirement ‖u× ∂u‖ = ‖u1 × ∂u1‖ now reduces to (σ+ρ∂σ)2 = (−σ+
ρ∂σ)2 ⇐⇒ σρ∂σ = 0 ⇐⇒ ∂σ = 0. Therefore σ is constant, and so is ρ. �

Theorem 3.1.5. If a semidiscrete A-surface x is a Chebyshev net, i.e.,

∆ ‖∂x‖ = ∂ ‖∆x‖ = 0,

then its Gaussian curvature K is constant, and its Lelieuvre vector field u
has constant length and enjoys the Chebyshev property:

‖u‖ = const, ∆ ‖∂u‖ = ∂ ‖∆u‖ = 0.

Proof. By Prop. 2.3.4, the ruled surface strip defined by u, u1 is developable
with the curve of regression c = 1

2 (u1−u). The required Chebyshev property
means that we can apply Lemma 3.1.4. With constants σ, ρ from there, we
get ‖u‖2 = σ2 + ρ2 = ‖u1‖2, so the Gaussian curvature K = −‖u‖−4 is
constant. The remaining statements follow either directly or from Theorem
3.1.2. �
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3.2. Construction of K-surfaces from initial values

Finding a one-strip K-surface x : {0, 1} × R → R3 is easy, since we only
have to choose the spherical regression curve c of the derived T-surface and
compute u, u1 by intersecting c’s tangent surface with a co-centric sphere.
Extension of a K-surface x(k, t) which is defined for values k ≤ k0 to k > k0

can be done by means of solving the Moutard equation for its Lelieuvre field,
and we can prescribe the values α(k) arbitrarily:

Assume that ‖u(k, t)‖ = 1 for k = k0 and that u1(k0, t) = u(k0 + 1, t) is a
solution of the ordinary (Moutard) differential equation

∂u1 = ∂u− 〈∂u, u1〉
1 + cosα

(u+ u1), (3.9)

where initial values are chosen such that ‖u1‖ = 1, 〈u, u1〉 = cosα for some
value (k, t) = (k0, t0).

It turns out that these two equalities then hold true for all t: In order to show
that a solution curve u1 of (3.9) does not leave the surface S = {(t, x) ∈
R × R3 | ‖x‖2 = 1, 〈u(t), x〉 = cosα}, it is sufficient to show that ∂u1, seen
as a function of t and u1, is everywhere in S tangential to S. For that, we
compute

∂〈u1, u1〉 = 2〈∂u1, u1〉 = 2〈∂u, u1〉 − 2
〈∂u, u1〉
1 + cosα

〈u+ u1, u1〉 = 0,

∂〈u, u1〉 = 〈∂u, u1〉+ 〈u, ∂u1〉 = 〈∂u, u1〉 −
〈∂u, u1〉
1 + cosα

〈u, u+ u1〉 = 0,

since 〈u, u〉 = 1 and 〈u, ∂u〉 = 0. We conclude that u1 maps into the unit
sphere.

Having constructed u(k, t) as a Moutard surface, we can derive an A-surface
x(k, t). The Gaussian curvature of x equals −‖u‖−4 = −1.

3.3. The angle between parameter lines

This section deals with an equation of sine-Gordon type for the angles ϕ =
^(∂x,∆x) enclosed by the smooth and the discrete parameter lines. We as-
sume that the union of ruled surface strips associated with a semidiscrete
K-surface is a C1 surface, i.e., x1 − x, x1 − x lie in two halves of the tangent
plane which are defined by the vector ∂x. We can therefore give an orienta-
tion to this surface and assume a positive parametrization. The Frenet-type
frame Φ = (e1, e2, e3)T introduced earlier then has the property that e1, e2 is
a positive basis of the tangent plane. The Chebyshev property implies that
we can re-parametrize such that ‖∂x‖ = 1. We now consider the angle

ϕ = ^(∂x,∆x). (3.10)

Another immediate consequence of the Chebyshev property is 〈∂x1, ∆x〉 =
〈∂x, ∆x〉, so

ϕ = ^(∂x1,∆x), (3.11)
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In the following we derive relations between the functions κ and ϕ, which
measure the change in angle of derivatives along parameter lines, and the
constant τ =

√
−K and the function α, both of which measure the change

in angle of normal vectors along parameter lines. Observe that ∂α = 0.

Theorem 3.3.1. Assume that the smooth parameter lines of a semidiscrete
K-surface are parametrized by arc length, i.e., ‖∂x‖ = 1. Then the quantities
κ, ϕ, τ =

√
−K, and α obey the relation

κ1 + κ = −2∂ϕ, κ1 − κ = −2τ sinϕ tan
α

2
. (3.12)

Further, the angle ϕ fulfills

∂∆ϕ = τ sinϕ1 tan
α1

2
+ τ sinϕ tan

α

2
(3.13)

which is a semidiscrete sine-Gordon equation.

Proof. The equality of angles expressed by Equations (3.10), (3.11) means
that rotating the frame Φ about the axis

∆x
‖∆x‖

= cosϕe1 + sinϕe2 = cosϕe1
1 + sinϕe2

1 (3.14)

yields the frame Φ1 associated with the curve x1. The plane orthogonal to the
rotation axis has the orthonormal basis {r, e3}, where r = − sinϕe1+cosϕe2

and the Lelieuvre vector field u is a multiple of e3. This rotation maps r, e3

to r1, e
3
1, and it follows that

〈e3, e3
1〉 = cosα, 〈r1, e

3〉 = − sinα, 〈r, e3
1〉 = sinα.

Differentiating (3.14) and using (3.2) with v = ‖∂x‖ = 1 yields

∂
∆x
‖∆x‖

= (κ+ ∂ϕ)r + τ sinϕe3 = (κ1 + ∂ϕ)r1 + τ sinϕe3
1.

By taking scalar products with e3 and e3
1 and reordering terms we obtain

κ1 + ∂ϕ = −τ sinϕ tan
α

2
, κ+ ∂ϕ = τ sinϕ tan

α

2
.

This immediately yields (3.12). The second equation above also implies κ1 +
∂ϕ1 = τ sinϕ1 tan α1

2 from which we can eliminate κ1 and achieve (3.13). �

Remark. If g, g+ is a Bäcklund pair of smooth K-surfaces, then corresponding
asymptotic parameter lines constitute a semidiscrete K-surface x : {0, 1} ×
R→ R3, by the well known properties of the Bäcklund transform. The previ-
ous theorem can be directly applied to the geodesic curvatures κ, κ+ of these
asymptotic lines and the angle ϕ enclosed by the parameter lines the vectors
connecting corresponding points.

Remark. If a continuous K-surface x(t1, t2) occurs as the limit of a semidis-
crete one, then ∂ϕ → ∂1ϕ, ∆ϕ

‖∆x‖ → ∂2ϕ, and also α
‖∆x‖ →

√
−K, because

the torsion of parameter lines equals
√
−K. Therefore the semidiscrete sine-

Gordon equation (3.13) tends to the continuous sine-Gordon equation (3.1).



Semidiscrete A-surfaces and K-surfaces 13

The semidiscrete sine-Gordon equation (3.13) can of course also be derived
from the discrete sine-Gordon equation (see [5, 7]).

Remark. The ‘Frenet’ frame Φ associated with a K-surface x which is de-
fined in the previous section always contains the surface normal in its third
row. Equation (3.2) and the first paragraph of the proof of Theorem 3.3.1
express the motion of this frame. In order to establish the connections with
the notation of [5, 7], we employ the SU2 representation of rotations and
identify vectors a = (a1, a2, a3) with matrices

(−ia3 −a2−ia1
a2−ia1 ia3

)
∈ su2. Then

the rotation Ra,θ about the axis a with ‖a‖ = 1 and the angle θ is expressed
as Ra,θ = cos θ2E2 + sin θ

2 a ∈ SU2. In this notation, the motion of Φ reads

∂Φ = XΦ, Φ1 = Y Φ, (X ∈ su2, Y ∈ SU2)

where the infinitesimal rotation X and the rotation Y have the form

X = − i
2

(
κ τ
τ −κ

)
,

Y = cos
α

2
E2 + sin

α

2

(
0 − sinϕ− i cosϕ

sinϕ− i cosϕ 0

)
.

The transition matrices X, Y are analogous to the ones encountered in the
discrete case (cf. Equations (4.33) and (4.34) of [7], bearing in mind that the
infinitesimal angle between normal vectors in points x(k, t) and x(k, t + dt)
equals τdt).

3.4. Hirota equation and Bäcklund transform.

In order to extend the analogy between the discrete and semidiscrete cases
to the Hirota equation which prominently features in the discrete case, one
seeks a function ψ : Z× R→ R with

−κ = ∂ψ, ϕ =
1
2

(ψ1 + ψ).

The consistency of this equation follows directly from (3.12), and therefore
ψ is found by integrating the curvature κ.

Theorem 3.4.1. Consider a semidiscrete K-surface whose smooth parameter
lines are parametrized by arc length, and the associated quantities κ, ϕ, τ =√
−K,α. Then there is a function ψ : Z× R→ R which obeys

∂ψ = −κ, ψ1 + ψ = 2ϕ.

It satisfies
1
4
∂∆ψ =

τ

2
tan

α

2
sin

ψ1 + ψ

2
, (3.15)

which is a semidiscrete Hirota equation.

Proof. Expanding shows that (3.15) is equivalent to the known equation
−∆κ = 2τ tan α

2 sinϕ. �
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Remark. Equation (3.15) was called a semidiscrete sine-Gordon equation in
[10, 11].

We do not discuss the fact that any solution of the Hirota equation leads to
a K-surface. It is not difficult to show but anyway follows from the analogous
fact known in the discrete theory and a limit argument. Further, it is obvious
that any triple consisting of a constant τ , a sequence α(k), and a solution ψ
of (3.15) does in fact describe an entire family of solutions with ψ unchanged,
but the torsion τ and the angle function α modified by

τ (λ) := λτ, tan
α(λ)

2
:=

1
λ

tan
α

2
.

This leads to an associated family of semidiscrete K-surfaces. Another result
we state without proof is the semidiscrete version of the Bäcklund transform:
Any solution ψ of the Hirota equations gives rise to another one, ψ̃, related
by

∂(ψ̃ + ψ)
2

=
τ

tan γ/2
sin

ψ̃ − ψ
2

,

sin
∆(ψ̃ − ψ)

4
= tan

α

2
tan

γ

2
sin

ψ̃1 + ψ̃ + ψ1 + ψ

4
.

3.5. Pseudospheres

It is not difficult to verify that the solution ψ = const. = 0 of the Hirota
equation has the following Bäcklund transform ψ̃:

tan
ψ̃(k, t)

4
= tan

ψ̃(0, 0)
4

exp
( τ

tan(γ/2)
t
) k∏
j=0

1 + tan γ tan αj

2

1− tan γ tan αj

2

(k ≥ 0),

the case k < 0 being similar. It is shown by [5] how to construct a K-surface
from ψ̃ via the Sym formula. It is clear from a limit argument that this
construction, which is the same for both the smooth and the discrete cases,
works also in the semidiscrete case. The result for the special case α = const
is

x(k, t) =
r

1 + r2

 sinω(k, t) sin(−2k arctan v − 2t)
sinω(k, t) cos(−2k arctan v − 2t)

cosω(k, t)

+
(
t− kv

1 + v2

) 0
0
1

 ,
ω(k, t) = 2 arctan

(
exp

(2t
r

)(1− vr
1 + vr

)k)
.

Regardless of how we arrived at this equation one can verify the K-surface
property. The letters r, v for the free parameters are chosen to show the
analogy to the example in [5]. Converting the power in the last formula into
an exponential, we see that the dependence of x(k, t) on k and t is governed
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by three linear forms on Z× R:

a∗1(k, t) = k arctan v + t,

a∗2(k, t) = −kv/(1 + v2) + t,

a∗3(k, t) = k
(

ln(1− vr)− ln(1 + vr)
)

+ (2/r)t.

We want to make x(t, k) periodic in some direction. For this purpose we first
look for some point (k0, t0) ∈ Z× R such that

a∗1(k0, t0) = π, a∗2(k0, t0) = 0.

(we could also require a∗1(k0, t0) = nπ, for some integer n). If k0 is given, this
yields an implicit equation for v and an explicit formula for t0, namely

arctan v + v/(v2 + 1) = π/k0, t0 = π − k0 arctan v.

Next, we determine r such that a∗2, a∗3 are linearly dependent. This is an
implicit equation for r. We have then successfully converted the K-surface
x(k, t) into the form

x(k, t) = F (a∗1(k, t), a∗2(k, t))

with the property

x(k + k0, t+ t0) = F (a∗1(k, t) + π, a∗2(k, t)) = x(k, t)

because a∗1(k, t) occurs only in the form sin(−2a∗1) and cos(−2a∗1). By choos-
ing k0 = 3, 4, . . . we achieve a sequence of K-surfaces which we call semidis-
crete pseudospheres. With the factors

ρ =
a∗1(1, 0)
a∗1(0, 1)

, σ =
a∗2(1, 0)
a∗2(0, 1)

we also see that

x(k + 1, t) = F (a∗1(k, t) + a∗1(1, 0), a∗2(k, t) + a∗2(1, 0))

= F (a∗1(k, t+ ρ)a∗2(k, t+ σ))

= F (a∗1(k, t+ σ + (ρ− σ))a∗2(k, t+ σ)),

so all curves x(k, ·) are in fact the same, up to rotation by the angle 2(ρ−σ)
and the parameter change t 7→ t+ σ. The periodicity of the surfaces implies
that the rotation angle between neighbouring curves x(k, ·) has the value
2(ρ− σ) = 2π

k0
.

Remark. We observe one further symmetry: The substitution t 7→ −t causes
the curve x(0, t) to be rotated by 180 degrees about the x2 axis. It follows
that all curves x(k, ·) have an analogous symmetry.
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Figure 5. Semidiscrete pseudospheres, which are smooth
even if their rulings are not. From left to right, k0 =
3, 4, 7, 12.
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Zeitschr. 52, 611–622 (1950)

[16] Sauer, R.: Differenzengeometrie. Springer (1970)

[17] Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer
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