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Abstract.  Geometric problems originating in architecture can lead
to interesting researd and results in geometry processing,computer
aided geometric design, and discrete di eren tial geometry. In this ar-
ticle we survey this developmert and consider an important problem
of this kind: Discrete surfaces(meshes)which admit a multi-la yered
geometric support structure. It turns out that such meshescan be el-
egartly studied via the concept of parallel mesh. Discrete versions of
the network of principal curvature lines turn out to be parallel to ap-
proximately spherical meshes. Both circular meshesand the conical
meshesconsidered only recertly are instances of this meta-theorem.
We dicussproperties and interrelations of circular and conical meshes,
and also their connections to meshesin static equilibrium and dis-
crete minimal surfaces. We conclude with a list of researd problems
in geometry which are related to architectural design.

x1. Intro duction

Computer-Aided Geometric Design has beeninitiated by practical needs
in the aeronautic and car manufacturing industries. Questionssuc asthe
digital storageof a surfacedesignor the communication of freeform geom-
etry to CNC machines sered as motivation for the developmert of a solid
theoretical basisand a huge number of speci ¢ methods and algorithms
for freeform curve and surfacedesign[18].

Another, related stream of researd on surfacesin geometric model-
ing has been motivated by the animation and gameindustry. This area,
nowadays often called "Geometry Processing',focuseson discreterepresen-
tations such astriangle meshes.By the nature of its main applications, it
is driven by e ciency and visual appearancein animation and rendered
scenes. Yet another topic is the construction of surfacesfrom 3D volu-
metric medical data like CT or MRI scans. The methods usedthere are
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a blend of ideas from classical CAGD, Geometry Processingand Image
Processing.

Certainly CAGD and Geometry Processinghave common problems,
such as the reconstruction of surfacesfrom 3D measuremeh data. But
even there the expectations on the nal surface, and also the data rep-
reseration and algorithms may be quite dierent. This is only natural,
given the di erent areasof applications.

New applications pose new problems and may stimulate interesting
and rewarding mathematical researd. It is the purposeof this paper to
demonstrate this by meansof architectural design Architects usethe best
available CAD tools, but these systemsdo not optimally support their
work. Just as an example, Frank O'Gehry employs developable surfaces,
but CAD systemsdo not support this classof surfaceswell. The reasons
for using nearly dewelopable surfacesare rooted in manufacturing and
fabrication. In view of the large scaleon which surfacesin architecture
have to be built, it is obvious that the choice of the fabrication technique
hasan in uence on the surfacerepresertation and on the designprinciple.

In the presen survey we focus on architectural design with discrete
surface representations The basic surface represeration is a mesh, but
the fabrication posesconstraints on the meshesto be used: Theseinclude
planarity of faces,vertices of low valence,constraints on the arrangemerns
of supporting beamsand static properties, to name just a few. We will
thus seethat triangle meshesare hard to deal with, whereasquadrilateral
or hexagonalmeshescan ful Il theserequiremerts more easily.

It turns out that important constraints have an elegan geometric ex-
pressionin terms of discrete di er ential geometry [7, 14]. This eld is
currently emergingat the boundary of di erential and discrete geometry
and aims at discrete courterparts of geometricnotions and methods which
occur in the classicalsmooth theory. The latter then appearsas a limit
case, as discretization gets ner. In fact, some of the practical require-
ments in architecture already led to the dewvelopmen of new results in
discrete di erential geometry [22].

In this article we aim to demonstrate that discrete surfacesfor ar-
chitecture is a promising direction of researd, situated at the meeting
point of discrete and computational di erential geometry, geometry pro-
cessing,and architectural design. For our own work in that direction, see
[9, 22, 28, 36]. For further geometric problems arising in architecture, we
refer to our forthcoming book [30].

This paper is organized as follows: After a historical accourt on sur-
facesin architecture in Section 2, Section 3 formulates basic architec-
tural requiremerts on discrete surfaces. We show why triangle meshesare
harder to realize in an architectural designthan quadrilateral or hexag-
onal mesheswith planar faces. We also discussthe important fact that
guadrilateral mesheswith planar faces(called PQ mesheshenceforth) are
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Fig. 1. Leftt A PQ mesh in the Berlin zoo, by Sdlaich Bergermann and
Partners (Photo: Anna Bobenko). Right: Triangle mesh at the Milan trade
fair, by M. Fuksas.

a discrete courterpart of so-calledconjugate curve networks, and we pro-
vide an algorithm for computing PQ meshes.Section4 discusseswo types
of PQ meshes,which discretize the network of principal curvature lines.
These are the circular and conical meshes,which have an elegan theo-
retical basisin Mebius and Laguerre geometry, respectively. Section 5
dealswith aspects of statics and functionality, and reports on somerecert
progresson PQ meshesin static equilibrium and on discrete minimal sur-
faces;thesetwo topics turn out be very closelyrelated. Finally, Section 6
points to a number of open problems and indicates our plans for future
researd.

x2. History of Multi-la yered Freeform Surfaces in Arc hitecture

Complex geometriesand freeform surfacesappear very early in architec-
ture { they date badk to the rst known dome-like shelters made from
wood and willow about 400,000years ago. Double curved surfaceshave
existed in domesand sculptural ornamerts of buildings through the ages.

It was only in the 19th certury that architects were granted a sig-
nicant amount of freedomin their expressionof forms and styles with
industrialization and improved building materials suc asiron, steel, and
reinforced concrete(cf. FrancoisCoignet, "Beton agglomere', 1855). A sim-
ilar milestone were the early 20th certury fabrication methods for glass
panels(Irving Colburn 1905,Emile Fourcault 1913,Max Bicheroux 1919).

Antoni Gaudi (1852{1926) achieved a deep understanding of statics
and shape of freeform surfacesby using form- nding techniquesand phys-
ical models. His Sagmda Familia (1882{today) is the most prominent
example.
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Fig. 2. Kunsthaus Graz. Left: the uid body of the outer skin. Right: An
interior view during construction, showing the triangulated and at physical
layers of the inner skin. Photo: Archive S. Brell-Cok can.

Reinforced concrete seemedto be a good solution for sculptural forms
and wide spans,with a peak of usein the 1960s,but its limitations were
soon realized: weight, cost, and labour. Early attempts to reduce weight
include segmemation of the desired surfaceinto structural members and
cladding elemerts. In 1914,the Germanarchitect Bruno Taut (1880-1938),
usedreinforced concretegirders as structural elemerts for his Glass Pavil-
ion, with Luxfer glassbricks as glazing elemens. Glass,asthe epitome of
" uidit y and sparkle', and the “highest symbol of purity and death’, is the
perfect material for Bruno Taut. Another successfulsolution by prefab-
rication are the spherical shellswhich form the roof of the Sydney opera
house(1957{1973,by Jorn Utzen).

The ewolution from iron to steel o ered new dimensionsand possibil-
ities of prefabrication, as well as novel assenbling logistics and material
compositions for complex geometrical lightweight structures. Pioneersare
Buckminster Fuller, famous for his gealesic domes,V.G. Sudhov or Frei
Otto, known for their suspended structures, and Schober and Sdlaich,
with their cablenetsand grid shells(see[19, 33, 34, 35|, and alsoFig. 1). In
general, geometric knowledgein combination with new methods of struc-
tural computation opensup new approacesto manufacturing and fabri-
cation of freeform surfaces(cf. the Gaussian Vaults by Eladio Dieste, the
SageGateshad (1997{2004) by Foster and Partners, or the dewelopable
surfacesof F. O'Gehry). Triangular mesheshave been used whenewer
freeform surfacescannot be easily planarized in another way. A recert
exampleis the Milan trade fair roof by M. Fuksas(Fig. 1).

Optimization of geometry or structure is not the only reasonfor the
seard for a good segmemation of freeform surfaces(in CAD terms, this
meansa good way of meshing). Equally important are multifunctional
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Fig. 3. A multi-la yer construction (right) basedon o set meshesm, m
with planar quadrilateral faces(left).

requiremerts originating in building physics, and consequetly the need
for a multi-la yered composition of the buildings' skin. Important questions
hereregard aestheticsaswell aseconomicand structural viewpoints. Sud
a question could be: Is the meshand the implied segmetation motivating
the form in architectural terms? Is the mesharbitrary, or supporting the
form's dynamics, or is it perhapsdoing the opposite?

A good exampleto mertion here is the Kunsthaus Graz (2000-2003,
by P. Cook and C. Fournier) where the thicknessof the buildings' skin
rangesfrom 40cmup to 1m. Kunsthaus Graz explicitly shows the di er-
ernt methods of meshingthe “inner' and “outer' skin. While the “outer' skin
supports the uid acrylic glassbody with a rectangular mesh, the inner
skin is a triangle mesh(seeFig. 2, right). The reasonfor this are economic
considerations,which enforce at surfacesfor the buildings' physical lay-
ers.

For a good overview on cortemporary architecture, containing a large
number of geometrically remarkable designs,we refer to the book series
\Arc hitecture Now" [20].

x3. Discrete Surfaces for Arc hitectural Design

3.1. Basic concepts

Multi-la yered metal sheetsand glasspanel constructions usedfor covering
roo ng structures are expensiwe, complicated, or evenimpossibleto bend.
Therefore it is desirableto cover free-form geometry by planar panel ele-
ments, and use polyhedral surfaces,i.e., mesheswith planar faces as our
basic surfacerepresenation. Unlessnoted otherwise, in the following we
always assumeplanarity of faces.

Parallel meshes and osets. Many constructions in architecture are
layer composition constructions where ead layer has to be covered by
planar panel elemeris (seee.g. Fig. 3, right). Geometry requiremerts are
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Fig. 4. In apair of parallel meshesm; m ~with planar faces,corresponding edges
and face planes are parallel. To construct a parallel meshm Oof a quadrilateral

meshm with planar faces,one may prescribe the imagesPQ, Qoto two polygons
P; Q (bold); the remaining part of mofollows by parallelity.

presen for all layersin the sameway, and so mesheswhich possessxact
o set meshesis an important topic of researd.

O set meshesare special parallel meshes This conceptis illustrated
by Fig. 4: A meshm?@is parallel to the meshm, if (i) both m, m® have
the samecombinatorics; (i) corresponding edgesof m and m®are parallel;
and (i) m, m®do not dier simply by a translation. It is a consequence
of property (ii) that corresponding facesof m and m©° are cortained in
planeswhich are parallel to eat other.

Supp orting beams. Planar panelshaveto be held together by a support

structure, which is a composition of support beamsarranged along the
edgesof the underlying mesh (see Fig. 5). A beam may be seenas a
prismatic body, generatedby a linear extrusion of a planar symmetric
pro le in adirection orthogonalto the pro le plane(i.e., by extrusion along
the longitudinal axis of the beam). The symmetry axis of the generator
pro le extrudesto a symmetry plane of the beam (the central plane, see
Fig. 5). For most of our considerations, we will neglectthe width of the
beam, which is measuredorthogonal to its certral plane. We are mainly

dealing with the slice of the beamlying in the certral plane. This certral

plane shall always passthrough an edgeof the basemeshm. We do not
consider the case of torsion along the length of the beam, i.e., all our
beamsactually have a certral plane.

Optimized nodes and geometric support structure.  The higher
the valence of a vertex, the more complicated it usually is to join the
supporting beamsthere. Already the very simple caseof a beam of width
zero shaws these complications: An optimized node v is a mesh vertex
where the certral planes of all emanating beams pass through a xed
line, the axis of the node. The geometric support structure is formed by
guadrilaterals lying in the certral planes. It is assumedhenceforth that
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Fig. 5. Left: A supporting beamis symmetric with respect to its certral plane.
At an optimized node, the certral planes of supporting beamspassthrough one
straight line, which is called the node axis. If the node is not optimized, we
speak of “geometric torsion in the node'. Right: A basemeshm and its o set

mesh mQ are the basis for construction of a geometric support structure with
optimized nodes. The quadrilaterals shown here are trap ezoids and lie in the
certral planes of the supporting beams. The o set pair of meshesshown in this
gure has the particular property that corresponding vertices lie at constant
distance. Further, corresponding faces are parallel at constant distance; see
Section 4.3.

all nodes are optimized and hencethree sidesof the quadrilaterals in a
geometric support structure are given by an edgee of m and the two
node axesat its ends. In most cases,the fourth edgee® is parallel to e,
namely a corresponding edgeof an o set meshm®of m. Then, ead of the
guadrilaterals in the certral planesis a trapezoid (seeFig. 5). Further,
all node axes may be seenas discrete surface normals. We will seein
the next subsectionthat especially for triangle meshes optimization of all
nodesmay be impossible.

3.2. Triangle meshes

A substartial amount of researt in geometry processingdeals with
triangle meshesand studiesthem from various perspectives. For instance,
re nement is possiblewith subdivision algorithms, and smoothing is well
understood. Although there are examplesof the actual use of triangle
meshesin architecture, they causeproblems exactly in connection with
the conceptsdiscussedabove, namely parallel meshespo sets, and support
structures. Let us discussthis in more detail.

Prop osition 1. A geometric support structure of a connected triangle
mesh with optimized nodes can only be trivial: Either all axes of the
nodesare parallel, or they passthrough a single point.

Pro of: Considera triangular faceF of the mesh. Through ead edgee; of
F we have a certral plane C; of a supporting beam (i = 1;2; 3). Because
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nodesare optimized, the intersectionlines C;\ Cy;::: of thesethree planes
are the node axes. It follows that the three node axesat the three vertices
of F passthrough the point O = C;\ C,\ Cj, which possiblyis at in nit .
Any neighbour triangle hastwo node axesin commonwith F, soalsoall
neighbour axespassthrough O . By connectednesst follows that either
all node axes of the mesh passthrough a nite point O, or through an
in nite point O, i.e., are parallel. O

For triangle meshesalsothe conceptof parallel meshedecomedrivial:
Two triangles with parallel edgesare connectedby a similarity transfor-
mation. Hence,a parallel meshm? of a triangle meshm s just a scaled
versionof m. Further, it is easyto seethat any o set meshm?of m arises
from m by uniform scaling from some certer. It follows that only for
near-sphericaltriangle meshesan o set canbe at approximately constart
distance, and node axes can be approximately orthogonal to the mesh.
For general freeform triangle meshes,there is no chanceto construct a
practically useful support structure with optimized nodes.

3.3. Beyond triangle meshes

The higher the number of edgesin a planar face, the more exibilit y we
have when constructing parallel meshes.This in turn implies more exi-
bility in the construction of support structures, as shown by the following
result, which relates support structures and parallel meshes(see[9]).

Prop osition 2. Any geometric support structure of a simply connected
meshm with planar facesand non-parallel node axescan be constructed
as follows: Consider a parallel meshm?® of m and a point O and let the
node axis N; at the vertex m; be parallel to the line N° = Om?.

Pro of: Giventhe axesN;, we consideraxesN? parallel to N;, but passing
through a xed point O. Generally, if N;;N; lie in the samecertral plane
Cjj , the corresponding lines N?, N spana plane C{ parallel to C;; . We
may now construct a parallel meshm©® of m. On one of the new lines,
say N2, we choose a vertex m{. We take a face adjacert to my and
construct the corresponding face adjacen to mE by the requiremen that

face planesare parallel, and for any vertex m;, the corresponding vertex
m? liesin N°. Thusthe new faceis constructed by intersecting lines with

a plane, and the edgesof the new face (lying in the planes Ci?), are, by
construction, parallel to the edgesof the original face. In this way step by
step, in rings around the vertex m?, m® is produced. O

3.4. Quadrilateral meshes with planar faces

Gehry Partners and Sdlaich Bergermann and Partners [19, 35] give a
number of reasonswhy planar quadrilateral elemerns are preferable over
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Fig. 6. (a) PQ strip as a discrete model of a developable surface. (b) Discrete
developable surface tangent to PQ mesh along a row of faces.

triangular panels (cf. Fig. 1). The planarity constraint on the faces of
a quad mesh howewer is not so easyto fulll, and in fact there is only
litle computational work on this topic. So far, architecture has been
mainly concerirating on shapesof simple genesiswhere planarity of faces
is automatically achieved [19, 35. For example, translational meshes
generated by the translation of a polygon along another polygon, have
this property: In such a mesh, all facesare parallelograms and therefore
planar.

Prior work in discrete dieren tial geometry . The geometry of
quadrilateral mesheswith planar faces (PQ meshe$ has been studied
within the framework of di er ena geometry, which is a precursor of dis-
crete di erential geometry[7, 14]. It hasbeenobsened that sud meshes
are a discrete courterpart of conjugate curve networks on smooth surfaces.
Earlier contributions are found in the work of R. Sauerfrom 1930onwards,
culminating in his monograph[32]. Recert cortributions, especially on the
higher dimensional case,include the work of Doliwa, Sartini and Maras
[16, 17, 23]. In the mathematical literature, PQ meshesare sometimes
simply called quadrilateral meshes

PQ strips as discrete developable surfaces. The simplest PQ mesh
is a PQ strip, a single row of planar quadrilateral faces. The two rows of

and well known that such a meshis a discrete model of a dewelopable
surface[27, 32]. This surfaceis cylindrical, if all lines ajb; are parallel. If
the lines ajb; passthrough a xed point s, we obtain a model for a conical
surfacewith vertex s. Otherwise the PQ strip is a patch on the “tangert

This model is the direct discretization of the well known fact that in
general developable surfacesare patchesin the tangent surfacesof space
curves. The linesrir;.1 seneasthe rulings of the discretetangert surface,
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Fig. 7. Dierent networks of conjugate curves. From left: epipolar curves,
principal curvature lines, and generator curves of a translational surface.

which carries the given PQ strip. The planar facesof the strip represen
tangert planesof the dewelopable surface.

PQ meshes discretize conjugate curv e networks. We now con-
sider a PQ meshwhich is a regular grid, with verticesvi; , i = 0;:::;n,

j = 0;:::;m (In practice, mesheswill have vertices of valenceé 4, which

can be treated like singularities). The relation betweensuc PQ meshes
and conjugate curve networks is established as follows: Recall that two

families of curves are conjugate, if and only if the tangents to family A

along eadh curve of family B constitute a developable surface [27]. Ob-

viously, a PQ mesh has the property that the edgestransverseto one
sub-strip constitute a discrete dewelopable surface (see Fig. 6). Thus,

grid-like PQ meshesdiscretize conjugate curve networks, with the grid

polylines corresponding to the curvesof the network. This relation showvs
both the degreesof freedom and the limiting factors in the construction

of PQ meshes(for more details see[22]). Therefore, conjugate networks
of curvesmay serwe as a guide for the designof PQ meshes provided the

curvesinvolved intersect transversely Examples are the principal curva-

ture lines (seeFig. 7b), the generating curves of a translational surface
(usedin architectural design[19, 35|, seeFig. 7c), epipolar curves(see[12]

and Fig. 7a), and the family of isophotesw.r.t. the z axis together with

the family of curvesof steepest descenm [25].

An algorithm for planarization. Liu et al. [22] proposedan algorithm
which solvesthe following problem: Given a quad meshwith verticesv;; ,
minimally perturb the verticesinto new positions suc that the resulting
meshis a PQ mesh. They minimize a functional which expressedairness
and closenesgo the original mesh subject to the planarity condition. In
order to expressplanarity of a quad Q; , one considersthe four angles ,} ,
i i‘j‘ enclosedby the edgesof the quad, measuredin the interval [O; ].
It is known that Qj; is planar and corvex if and only if

v+ =2 (1)
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For input meshesnot too far away from conjugate curve networks this
algorithm works very well. Howewer, there is no reasonto expect good
results with arbitrary input meshes.Mesh directions closeto asymptotic
(self-conjugate) directions of an underlying smooth surface cause heavy
distortions and are usually uselessor applications.

Com bining subdivision and planarization. A practically useful and
stable method for generating PQ meshesfrom coarsecontrol meshesis
achieved by a conmbination of the planarization algorithm with a quad-
based subdivision algorithm like Doo-Sabin or Catmull-Clark [22]: One
subdivides a given mesh. Sincethis operation intro ducesnon-planar faces,
onethen applies planarization. Thesetwo stepsare iterated to generatea
hierarchical sequenceof PQ meshes(seeFig. 10). Applying this method
just to a PQ strip yields a powerful method for modeling with developable
surfaces[22], which is also interesting for architecture.

In Section 4 we turn to two remarkable classesof PQ meshes. Both
of them discretize the network of principal curvature lines. They possess
o sets and support structures. Their computation can also be basedon
constrained optimization and subdivision, but one needsa stronger con-
straint than just planarity of faces.

3.5. Hexagonal meshes and other patterns

The lessedgesper vertex, the more exibilit y we have in the construction
of parallel meshesand support structures. Furthermore, lower valence
makes fabrication of nodes easier. This topic is not yet well explored,
ewven if there is someinitial work by B. Cutler [13]. We would also like
to mertion that suldivision, for hexagonal meshesand other patterns,
without planarity constraints, and focusing on applications in the arts,
hasbeenusedby E. Akleman [1, 2, 3].

x4. Principal Meshes in their Circular and Conical Incarnations

This section dealswith circular and conical PQ meshes,which have par-
ticularly interesting properties for applications in architectural design. In
a circular mesh,all quadrilaterals have a circumcircle, whereasin a conical
mesh, the facesadjacert to a vertex are tangernt to a right circular cone.
Both circular and conical meshesdiscretize the network of principal cur-
vature lines, thus represetting fundamenal shape characteristics. Both
posses®xact o sets: circular mesheshave vertex o sets, whereasconical
meshespossesdace o sets. We will approac thesetwo typesof meshes
via the theory of parallel mesheg[28]. This allows easyaccesdo discrete
surfacenormals, o sets, and support structures.

Let us rst think about discretizations of the network of principal cur-
vature lines. Sincethis is a conjugate curve network, we usea PQ meshto
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discretizeit. It isinteresting that there is a rather generalcharacterization
of principal PQ meshes:

Meta-Theorem. A quad meshm with planar faces may be seen as a
principal mesh, i.e., a discrete analogue of the network of principal cur-
vature lines on a smooth surface, if it possesses parallel meshm?® which
approximatesa sphee. In this casethe discrete normals de ned by means
of the auxiliary meshm? according to Proposition 2 havethe property that
normals at neighlour vertices are co-planar.

Pro of: Recall that a curve ¢ in a surfaceis a principal curvature line
if and only if the surface normals along that curve form a dewelopable
surface [27]. Now we sgy that grid polylines of a regular PQ mesh are
principal curvature linesin a discrete sense|f the normals assaiated with

neighbouring vertices are co-planar (cf. Fig. 6). In the terminology of the
general discussionabove, this meansthat the normals are suitable axes
of a geometric support structure with optimized nodes,and Proposition 2
implies the existenceof a parallel meshm©, whosevertices (interpreted as
vectors) indicate the normals of the meshm. As m and m° are parallel
meshes the lines connecting the origin of the coordinate systemwith the
vertices of m° are discrete normals of the meshm?, too. Therefore, m? is
a meshwhich is approximately orthogonal to a bundle of lines, i.e., which
is approximately spherical. O

Both the statemert and the proof of this result are vague because
there is no exact de nition of “discrete normal’. A more restrictive def-
inition of “discrete normal' simultaneously restricts the classof principal
meshes.The meta-theoremmay be extendedto relative di erential geom-
etry, where a general convex surfacetakesthe role of a sphere[29].

4.1. Circular meshes

Circular mesheshave been introduced by Martin et al. [24]. They are
known to be a discrete analogueof the network of principal curvature lines
(not only in the senseof the meta-theorem) and have beenthe topic of
various cortributions from the perspective of discretedi eren tial geometry
and integrable systems][6, 7, 5, 11, 21]. The following result, which shows
that circular meshesare indeed related to mesheswhich approximate a
sphere,is shown in [21] and [28]:

Theorem 1. A PQ meshm which possessean o set meshm?sud that
corresponding vertices of m and m? lie at constart distance, is a circular
mesh. Any circular meshis parallel to a meshm? whosevertices lie in a
sphere.

In view of the meta-theorem, a circular meshesm is a principal mesh.
It has an o set meshm?® and therefore also a support structure. In case
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Fig. 8. The circular mesh at right has been constructed from the base mesh
(left) by a combination of Doo-Sabin subdivision and circular optimization.

mPOis at constart vertex distance, the support structure de ned by joining
m with m© has the property that the segmers on the node axesare of
constart length.

The computation of circular meshesmay be basedon a combination
of planarization and subdivision (seeFig. 8), but one has to replace the
planarity constraint (1) by two constraints per face, which expressthe
existenceof a circumcircle:

bv o= grd =0 @
Finally, let us mention that circular meshes,consideredas a collection
of vertices, are a concept of Mebius geometry A Meobius transformation
maps a circular meshto another circular mesh.

4.2. Conical meshes

Whereas circular mesheshave been known for sometime, their conical
courterparts have beenintroduced only recertly [22], motivated by geo-
metric problemsin architecture: We demand principal mesheswhich have
0 sets at constant face/face distance. Also the conical meshesare an in-
stance of the meta-theorem.

Theorem 2. A PQ meshm which possessean o set meshm?®sud that
corresponding oriented face planes of m and m© lie at constart signed
distance, is a conical mesh. Any conical meshis parallel to a meshm?
whoseface planesare tangert to a sphere.

Pro of (Sketch): This is shawn in [28], but we repeat the main argument
concerning the construction of m® from m, becauseit is easy: We take
all face planesof a conical meshm and translate them sud that they are
tangert to the unit sphere. Facesadjacert to a vertex are tangen to a
circular cone(seeFig. 9), and obviously do not losethis property with the
translation { the coneaxis after translation passeshrough the origin. It
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a0

Fig. 9. In aconical meshm, the four faceplanesincident to a vertex are tangent
to a right circular cone. The cone axes are discrete surface normals. An edge
e of m, the cone axes at the two end points of e, and the corresponding edge
of an o set mesh form a trap ezoid, which lies in the bisector plane of the two
face planes meeting at e. A collection of such trap ezoids constitute a geometric
support structure for m, as shown by Fig. 5.

follows that the translated planes carry the facesof a meshm?© which is
circumscribed to the unit sphere. The discrete normals of m are the cone
axes. O

The computation of conical meshesand applications in architecture
has beendiscussedby Liu et al. [22]. This is basedon a simple criterion,
shown in [37], which ensuresthat a vertex in a PQ meshis conical, i.e.,
the adjacert facesare tangent to a right circular cone.

Prop osition 3. A quad mesh(grid case)is conical if and only if for all

edgesemanating from that vertex obey ! ; + 1 3=1,+14.

Conical meshesyiewed as setsof oriented face planes,are an object of
Laguerre geometry A Laguerre transformation mapsa conical meshonto
a conical mesh. However, onehasto admit degeneratecasesof the tangent
conesat the vertices. For a more thorough discussionof this subject, see

[28].

4.3. The relation between circular and conical meshes

Both circular and conical meshesare discretizations of the network of prin-
cipal curvature lines; the former is a Mobius geometric concept, the latter
is basedon Laguerre geometry Lie spheregeometry [10] is a geometry
which subsumesboth of these geometries. As Lie spheretransformations
presene principal curvature lines (viewed as sets of contact elemens), it
is natural to treat circular and conical meshestogether. This unifying
viewpoint of Lie spheregeometryis assumedby Bobenko and Surisin the
recert paper [8].



Surfacesin Architecture 227

Fig. 10. A sequenceof conical meshes(at left) produced by subdivision and
mesh optimization according to [22], which is the basis of the (incomplete, es-
pecially roo ess) architectural design at right. Images: B. Schneider.

Even if we do not use these concepts of “higher geometry', we can
still nd closerelations between circular and conical meshes,which are
expressedin terms of Euclidean geometry One of the results in this di-
rection cortained in [28] is the following:

Theorem 3. For ead conical meshl with face planesF; (regular grid
case)there is a two-parameter family of circular meshesm whosevertices
lie in the face planesof | and are symmetric with respect to the edgesof
I. Cone axesof the meshl coincide with circle axesof the meshm.

Pro of (Sketch): We choose a face Fog and place a seedvertex mgg in
it. More vertices of m are constructed by re ecting already existing ver-
tices in the symmetry planes which are attached to the edgesof | (see
Fig. 9). These symmetry planescontain the cone axesat the vertices. If
we consideronly the intrinsic geometry of the mesh,this is somethinglike
re ection in the edgeitself.

It is not dicult to see,e.g.,from Fig. 11, that successie re ection of
a point in the four edgeswhich emanatefrom a vertex | yields the point
we started with, sothis construction unambiguously placesa new vertex
mj into every faceF; . For details, see[28]. O

There are mesheswhich are both circular and conical, i.e., possess
vertex o sets and face o sets. Particularly interesting is the question of
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Fig. 11. Left: Construction of a circular mesh (thin lines) from a conical mesh
(bold lines) by successie re ection of a vertex Mg in the edgesof the conical
mesh. Right: Top view in the direction of the cone axis at lj; .

nding ameshm having an o set m°which is both a vertex o set and face
o set. Sud a meshcan be constructed in an elegart way via a parallel

meshm©® whosevertices lie on a sphereand whoseface planestouch an-
other, concerric, sphere. This implies that the circumcircles of m° have
a constart radius and thus they are diagonal meshesof rhombic meshesr

with verticeson a sphere;the mesheg are formed by skew quadswith con-
stant edgelength. An exampleof sucdh a meshm is givenin Fig. 5. These
meshesare also closely related to the discrete represenations of surfaces
with constart negative Gaussiancurvature studied by W. Wunderlich and
R. Sauer[31, 38].

We would like to point out that the conceptsof circular and conical
meshesbecometrivial or too restrictiv e if we try to apply them to other
meshes,e.g., to triangle meshesor hexagonal meshes. For a hexagonal
mesh, the genericvalenceof a vertex is 3 and henceit is always conical.
In contrast, a hexagonalmeshall of whosefaceshave a circumcircle must
have all of its vertices on a sphere. Likewise, a triangle meshis always
circular, but it is only conical if all its faceplanesare tangert to a sphere.

x5. Asp ects of Statics and Functionalit y

This section briey reports on properties of meshesconnectedto equi-
librium forces, and on discrete minimal surfaces. These two topics are
connected,as discussedmore thoroughly in [36].

5.1. PQ meshes in static equilibrium

Consider a framework of rods connected together with spherical joints.
Mathematically speaking, such a framework consistsof collections of ver-
tices and edges. We assumethat in some vertices external forces are
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Fig. 12. Left: A meshwhich has equilibrium forces. Only the external forces
are shown. These forces are the edgesof a mesh which is reciprocal-parallel to
the rst one (at right, not to scale). The edgesshown in bold correspond to
ead other and thus illustrate the fact that a meshand its reciprocal-dual mesh
are combinatorial duals. Both meshesare discrete minimal surfaces,and the left
hand mesh s conical.

applied. A systemof internal forcesis an assignmen of a pair of opposite
forcesto eat edge,one for either end. Such a system of forcesis in equi-
librium if for eadh vertex the sum of forcesequalszero. Fig. 12 illustrates
this for a rectangular pieceof quadrilateral mesh. Obviously the zerosum
condition meansthat the forcesacting upon a vertex can be taken as the
boundary edgesof a facein a new quad mesh, which is then called recip-
rocal-parallel to the original one [32]. The rst onesin the following list
of properties of forcesand reciprocal-parallel meshesare obvious, for the
rest we refer to [32] and [36]. The property of having equilibrium forcesis
denoted for short by "EF'.

{ The reciprocal-parallel relation is symmetric (disregarding boundaries).
{ A PQ meshis EF () it hasa reciprocal-parallel mesh

{ If a meshhas property E, then sodo all parallel meshes.

{ A meshreciprocal-parallel to a PQ meshhas planar vertex stars.

{ A PQ meshisEF () it isinnitesimal ly exible [32, 36]

{ A PQ meshis EF () it hasthe property of Fig. 13 [32, 36].

{ A conical meshis EF () its sphericalimageis isothermic [36].

The last property mertioned leads into the next subsection, which
discussesdiscrete minimal surfaces. The reader interested in de nition,
properties, and previous work on isothermic meshesis referred to [36].
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Fig. 13. For a PQ mesh, the existence of a reciprocal-parallel mesh (or of equi-
librium forces) is characterized by an incidence property of the lines of intersec-
tion of every face F with its neighbours. The notation in the gure indicates
relative position with lower indices: I;r;u;d mean left, right, up, and down,
respectively. This is the Desarguescon guration of projective geometry.

5.2. Discrete minimal surfaces

In the smooth category minimal surfacesare curvature-cortinuous sur-
faceswith vanishing meancurvature [15]. For various reasons,their math-
ematical theory is very rich. One is that they occur as solutions of a
prominent nonlinear optimization problem (minimizing surface area un-
der given boundary conditions), another one is that there is an almost
1-1 correspondencebetweenminimal surfacesand holomorphic functions.
We note only one further property: Minimal surfacesare isothermic, i.e.,
they possessa curvature line parametrization g(u;v), suc that not only
& @ =0, but alsokZk = kZk.

In the discrete category, this picture changesa bit. “The' de nition
of a discrete minimal surface does not exist, becauseeat of the various
properties of smooth minimal surfacescan be discretized, and the discrete
represenation of data plays an important role. A particular discretization
is worth studying if it transfers more than just one contin uous property to
the discrete setting. Another reasonof interest for a particular construc-
tion is that the resulting discrete theory is very rich.

One possible choice of property and data represertation is triangle
mesheswhich minimize surface area under given boundary conditions.
They have beenstudied by K. Polthier [26]. Another fruitful combination
is PQ mesheswhich are discrete-isothermic, investigated by A. Bobenko
and coworkers [6]. They called a meshisothermic, if it is circular, and for
ead face, the crossratio of the four vertices, computed with respect to
their circumcircle, equals 1. As it turns out, this is a discrete version of
the de ning property of isothermic surfacesmertioned above.
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The work on isothermic meshesand related conceptsrecertly culmi-
nated in the construction of discrete so-called s-isothermic minimal sur-
faceswith prescribed combinatorics [5]. Our own work in that direction
[36] includes conical meshesin the shape of minimal surfaces,which are
intimately connectedwith the isothermic meshesof [6], and their recipro-
cal-parallel mesheswhich are discrete minimal surfacesin their own right.
Examples of such constructions are showvn by Fig. 12.

x6. Open Problems and Future Work

In this paper we have addresseda few problems which are motivated by
practical requiremerts in architectural design. Their solution leads to
remarkable discrete surfacerepresenations, someof which have beenun-
known so far in discrete di erential geometry We believe that there is a
signi cant potential for further researt in this area, which encompasses
problemsoriginating in architectural design,geometryprocessingand dis-
crete di erential geometry Topicsof future researt include the following:

We neednew and intuitiv e tools for the designof PQ meshes.SincePQ
mesheddiscretize conjugate curve networks, a possibleapproac would be
an interactive method for the design of conjugate curve networks, where
the network curves “automatically' avoid asymptotic directions, and con-
sequettly intersect transversely These curve networks can then be used
to construct quad meshescapable of PQ optimization.

It is necessaryto cortinue to study parallel meshesin general, espe-
cially with regard to computation, design,and mesheswith special prop-
erties parallel to a given mesh.

Hexagonal meshesand other patterns should be investigated.

We have seenthat conical and circular mesheshave face o sets and
vertex o sets, respectively. We are currently investigating the beautiful
geometry of those meshes(not only quad meshes)which possessedge
o sets. For architecture, these mesheshave the attractiv e property that
their support structure may be built from beamsof constart height. Initial
results on quad mesheswith edgeo sets may be found in [29].

In architectural design, the aesthetic value of meshesis of great im-
portance. It is natural to employ geometric functionals and considertheir
minimizers. Minimal surfacesare an example,but more work is neededin
this area. Obvious candidatesto investigateare discrete Willmore surfaces
represened as circular meshes(this is a question of Mebius geometry).
Likewise,we could seard for conical meshesrepreserting Laguerre-min-
imal surfaces. The reader interested in these topics is referred to the
monograph by W. Blasdchke [4] for the continuous case.
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From the architectural viewpoint, there are the following issuesin con-
nection with freeform surfaces:

Optimization should not neglectstatics and structural considerations.

The climate inside glassstructures demands separate attention. Ge-
ometric questionswhich occur here have to do with light and shade,the
possibility of shadingsystemstied to support structures, and even a layout
of supporting beamswith regardto shading. Also the aestheticcomponert
is presen hereat all times.

The dicult geometric optimization of freeform surfaceswhich sup-
ports the architectural designprocess;

The demandfor planar segmers without the appearanceof an overall
polygonalisation;

Generally speaking, the ‘right' choice of an overall segmemation of a
multi-la yered building skin with a good planar mesh;

The complexity of joints, especially the absenceof so-calledgeometric
torsion in the nodes (cf. Fig. 5, left).

In conclusion, we believe that architecture may be viewed as a rich
sourcefor interesting and rewarding researt problemsin applied geome-
try.
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