
Computing quadrilateral and conical meshes
Johannes Wallner

(joint work with Helmut Pottmann and Wenping Wang)

It is well known that the network of principal curvature lines can be discretized
by circular meshes, i.e., quadrilateral meshes with planar faces, where the vertices
of each face are co-circular [1]. A new discretization is conical meshes, where we
require faces adjacent to a vertex to be co-conical; to be precise: the oriented
planes which carry those faces are tangent to an oriented cone of revolution [2].
In the smooth case, infinitesimally neighbouring surface normals along a principal
curvature line are co-planar (this is a characterization) – in the discrete case,
neighbouring axes of circles/cones of a circular/conical mesh are co-planar.

In the S3 model of Möbius geometry, co-circular vertices lie in S3 ∩ U , with
dim U = 2. Analogously, in the Blaschke cylinder model S2 × R of Laguerre
geometry, co-conical faces appear as points which lie in (S3×R)∩U , with dim U =
2. In this way, both the circular and conical meshes appear as quadrilateral meshes
in the appropriate geometric model. Möbius/Laguerre transformations transform
circular/conical meshes into meshes of the same property, an important example
of a Laguerre transformation being the offsetting operation. The latter leads to
applications of conical meshes in architectural design.

For a conical mesh, the unit normal vectors of the faces constitute a circular
mesh in S2, which implies that 3D consistency of the conical condition follows
directly from Miquel’s theorem. It is interesting to note that the rhombic networks
of [3] which are models of surfaces of constant curvature have diagonals which
constitute a mesh which is both circular and conical.

We express planarity/circularity/conicality of a mesh in terms of the angles φe,f

enclosed by edges e, f of the mesh (0 ≤ φe,f ≤ π): A face with boundary edges
e1, . . . , en is planar and convex ⇐⇒

∑
φei,ei+1 = (n − 2)π (Fenchel’s theorem).

In the case n = 4, it is in addition circular ⇐⇒ the sums of opposite angles
equal π. If e1, . . . , e4 are the edges emanating successively from a vertex, then this
vertex is conical ⇐⇒ φe1,e2 + φe3,e4 = φe2,e3 + φe4,e1 (Lexell’s theorem).

By summing up the squares of these conditions we arrive at a nonnegative ge-
ometry functional FG(v1, . . . ) on the vertices where FG = 0 characterizes meshes
of the required properties. In order to perturb a given mesh such that it becomes
planar/circular/conical, we numerically optimize in the space of vertices such that
FG → 0 and in addition FP , FF → min, where FP and FF are nonnegative func-
tionals expressing distance from a target surface and mesh fairness, resp.
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