
DiscreteSurfacesfor ArchitecturalDesign

Helmut Pottmann, Sigrid Brell-Cokcan,
and JohannesWallner

Abstract. Geometric problems originating in architecture can lead
to interesting research and results in geometry processing,computer
aided geometric design, and discrete di�eren tial geometry. In this ar-
ticle we survey this development and consider an important problem
of this kind: Discrete surfaces(meshes)which admit a multi-la yered
geometric support structure. It turns out that such meshescan be el-
egantly studied via the concept of parallel mesh. Discrete versionsof
the network of principal curvature lines turn out to be parallel to ap-
proximately spherical meshes. Both circular meshesand the conical
meshesconsidered only recently are instances of this meta-theorem.
Wedicussproperties and interrelations of circular and conical meshes,
and also their connections to meshesin static equilibrium and dis-
crete minimal surfaces. We conclude with a list of research problems
in geometry which are related to architectural design.

x1. In tro duction

Computer-Aided Geometric Design has been initiated by practical needs
in the aeronautic and car manufacturing industries. Questionssuch asthe
digital storageof a surfacedesignor the communication of freeform geom-
etry to CNC machinesserved asmotivation for the development of a solid
theoretical basis and a huge number of speci�c methods and algorithms
for freeform curve and surfacedesign[18].

Another, related stream of research on surfacesin geometric model-
ing has been motivated by the animation and game industry. This area,
nowadays often called `GeometryProcessing',focuseson discreterepresen-
tations such as triangle meshes.By the nature of its main applications, it
is driven by e�ciency and visual appearancein animation and rendered
scenes. Yet another topic is the construction of surfacesfrom 3D volu-
metric medical data like CT or MRI scans. The methods used there are
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a blend of ideas from classical CAGD, Geometry Processingand Image
Processing.

Certainly CAGD and Geometry Processinghave common problems,
such as the reconstruction of surfacesfrom 3D measurement data. But
even there the expectations on the �nal surface, and also the data rep-
resentation and algorithms may be quite di�eren t. This is only natural,
given the di�eren t areasof applications.

New applications pose new problems and may stimulate interesting
and rewarding mathematical research. It is the purposeof this paper to
demonstrate this by meansof architectural design. Architects usethe best
available CAD tools, but these systems do not optimally support their
work. Just as an example, Frank O'Gehry employs developablesurfaces,
but CAD systemsdo not support this classof surfaceswell. The reasons
for using nearly developable surfaces are rooted in manufacturing and
fabrication. In view of the large scaleon which surfacesin architecture
have to be built, it is obvious that the choice of the fabrication technique
hasan in
uence on the surfacerepresentation and on the designprinciple.

In the present survey we focus on architectural design with discrete
surface representations. The basic surface representation is a mesh, but
the fabrication posesconstraints on the meshesto be used: Theseinclude
planarit y of faces,verticesof low valence,constraints on the arrangements
of supporting beamsand static properties, to name just a few. We will
thus seethat triangle meshesare hard to deal with, whereasquadrilateral
or hexagonalmeshescan ful�ll theserequirements more easily.

It turns out that important constraints have an elegant geometric ex-
pression in terms of discrete di�er ential geometry [7, 14]. This �eld is
currently emergingat the boundary of di�eren tial and discrete geometry
and aims at discretecounterparts of geometricnotions and methods which
occur in the classicalsmooth theory. The latter then appears as a limit
case,as discretization gets �ner. In fact, some of the practical require-
ments in architecture already led to the development of new results in
discrete di�eren tial geometry [22].

In this article we aim to demonstrate that discrete surfaces for ar-
chitecture is a promising direction of research, situated at the meeting
point of discrete and computational di�eren tial geometry, geometry pro-
cessing,and architectural design. For our own work in that direction, see
[9, 22, 28, 36]. For further geometric problems arising in architecture, we
refer to our forthcoming book [30].

This paper is organized as follows: After a historical account on sur-
faces in architecture in Section 2, Section 3 formulates basic architec-
tural requirements on discretesurfaces.We show why triangle meshesare
harder to realize in an architectural design than quadrilateral or hexag-
onal mesheswith planar faces. We also discussthe important fact that
quadrilateral mesheswith planar faces(called PQ mesheshenceforth) are
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Fig. 1. Left: A PQ mesh in the Berlin zoo, by Schlaich Bergermann and
Partners (Photo: Anna Bobenko). Right: Triangle mesh at the Milan trade
fair, by M. Fuksas.

a discrete counterpart of so-calledconjugate curve networks, and we pro-
vide an algorithm for computing PQ meshes.Section4 discussestwo types
of PQ meshes,which discretize the network of principal curvature lines.
These are the circular and conical meshes,which have an elegant theo-
retical basis in M•obius and Laguerre geometry, respectively. Section 5
dealswith aspectsof statics and functionalit y, and reports on somerecent
progresson PQ meshesin static equilibrium and on discrete minimal sur-
faces;thesetwo topics turn out be very closely related. Finally, Section 6
points to a number of open problems and indicates our plans for future
research.

x2. History of Multi-la yered Freeform Surfaces in Arc hitecture

Complex geometriesand freeform surfacesappear very early in architec-
ture { they date back to the �rst known dome-like shelters made from
wood and willow about 400,000years ago. Double curved surfaceshave
existed in domesand sculptural ornaments of buildings through the ages.

It was only in the 19th century that architects were granted a sig-
ni�can t amount of freedom in their expressionof forms and styles with
industrialization and improved building materials such as iron, steel, and
reinforcedconcrete(cf. Fran�coisCoignet, `B�eton agglom�er�e', 1855). A sim-
ilar milestone were the early 20th century fabrication methods for glass
panels(Irving Colburn 1905,Emile Fourcault 1913,Max Bicheroux 1919).

Antoni Gaudi (1852{1926) achieved a deep understanding of statics
and shape of freeform surfacesby using form-�nding techniquesand phys-
ical models. His Sagrada Familia (1882{today) is the most prominent
example.
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Fig. 2. Kunsthaus Graz. Left: the 
uid body of the outer skin. Right: An
interior view during construction, showing the triangulated and 
at physical
layers of the inner skin. Photo: Archive S. Brell-Cok can.

Reinforcedconcreteseemedto be a good solution for sculptural forms
and wide spans,with a peak of use in the 1960s,but its limitations were
soon realized: weight, cost, and labour. Early attempts to reduceweight
include segmentation of the desired surface into structural members and
cladding elements. In 1914,the Germanarchitect Bruno Taut (1880-1938),
usedreinforced concretegirders asstructural elements for his GlassPavil-
ion, with Luxfer glassbricks as glazing elements. Glass,as the epitome of
`
uidit y and sparkle', and the `highest symbol of purit y and death', is the
perfect material for Bruno Taut. Another successfulsolution by prefab-
rication are the spherical shells which form the roof of the Sydney opera
house(1957{1973,by Jorn Utzen).

The evolution from iron to steel o�ered new dimensionsand possibil-
ities of prefabrication, as well as novel assembling logistics and material
compositions for complex geometrical lightweight structures. Pioneersare
Buckminster Fuller, famous for his geodesic domes,V.G. Suchov or Frei
Otto, known for their suspended structures, and Schober and Schlaich,
with their cablenetsand grid shells(see[19, 33, 34, 35], and alsoFig. 1). In
general,geometric knowledgein combination with new methods of struc-
tural computation opensup new approaches to manufacturing and fabri-
cation of freeform surfaces(cf. the Gaussian Vaults by Eladio Dieste, the
SageGateshead (1997{2004) by Foster and Partners, or the developable
surfacesof F. O'Gehry). Triangular mesheshave been used whenever
freeform surfacescannot be easily planarized in another way. A recent
example is the Milan trade fair roof by M. Fuksas(Fig. 1).

Optimization of geometry or structure is not the only reasonfor the
search for a good segmentation of freeform surfaces(in CAD terms, this
means a good way of meshing). Equally important are multifunctional
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Fig. 3. A multi-la yer construction (righ t) based on o�set meshesm , m 0, m00
with planar quadrilateral faces(left).

requirements originating in building physics, and consequently the need
for a multi-la yeredcomposition of the buildings' skin. Important questions
hereregard aestheticsaswell aseconomicand structural viewpoints. Such
a questioncould be: Is the meshand the implied segmentation motivating
the form in architectural terms? Is the mesharbitrary , or supporting the
form's dynamics, or is it perhapsdoing the opposite?

A good example to mention here is the Kunsthaus Graz (2000-2003,
by P. Cook and C. Fournier) where the thicknessof the buildings' skin
rangesfrom 40cm up to 1m. Kunsthaus Graz explicitly shows the di�er-
ent methods of meshingthe `inner' and `outer' skin. While the `outer' skin
supports the 
uid acrylic glassbody with a rectangular mesh, the inner
skin is a triangle mesh(seeFig. 2, right). The reasonfor this are economic
considerations,which enforce
at surfacesfor the buildings' physical lay-
ers.

For a good overview on contemporary architecture, containing a large
number of geometrically remarkable designs,we refer to the book series
\Arc hitecture Now" [20].

x3. Discrete Surfaces for Arc hitectural Design

3.1. Basic concepts

Multi-la yeredmetal sheetsand glasspanel constructions usedfor covering
roo�ng structures are expensive, complicated, or even impossibleto bend.
Therefore it is desirable to cover free-form geometry by planar panel ele-
ments, and use polyhedral surfaces,i.e., mesheswith planar faces as our
basic surfacerepresentation. Unlessnoted otherwise, in the following we
always assumeplanarit y of faces.

Parallel meshes and o�sets. Many constructions in architecture are
layer composition constructions where each layer has to be covered by
planar panel elements (seee.g. Fig. 3, right). Geometry requirements are
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Fig. 4. In a pair of parallel meshesm ; m 0with planar faces,corresponding edges
and face planes are parallel. To construct a parallel mesh m 0of a quadrilateral
meshm with planar faces,one may prescribe the imagesP 0; Q0to two polygons
P; Q (bold); the remaining part of m 0follows by parallelit y.

present for all layers in the sameway, and so mesheswhich possessexact
o�set meshesis an important topic of research.

O�set meshesare special parallel meshes. This concept is illustrated
by Fig. 4: A mesh m 0 is parallel to the mesh m, if (i) both m, m 0 have
the samecombinatorics; (ii) corresponding edgesof m and m 0 are parallel;
and (iii) m, m 0 do not di�er simply by a translation. It is a consequence
of property (ii) that corresponding facesof m and m 0 are contained in
planeswhich are parallel to each other.

Supp orting beams. Planar panelshave to be held together by a support
structure, which is a composition of support beams arranged along the
edgesof the underlying mesh (see Fig. 5). A beam may be seenas a
prismatic body, generated by a linear extrusion of a planar symmetric
pro�le in a direction orthogonal to the pro�le plane(i.e., by extrusion along
the longitudinal axis of the beam). The symmetry axis of the generator
pro�le extrudes to a symmetry plane of the beam (the central plane, see
Fig. 5). For most of our considerations,we will neglect the width of the
beam, which is measuredorthogonal to its central plane. We are mainly
dealing with the slice of the beam lying in the central plane. This central
plane shall always passthrough an edgeof the basemeshm. We do not
consider the caseof torsion along the length of the beam, i.e., all our
beamsactually have a central plane.

Optimized nodes and geometric supp ort structure. The higher
the valence of a vertex, the more complicated it usually is to join the
supporting beamsthere. Already the very simple caseof a beamof width
zero shows these complications: An optimized node v is a mesh vertex
where the central planes of all emanating beams pass through a �xed
line, the axis of the node. The geometric support structure is formed by
quadrilaterals lying in the central planes. It is assumedhenceforth that
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Fig. 5. Left: A supporting beam is symmetric with respect to its central plane.
At an optimized node, the central planes of supporting beamspassthrough one
straight line, which is called the node axis. If the node is not optimized, we
speak of `geometric torsion in the node'. Right: A base mesh m and its o�set
mesh m0 are the basis for construction of a geometric support structure with
optimized nodes. The quadrilaterals shown here are trap ezoids and lie in the
central planes of the supporting beams. The o�set pair of meshesshown in this
�gure has the particular property that corresponding vertices lie at constant
distance. Further, corresponding faces are parallel at constant distance; see
Section 4.3.

all nodes are optimized and hence three sides of the quadrilaterals in a
geometric support structure are given by an edge e of m and the two
node axes at its ends. In most cases,the fourth edgee0 is parallel to e,
namely a corresponding edgeof an o�set meshm 0 of m. Then, each of the
quadrilaterals in the central planes is a trapezoid (seeFig. 5). Further,
all node axes may be seenas discrete surface normals. We will see in
the next subsectionthat especially for triangle meshes,optimization of all
nodesmay be impossible.

3.2. Triangle meshes

A substantial amount of research in geometry processingdeals with
triangle meshesand studies them from various perspectives. For instance,
re�nement is possiblewith subdivision algorithms, and smoothing is well
understood. Although there are examples of the actual use of triangle
meshesin architecture, they causeproblems exactly in connection with
the conceptsdiscussedabove, namely parallel meshes,o�sets, and support
structures. Let us discussthis in more detail.

Prop osition 1. A geometric support structure of a connected triangle
mesh with optimized nodes can only be trivial: Either all axes of the
nodesare parallel, or they passthrough a single point.

Pro of: Considera triangular faceF of the mesh. Through each edgeei of
F we have a central plane Ci of a supporting beam (i = 1; 2; 3). Because
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nodesare optimized, the intersection lines C1 \ C2; : : : of thesethree planes
are the node axes. It follows that the three node axesat the three vertices
of F passthrough the point O = C1 \ C2 \ C3, which possibly is at in�nit y.
Any neighbour triangle has two node axesin common with F , so also all
neighbour axespassthrough O . By connectednessit follows that either
all node axes of the mesh pass through a �nite point O, or through an
in�nite point O, i.e., are parallel.

For triangle meshes,alsothe conceptof parallel meshesbecomestrivial:
Two triangles with parallel edgesare connectedby a similarit y transfor-
mation. Hence,a parallel mesh m 0 of a triangle mesh m is just a scaled
versionof m. Further, it is easyto seethat any o�set meshm 0 of m arises
from m by uniform scaling from some center. It follows that only for
near-sphericaltriangle meshes,an o�set can be at approximately constant
distance, and node axes can be approximately orthogonal to the mesh.
For general freeform triangle meshes,there is no chance to construct a
practically useful support structure with optimized nodes.

3.3. Bey ond triangle meshes

The higher the number of edgesin a planar face, the more 
exibilit y we
have when constructing parallel meshes.This in turn implies more 
exi-
bilit y in the construction of support structures, as shown by the following
result, which relates support structures and parallel meshes(see[9]).

Prop osition 2. Any geometric support structure of a simply connected
meshm with planar facesand non-parallel node axescan be constructed
as follows: Consider a parallel mesh m 0 of m and a point O and let the
node axis N i at the vertex m i be parallel to the line N 0

i = Om 0
i .

Pro of: Given the axesN i , we consideraxesN 0
i parallel to N i , but passing

through a �xed point O. Generally, if N i ; N j lie in the samecentral plane
Cij , the corresponding lines N 0

i , N 0
j span a plane C0

ij parallel to Cij . We
may now construct a parallel mesh m 0 of m. On one of the new lines,
say N 0

k , we choose a vertex m 0
k . We take a face adjacent to m k and

construct the corresponding faceadjacent to m 0
k by the requirement that

face planesare parallel, and for any vertex m i , the corresponding vertex
m 0

i lies in N 0
i . Thus the new faceis constructed by intersecting lines with

a plane, and the edgesof the new face (lying in the planes C0
ij ), are, by

construction, parallel to the edgesof the original face. In this way step by
step, in rings around the vertex m 0

k , m 0 is produced.

3.4. Quadrilateral meshes with planar faces

Gehry Partners and Schlaich Bergermann and Partners [19, 35] give a
number of reasonswhy planar quadrilateral elements are preferable over
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Fig. 6. (a) PQ strip as a discrete model of a developable surface. (b) Discrete
developable surface tangent to PQ mesh along a row of faces.

triangular panels (cf. Fig. 1). The planarit y constraint on the faces of
a quad mesh however is not so easy to ful�ll, and in fact there is only
little computational work on this topic. So far, architecture has been
mainly concentrating on shapesof simple genesis,whereplanarit y of faces
is automatically achieved [19, 35]. For example, translational meshes,
generated by the translation of a polygon along another polygon, have
this property: In such a mesh, all facesare parallelograms and therefore
planar.

Prior work in discrete di�eren tial geometry . The geometry of
quadrilateral mesheswith planar faces (PQ meshes) has been studied
within the framework of di�er ence geometry, which is a precursor of dis-
crete di�eren tial geometry [7, 14]. It has beenobserved that such meshes
are a discretecounterpart of conjugatecurve networks on smooth surfaces.
Earlier contributions are found in the work of R. Sauerfrom 1930onwards,
culminating in his monograph[32]. Recent contributions, especially on the
higher dimensional case,include the work of Doliwa, Santini and Ma~nas
[16, 17, 23]. In the mathematical literature, PQ meshesare sometimes
simply called quadrilateral meshes.

PQ strips as discrete developable surfaces. The simplest PQ mesh
is a PQ strip, a single row of planar quadrilateral faces. The two rows of
verticesare denotedby a0; : : : ; an and b0; : : : ; bn (seeFig. 6). It is obvious
and well known that such a mesh is a discrete model of a developable
surface[27, 32]. This surfaceis cylindrical, if all lines ai b i are parallel. If
the lines ai b i passthrough a �xed point s, we obtain a model for a conical
surfacewith vertex s. Otherwise the PQ strip is a patch on the `tangent
surface' of a polyline r 1; : : : ; r n , as illustrated by Fig. 6.

This model is the direct discretization of the well known fact that in
general developable surfacesare patches in the tangent surfacesof space
curves. The lines r i r i +1 serveasthe rulings of the discretetangent surface,
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(a) (b) (c)

Fig. 7. Di�eren t networks of conjugate curves. From left: epipolar curves,
principal curvature lines, and generator curves of a translational surface.

which carries the given PQ strip. The planar facesof the strip represent
tangent planesof the developablesurface.

PQ meshes discretize conjugate curv e net works. We now con-
sider a PQ mesh which is a regular grid, with vertices v i;j , i = 0; : : : ; n,
j = 0; : : : ; m (In practice, mesheswill have vertices of valence6= 4, which
can be treated like singularities). The relation between such PQ meshes
and conjugate curve networks is established as follows: Recall that two
families of curves are conjugate, if and only if the tangents to family A
along each curve of family B constitute a developable surface [27]. Ob-
viously, a PQ mesh has the property that the edgestransverse to one
sub-strip constitute a discrete developable surface (see Fig. 6). Thus,
grid-lik e PQ meshesdiscretize conjugate curve networks, with the grid
polylines corresponding to the curvesof the network. This relation shows
both the degreesof freedom and the limiting factors in the construction
of PQ meshes(for more details see[22]). Therefore, conjugate networks
of curvesmay serve as a guide for the designof PQ meshes,provided the
curves involved intersect transversely. Examples are the principal curva-
ture lines (see Fig. 7b), the generating curves of a translational surface
(used in architectural design[19, 35], seeFig. 7c), epipolar curves(see[12]
and Fig. 7a), and the family of isophotesw.r.t. the z axis together with
the family of curvesof steepest descent [25].

An algorithm for planarization. Liu et al. [22] proposedan algorithm
which solvesthe following problem: Given a quad meshwith vertices v ij ,
minimally perturb the vertices into new positions such that the resulting
meshis a PQ mesh. They minimize a functional which expressesfairness
and closenessto the original mesh subject to the planarit y condition. In
order to expressplanarit y of a quad Qij , oneconsidersthe four angles� 1

ij ,
: : : ; � 4

ij enclosedby the edgesof the quad, measuredin the interval [0; � ].
It is known that Qij is planar and convex if and only if

� 1
ij + � � � + � 4

ij = 2� : (1)
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For input meshesnot too far away from conjugate curve networks this
algorithm works very well. However, there is no reason to expect good
results with arbitrary input meshes.Mesh directions closeto asymptotic
(self-conjugate) directions of an underlying smooth surface causeheavy
distortions and are usually uselessfor applications.

Com bining sub division and planarization. A practically useful and
stable method for generating PQ meshesfrom coarsecontrol meshesis
achieved by a combination of the planarization algorithm with a quad-
based subdivision algorithm like Doo-Sabin or Catmull-Clark [22]: One
subdivides a given mesh. Sincethis operation intro ducesnon-planar faces,
one then appliesplanarization. Thesetwo stepsare iterated to generatea
hierarchical sequenceof PQ meshes(seeFig. 10). Applying this method
just to a PQ strip yields a powerful method for modeling with developable
surfaces[22], which is also interesting for architecture.

In Section 4 we turn to two remarkable classesof PQ meshes. Both
of them discretize the network of principal curvature lines. They possess
o�sets and support structures. Their computation can also be basedon
constrained optimization and subdivision, but one needsa stronger con-
straint than just planarit y of faces.

3.5. Hexagonal meshes and other patterns

The lessedgesper vertex, the more 
exibilit y we have in the construction
of parallel meshesand support structures. Furthermore, lower valence
makes fabrication of nodes easier. This topic is not yet well explored,
even if there is some initial work by B. Cutler [13]. We would also like
to mention that subdivision, for hexagonal meshesand other patterns,
without planarit y constraints, and focusing on applications in the arts,
has beenusedby E. Akleman [1, 2, 3].

x4. Principal Meshes in their Circular and Conical Incarnations

This section deals with circular and conical PQ meshes,which have par-
ticularly interesting properties for applications in architectural design. In
a circular mesh,all quadrilaterals have a circumcircle, whereasin a conical
mesh, the facesadjacent to a vertex are tangent to a right circular cone.
Both circular and conical meshesdiscretize the network of principal cur-
vature lines, thus representing fundamental shape characteristics. Both
possessexact o�sets: circular mesheshave vertex o�sets, whereasconical
meshespossessface o�sets. We will approach these two types of meshes
via the theory of parallel meshes[28]. This allows easyaccessto discrete
surfacenormals, o�sets, and support structures.

Let us �rst think about discretizations of the network of principal cur-
vature lines. Sincethis is a conjugatecurve network, we usea PQ meshto
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discretizeit. It is interesting that there is a rather generalcharacterization
of principal PQ meshes:

Meta-Theorem. A quad mesh m with planar faces may be seen as a
principal mesh, i.e., a discrete analogue of the network of principal cur-
vature lines on a smooth surface, if it possessesa parallel meshm 0 which
approximatesa sphere. In this casethe discrete normals de�ned by means
of the auxiliary meshm 0 according to Proposition 2 havethe property that
normals at neighbour vertices are co-planar.

Pro of: Recall that a curve c in a surface is a principal curvature line
if and only if the surface normals along that curve form a developable
surface [27]. Now we say that grid polylines of a regular PQ mesh are
principal curvature lines in a discretesense,if the normals associated with
neighbouring vertices are co-planar (cf. Fig. 6). In the terminology of the
general discussionabove, this means that the normals are suitable axes
of a geometricsupport structure with optimized nodes,and Proposition 2
implies the existenceof a parallel meshm 0, whosevertices (interpreted as
vectors) indicate the normals of the mesh m. As m and m 0 are parallel
meshes,the lines connecting the origin of the coordinate system with the
verticesof m 0 are discretenormals of the meshm 0, too. Therefore, m 0 is
a meshwhich is approximately orthogonal to a bundle of lines, i.e., which
is approximately spherical.

Both the statement and the proof of this result are vague because
there is no exact de�nition of `discrete normal'. A more restrictiv e def-
inition of `discrete normal' simultaneously restricts the classof principal
meshes.The meta-theoremmay be extendedto relative di�eren tial geom-
etry, where a generalconvex surfacetakesthe role of a sphere[29].

4.1. Circular meshes

Circular mesheshave been intro duced by Martin et al. [24]. They are
known to be a discreteanalogueof the network of principal curvature lines
(not only in the senseof the meta-theorem) and have been the topic of
various contributions from the perspectiveof discretedi�eren tial geometry
and integrable systems[6, 7, 5, 11, 21]. The following result, which shows
that circular meshesare indeed related to mesheswhich approximate a
sphere,is shown in [21] and [28]:

Theorem 1. A PQ meshm which possessesan o�set meshm 0 such that
corresponding vertices of m and m 0 lie at constant distance, is a circular
mesh. Any circular mesh is parallel to a meshm 0 whosevertices lie in a
sphere.

In view of the meta-theorem, a circular meshesm is a principal mesh.
It has an o�set mesh m 0 and therefore also a support structure. In case
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Fig. 8. The circular mesh at right has been constructed from the base mesh
(left) by a combination of Doo-Sabin subdivision and circular optimization.

m 0 is at constant vertex distance, the support structure de�ned by joining
m with m 0 has the property that the segments on the node axes are of
constant length.

The computation of circular meshesmay be basedon a combination
of planarization and subdivision (seeFig. 8), but one has to replace the
planarit y constraint (1) by two constraints per face, which expressthe
existenceof a circumcircle:

� 1
ij + � 3

ij � � = � 2
ij + � 4

ij � � = 0: (2)

Finally, let us mention that circular meshes,consideredas a collection
of vertices, are a concept of M•obius geometry. A M•obius transformation
maps a circular meshto another circular mesh.

4.2. Conical meshes

Whereas circular mesheshave been known for some time, their conical
counterparts have been intro duced only recently [22], motivated by geo-
metric problems in architecture: We demandprincipal mesheswhich have
o�sets at constant face/face distance. Also the conical meshesare an in-
stanceof the meta-theorem.

Theorem 2. A PQ meshm which possessesan o�set meshm 0 such that
corresponding oriented face planes of m and m 0 lie at constant signed
distance, is a conical mesh. Any conical mesh is parallel to a mesh m 0

whosefaceplanesare tangent to a sphere.

Pro of (Sketch): This is shown in [28], but we repeat the main argument
concerning the construction of m 0 from m, becauseit is easy: We take
all faceplanesof a conical meshm and translate them such that they are
tangent to the unit sphere. Facesadjacent to a vertex are tangent to a
circular cone(seeFig. 9), and obviously do not losethis property with the
translation { the coneaxis after translation passesthrough the origin. It
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Fig. 9. In a conical meshm , the four faceplanesincident to a vertex are tangent
to a right circular cone. The cone axes are discrete surface normals. An edge
e of m , the cone axes at the two end points of e, and the corresponding edge
of an o�set mesh form a trap ezoid, which lies in the bisector plane of the two
face planes meeting at e. A collection of such trap ezoidsconstitute a geometric
support structure for m , as shown by Fig. 5.

follows that the translated planes carry the facesof a mesh m 0 which is
circumscribed to the unit sphere. The discrete normals of m are the cone
axes.

The computation of conical meshesand applications in architecture
has beendiscussedby Liu et al. [22]. This is basedon a simple criterion,
shown in [37], which ensuresthat a vertex in a PQ mesh is conical, i.e.,
the adjacent facesare tangent to a right circular cone.

Prop osition 3. A quad mesh (grid case)is conical if and only if for all
vertices, the four interior angles ! 1; : : : ; ! 4 successively enclosedby the
edgesemanating from that vertex obey ! 1 + ! 3 = ! 2 + ! 4.

Conical meshes,viewed assetsof oriented faceplanes,are an object of
Laguerre geometry. A Laguerre transformation maps a conical meshonto
a conical mesh. However, onehasto admit degeneratecasesof the tangent
conesat the vertices. For a more thorough discussionof this subject, see
[28].

4.3. The relation between circular and conical meshes

Both circular and conicalmeshesare discretizations of the network of prin-
cipal curvature lines; the former is a M•obius geometricconcept, the latter
is basedon Laguerre geometry. Lie sphere geometry [10] is a geometry
which subsumesboth of thesegeometries. As Lie spheretransformations
preserve principal curvature lines (viewed as sets of contact elements), it
is natural to treat circular and conical meshestogether. This unifying
viewpoint of Lie spheregeometry is assumedby Bobenko and Suris in the
recent paper [8].
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Fig. 10. A sequenceof conical meshes(at left) produced by subdivision and
mesh optimization according to [22], which is the basis of the (incomplete, es-
pecially roo
ess) architectural design at right. Images: B. Schneider.

Even if we do not use these concepts of `higher geometry', we can
still �nd close relations between circular and conical meshes,which are
expressedin terms of Euclidean geometry. One of the results in this di-
rection contained in [28] is the following:

Theorem 3. For each conical mesh l with face planes F ij (regular grid
case)there is a two-parameter family of circular meshesm whosevertices
lie in the face planesof l and are symmetric with respect to the edgesof
l . Cone axesof the meshl coincide with circle axesof the meshm.

Pro of (Sketch): We choose a face F00 and place a seedvertex m 00 in
it. More vertices of m are constructed by re
ecting already existing ver-
tices in the symmetry planes which are attached to the edgesof l (see
Fig. 9). Thesesymmetry planescontain the coneaxesat the vertices. If
we consideronly the intrinsic geometry of the mesh,this is something like
re
ection in the edgeitself.

It is not di�cult to see,e.g., from Fig. 11, that successive re
ection of
a point in the four edgeswhich emanatefrom a vertex l ij yields the point
we started with, so this construction unambiguously placesa new vertex
m ij into every faceFij . For details, see[28].

There are mesheswhich are both circular and conical, i.e., possess
vertex o�sets and face o�sets. Particularly interesting is the question of
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Fig. 11. Left: Construction of a circular mesh (thin lines) from a conical mesh
(bold lines) by successive re
ection of a vertex m 00 in the edgesof the conical
mesh. Right: Top view in the direction of the cone axis at l ij .

�nding a meshm having an o�set m 0 which is both a vertex o�set and face
o�set. Such a mesh can be constructed in an elegant way via a parallel
mesh m 0 whosevertices lie on a sphereand whoseface planes touch an-
other, concentric, sphere. This implies that the circumcircles of m 0 have
a constant radius and thus they are diagonal meshesof rhombic meshesr
with verticeson a sphere;the meshesr are formed by skewquadswith con-
stant edgelength. An exampleof such a meshm is given in Fig. 5. These
meshesare also closely related to the discrete representations of surfaces
with constant negative Gaussiancurvature studied by W. Wunderlich and
R. Sauer [31, 38].

We would like to point out that the conceptsof circular and conical
meshesbecometrivial or too restrictiv e if we try to apply them to other
meshes,e.g., to triangle meshesor hexagonal meshes. For a hexagonal
mesh, the generic valenceof a vertex is 3 and henceit is always conical.
In contrast, a hexagonalmeshall of whosefaceshave a circumcircle must
have all of its vertices on a sphere. Likewise, a triangle mesh is always
circular, but it is only conical if all its faceplanesare tangent to a sphere.

x5. Asp ects of Statics and Functionalit y

This section brie
y reports on properties of meshesconnected to equi-
librium forces, and on discrete minimal surfaces. These two topics are
connected,as discussedmore thoroughly in [36].

5.1. PQ meshes in static equilibrium

Consider a framework of rods connected together with spherical joints.
Mathematically speaking, such a framework consistsof collections of ver-
tices and edges. We assumethat in some vertices external forces are
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Fig. 12. Left: A mesh which has equilibrium forces. Only the external forces
are shown. These forces are the edgesof a mesh which is reciprocal-parallel to
the �rst one (at right, not to scale). The edgesshown in bold correspond to
each other and thus illustrate the fact that a mesh and its reciprocal-dual mesh
are combinatorial duals. Both meshesare discrete minimal surfaces,and the left
hand mesh is conical.

applied. A systemof internal forcesis an assignment of a pair of opposite
forcesto each edge,one for either end. Such a systemof forcesis in equi-
librium if for each vertex the sum of forcesequalszero. Fig. 12 illustrates
this for a rectangular pieceof quadrilateral mesh. Obviously the zerosum
condition meansthat the forcesacting upon a vertex can be taken as the
boundary edgesof a face in a new quad mesh,which is then called recip-
rocal-parallel to the original one [32]. The �rst onesin the following list
of properties of forcesand reciprocal-parallel meshesare obvious, for the
rest we refer to [32] and [36]. The property of having equilibrium forcesis
denoted for short by `EF'.

{ The reciprocal-parallel relation is symmetric (disregarding boundaries).
{ A PQ meshis EF ( ) it has a reciprocal-parallel mesh

{ If a meshhas property E, then so do all parallel meshes.

{ A meshreciprocal-parallel to a PQ meshhas planar vertex stars.

{ A PQ meshis EF ( ) it is in�nitesimal ly 
exible [32, 36]

{ A PQ meshis EF ( ) it has the property of Fig. 13 [32, 36].

{ A conical meshis EF ( ) its spherical image is isothermic [36].

The last property mentioned leads into the next subsection, which
discussesdiscrete minimal surfaces. The reader interested in de�nition,
properties, and previous work on isothermic meshesis referred to [36].
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Ful \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ FFul \ F

Fdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ FFdl \ F

Fur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ FFur \ F

Fdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ FFdr \ F

Fd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ FFd \ F

Fu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ FFu \ F

Fig. 13. For a PQ mesh, the existenceof a reciprocal-parallel mesh (or of equi-
librium forces) is characterized by an incidence property of the lines of intersec-
tion of every face F with its neighbours. The notation in the �gure indicates
relativ e position with lower indices: l ; r ; u; d mean left, right, up, and down,
respectively. This is the Desarguescon�guration of projectiv e geometry.

5.2. Discrete minimal surfaces

In the smooth category, minimal surfacesare curvature-continuous sur-
faceswith vanishing meancurvature [15]. For various reasons,their math-
ematical theory is very rich. One is that they occur as solutions of a
prominent nonlinear optimization problem (minimizing surface area un-
der given boundary conditions), another one is that there is an almost
1-1 correspondencebetweenminimal surfacesand holomorphic functions.
We note only one further property: Minimal surfacesare isothermic, i.e.,
they possessa curvature line parametrization g(u; v), such that not only
@g
@u � @g

@v = 0, but also k @g
@u k = k @g

@v k.

In the discrete category, this picture changesa bit. `The' de�nition
of a discrete minimal surfacedoes not exist, becauseeach of the various
properties of smooth minimal surfacescan be discretized,and the discrete
representation of data plays an important role. A particular discretization
is worth studying if it transfers more than just onecontinuousproperty to
the discrete setting. Another reasonof interest for a particular construc-
tion is that the resulting discrete theory is very rich.

One possible choice of property and data representation is triangle
mesheswhich minimize surface area under given boundary conditions.
They have beenstudied by K. Polthier [26]. Another fruitful combination
is PQ mesheswhich are discrete-isothermic, investigated by A. Bobenko
and coworkers [6]. They called a meshisothermic, if it is circular, and for
each face, the cross ratio of the four vertices, computed with respect to
their circumcircle, equals� 1. As it turns out, this is a discrete version of
the de�ning property of isothermic surfacesmentioned above.
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The work on isothermic meshesand related conceptsrecently culmi-
nated in the construction of discrete so-calleds-isothermic minimal sur-
faceswith prescribed combinatorics [5]. Our own work in that direction
[36] includes conical meshesin the shape of minimal surfaces,which are
intimately connectedwith the isothermic meshesof [6], and their recipro-
cal-parallel meshes,which are discreteminimal surfacesin their own right.
Examples of such constructions are shown by Fig. 12.

x6. Op en Problems and Future W ork

In this paper we have addresseda few problems which are motivated by
practical requirements in architectural design. Their solution leads to
remarkable discrete surfacerepresentations, someof which have beenun-
known so far in discrete di�eren tial geometry. We believe that there is a
signi�cant potential for further research in this area, which encompasses
problemsoriginating in architectural design,geometryprocessing,and dis-
crete di�eren tial geometry. Topicsof future research include the following:

� Weneednewand intuitiv e tools for the designof PQ meshes.SincePQ
meshesdiscretizeconjugate curve networks, a possibleapproach would be
an interactive method for the design of conjugate curve networks, where
the network curves `automatically' avoid asymptotic directions, and con-
sequently intersect transversely. These curve networks can then be used
to construct quad meshescapableof PQ optimization.

� It is necessaryto continue to study parallel meshesin general, espe-
cially with regard to computation, design,and mesheswith special prop-
erties parallel to a given mesh.

� Hexagonalmeshesand other patterns should be investigated.

� We have seenthat conical and circular mesheshave face o�sets and
vertex o�sets, respectively. We are currently investigating the beautiful
geometry of those meshes(not only quad meshes)which possessedge
o�sets. For architecture, these mesheshave the attractiv e property that
their support structure may bebuilt from beamsof constant height. Initial
results on quad mesheswith edgeo�sets may be found in [29].

� In architectural design, the aesthetic value of meshesis of great im-
portance. It is natural to employ geometric functionals and considertheir
minimizers. Minimal surfacesare an example,but more work is neededin
this area. Obvious candidatesto investigateare discreteWillmore surfaces
represented as circular meshes(this is a question of M•obius geometry).
Likewise,we could search for conical meshesrepresenting Laguerre-min-
imal surfaces. The reader interested in these topics is referred to the
monograph by W. Blaschke [4] for the continuous case.
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From the architectural viewpoint, there are the following issuesin con-
nection with freeform surfaces:

� Optimization should not neglect statics and structural considerations.

� The climate inside glassstructures demandsseparateattention. Ge-
ometric questionswhich occur here have to do with light and shade,the
possibility of shadingsystemstied to support structures, and evena layout
of supporting beamswith regard to shading. Also the aestheticcomponent
is present here at all times.

� The di�cult geometric optimization of freeform surfaceswhich sup-
ports the architectural designprocess;

� The demand for planar segments without the appearanceof an overall
polygonalisation;

� Generally speaking, the `right' choice of an overall segmentation of a
multi-la yered building skin with a good planar mesh;

� The complexity of joints, especially the absenceof so-calledgeometric
torsion in the nodes(cf. Fig. 5, left).

In conclusion, we believe that architecture may be viewed as a rich
sourcefor interesting and rewarding research problems in applied geome-
try .
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