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Fig. 1. We design and edit C-meshes which guide structures that can be deployed from a flat collapsed state. Geometrically, they are quad meshes or hex

meshes with constant edge length and the additional property of spherical vertex stars.

We introduce the new concept of C-mesh to capture kinetic structures that

can be deployed from a collapsed state. Quadrilateral C-meshes enjoy rich

geometry and surprising relations with di�erential geometry: A structure

that collapses onto a �at and straight strip corresponds to a Chebyshev net of

curves on a surface of constant Gaussian curvature, while structures collaps-

ing onto a circular strip follow surfaces which enjoy the linear-Weingarten

property. Interestingly, allowing more general collapses actually leads to

a smaller class of shapes. Hexagonal C-meshes have more degrees of free-

dom, but a local analysis suggests that there is no such direct relation to

smooth surfaces. Besides theory, this paper provides tools for exploring the

shape space of C-meshes and for their design. We also present an application

∗equally contributing authors

Authors’ addresses: Daoming Liu, KAUST, Saudi Arabia, liudaoming3@gmail.com;
Davide Pellis, ISTI-CNR, Pisa, Italy, davidepellis@gmail.com; Yu-Chou Chiang, National
Chung Hsing University, Taichung, Taiwan, chiang.yuchou@gmail.com; Florian Rist,
KAUST, Saudi Arabia, �orian.rist@kaust.edu.sa; Johannes Wallner, TU Graz, Austria,
j.wallner@tugraz.at; Helmut Pottmann, KAUST, Saudi Arabia, helmut.pottmann@
gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART $15.00
https://doi.org/10.1145/3592393

for freeform architectural skins, namely paneling with spherical panels of

constant radius, which is an important fabrication-related constraint.
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1 INTRODUCTION

Deployable structures arise in a variety of applications based on
the fundamental property that such a structure is deployed from a
small and compact rest state. Even if deployment is performed only
once at the moment of installation, we already have the bene�t of
easy storage and transport. The potential range of applications is
large, from small devices to �exible architectural designs, see Fig. 2.
It is not surprising that deployable structures have been the focus of
computational design already, see e.g. [Ren et al. 2022]. However, the
design of complex double-curved shapes which are able to collapse
onto a simple �at initial rest state is a challenging computational
problem. Its solution in general heavily depends on the material
behavior of the individual components and the way in which they
are tied together to form a �exible and deployable structure. There
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Fig. 2. The 2021 “kinetic umbrella” by Jonas Schikore and Eike Schling is

an elastically transformable la�ice structure manufactured from straight

lamellas. (© J. Schikore).

is no general theory which would solve these computational design
problems, but almost all solutions are formed by an interesting
blend of tools from geometry, geometry processing, optimization
and simulation. Our contribution to this area identi�es a class of
deployable structures which minimizes the in�uence of materials
and imperfections and allows us to bypass simulation, making the
problem a geometric one.

Inspiration for our research comes from deployable systems that
are formed by elastic rods [Baek et al. 2018; D’Amico et al. 2015;
Panetta et al. 2019; Pillwein et al. 2020; Pillwein and Musialski 2021;
Tellier 2022], and in particular from the kinetic elastic gridshells
of Schikore and Schling [2021; 2022]. They consist of straight �at
lamellas that are bent into shape and arranged in a quadrilateral
grid. After deployment, lamellas are in a position orthogonal to a
smooth design surface (see Fig. 2).
The structures treated by this paper enjoy a full collapse onto a

rest state formed by a stack of �at straight or �at circular strips that
lie on top of each other. They open up to form either a quadrilateral
or a hexagonal strip structure, see Figures 1 and 3. Deployment
usually involves twisting individual strips, but does not have to: In
case of a straight collapsed state, we can always deploy through an
intermediate state which is still �at and simply a regular grid lying
on the ground (Fig. 4, left).

We propose the novel concept of C-meshes as a discrete approxi-
mation to structures that deploy in the way described in the previous
paragraph. In order to validate this simpli�cation we also perform
simulation based on discrete elastic rods [Bergou et al. 2008]. Our
simulation model can handle all types of �at initial states, even if
they do not collapse to a straight stack. Such �at initial states arise
e.g. in the asymptotic gridshells of [Schling 2018]. On a smaller
scale, �at initial states may also be considered as a type of geometric
material, fabricated while �at and subsequently deformed into the
target shape. Such geometric materials received a lot of attention in
recent years, see e.g. [Chen et al. 2021; Duncan et al. 2018; Malomo
et al. 2018; Özdemir et al. 2022]. Our deployable structures constitute
a further contribution to this area.

1.1 Overview and contributions

We organize our paper as follows. § 2 de�nes C-meshes which serve
as a discrete approximation for the central mesh that guides a de-
ployable strip structure. We discuss how to compute C-meshes and
deployable strip structures via optimization. The section concludes

Fig. 3. A simple deployable structure

based on a quad mesh. We show the

ideal collapsed state, a more realistic

rendering of an actual physical col-

lapsed state, and the deployed state.

The central mesh is highlighted in red.

with a brief description of physical simulation of deployable strip
structures, based on a fast implementation of discrete elastic rods.
The geometry of quad C-meshes is investigated in detail in § 3.

They enjoy either a straight or a circular collapsed state, and are
related to K-surfaces (straight case) and to linear-Weingarten sur-
faces (circular case). We also deduce the surprising fact that it does
not make sense to allow more general collapsed states, as this dra-
matically reduces the degrees of freedom available for design. This
phenomenon is related to a property of mechanisms that is actually
well known in kinematic geometry: The ability of a mechanism to
�ex sometimes does not only depend on the combinatorics of its
setup, but on very special geometric properties. We also discuss how
to explore the design space of linear-Weingarten surfaces from its
boundary, which is the pipe surfaces and is thus easily accessible.
§ 4 treats C-meshes with hexagonal combinatorics. While they

enjoy more degrees of freedom in their design, a local analysis
reveals that hex meshes can approximate smooth surfaces only in a
slightly zigzagging way. We propose several methods to generate
hex C-meshes, one of them being an initialization from a brick wall
pattern.
In § 5 we provide a computational solution for the inverse de-

sign problem. For quad meshes, this works by optimizing surfaces
to become hyperbolic linear Weingarten, using previous work on
optimizing for the (simple) Weingarten property. Design methods
for hex meshes are based on the quad case – here we do not fully
explore the design space.
§ 6 contains results and discussion, in particular the paneling

with spheres of constant radius associated with each quadrilateral
C-mesh. We also provide statistics on our computations, and we
present a validation of the theory by means of experiments with
physical models. The paper concludes with a discussion of limita-
tions, and proposals for future work.

1.2 Related Work

We start with an overview of related work in Geometry and Geo-
metric Computing. Our deployable quad structures are related to
K-surfaceswhich possess constant negative Gaussian curvature, and
also to linear Weingarten surfaces of hyperbolic type. These are de-
�ned by the property that their Gaussian curvature ć and mean
curvatureĄ obey a linear relation ėć +ĘĄ +ę = 0 with Ę2−4ėę < 0;
they are equivalently characterized as o�sets of K-surfaces. In partic-
ular, we show that deployable structures are naturally approximated
by discrete surfaces studied �rst by [Wunderlich 1951]; see also the

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



Deployable strip structures • 3

0 8·10−5

�ℓ/ℓ

0 3·10−3

�Ą

0 1.6·10−2

�ℓ/ℓ

0 6·10−3

�Ą

0 1.6·10−2

�ℓ/ℓ

0 6·10−3

�Ą

Fig. 4. Physical simulation of deployable structures. Here the deployment from the collapsed state has been computed by a generalized discrete elastic rod

simulation according to [Jawed et al. 2018]. To verify that our simplified approach via C-meshes is valid, we extract the central mesh and verify that it is

almost a C-mesh. According to Lemma 2.4 being a C-mesh means edge lenghts are constant, and so are the angles between edges and normals in the vertices .

We therefore display the relative deviation of edge length “ �ℓℓ ” as well as the deviation “�Ą” of the angle from its average (except for angles at the boundary).

The statistics confirm the C-mesh property to a satisfactory extent.

modern treatment by [Bobenko and Suris 2008]. Our discrete mod-
els constitute a subset of principal symmetric meshes in the sense
of [Pellis et al. 2020]. Pellis et al. [2021] have shown how to ap-
proximate a given shape by a Weingarten surface (where Ą,ć are
related), and their procedures can be adapted to the special case of
linear Weingarten surfaces of hyperbolic type. We use their work
for inverse design.
The quadrilateral C-meshes occurring in our work are special

discrete Chebyshev nets, meaning they have constant edge length.
Patchworks of general Chebyshev nets can approximate arbitrary
shapes [Garg et al. 2014; Sageman-Furnas et al. 2019]. There is much
less related work on hexagonal meshes. Wunderlich [1973] studied
rotationally symmetric hex meshes with constant edge length in
static equilibrium and derived them from the quadrilateral counter-
parts by edge insertion. Such a strategy will turn out to be useful
also in our case. Wunderlich’s meshes belong to a special class of
hex C-meshes which can be reconnected into hexagonal meshes
with planar faces. The latter have turned out to be interesting for
applications in architecture; we only mention the most recent con-
tribution by Pluta et al. [2021] and point to the references given
there. The Caravel meshes of [Tellier et al. 2020] include certain hex
meshes with constraints on nodes to achieve repetitive elements for
architectural applications.

A further topic related to ours concerns the computational design
of various types of structures from developable or nearly devel-
opable strips, such as arrangements of strips following plane elastic
curves [Hafner and Bickel 2021], rotational symmetric arrangements
of strips arising from a �at initial state [Mhatre et al. 2021] or strips
that form weaving patterns [Ren et al. 2021; Vekhter et al. 2019]. As-
ymptotic gridshells [Schling 2018] and asymptotic geodesic hybrid
gridshells [Schling et al. 2022] also belong to this type of struc-
tures. [Hong et al. 2022] take a geometric approach to turn 2D strip
patterns into 3D shapes through appropriate boundary actuation.

Architecture and Engineering. We already pointed to research on
deployable grid shells from elastic rods [Baek et al. 2018; Panetta
et al. 2019; Pillwein et al. 2020; Pillwein and Musialski 2021; Tellier

2022]. The shapes of most of these types are strongly dominated by
geometry, which is a property supporting inverse design. Geometry
does not play such a major role for the X-shells proposed by [Panetta
et al. 2019], which may be a reason for missing inverse design results.
A prominent early example in architecture is provided by the 1975
Mannheim Multihalle designed by Frei Otto. [D’Amico et al. 2015]
used the same construction method but aided by modern numerical
simulation.

Even if they are not strictly relevant for our paper, we also brie�y
address deployable structures with rigid elements. The �exible
“spheres” of Hoberman [1990] are a contribution to this area of
transformable design. A combination of rigid and elastic elements is
used by the umbrella meshes recently proposed by Ren et al. [2022].
Another kind of mechanism are programmable auxetic metamateri-
als [Konaković-Luković et al. 2018] which are actuated by in�ating
a balloon. In�atables in general are deployable in the wider sense;
they have a long history in Architecture. For a recent approach to
inverse design we refer to [Panetta et al. 2021].

Physical Simulation. There is, of course, a huge body of literature
on the elastic deformation of shapes. Relevant to this paper, early
contributions to thin elastic strips are due to Sadowsky and Wun-
derlich, cf. translation by [Fosdick and Fried 2016], which are still
relevant in recent contributions to ribbon simulation [Charrondière
et al. 2020]. That part of physical simulation which is closest to
our work is the simulation of elastic rods. Here popular reduced
models are based on Kirchho�-Love rod theory or Cosserat rod
theory [Jawed et al. 2018]. An early contribution from the graphics
community is [Pai 2002] where the Cosserat rod model was used for
interactive thin solid simulation. More recently, [Deul et al. 2018;
Umetani et al. 2015] implemented the Cosserat rod model within
the position based dynamics framework and [Soler et al. 2018] im-
plemented it within the projective dynamics framework. In this
paper, we adopt the discrete elastic rod model proposed by Bergou
et al. [2010; 2008]. The method has been extended by a variety of
contributions, e.g., [Pérez et al. 2015] adopted rigid transformation
for the rod joints. [Panetta et al. 2019] proposed a nine-variables
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rod joint model especially for connections of rod ends at the joints.
More relevant to this paper, [Ren et al. 2021; Vekhter et al. 2019]
adapted this approach to strip-like elements and weaving. Recently,
[Pillwein et al. 2020] used it to model geodesic grids with rotational
and slightly-sliding strip joints.

2 A SIMPLIFIED GEOMETRIC MODEL

We are going to present a simpli�ed geometric model for deployable
structures composed of individual strips joined together with hinges.
The simpli�ed model, which is the topic of § 2.1, is used for design
and interactive modelling. For veri�cation of the results we perform
a more realistic physical simulation, see § 2.2.
We are modelling �exible arrangements of elastic strips which

are connected at nodes in the manner of a regular quad mesh or
alternatively as a regular hex mesh. The edges of the mesh represent
the central lines of strips which extend in a direction orthogonal
to the mesh surface. The strips are connected along hinges which
pass through the vertices of the central mesh, and which are approx-
imately orthogonal to the mesh (see Fig. 3). The strips deform in an
elastic manner, in particular they experience twisting.

We wish to model structures exhibiting a collapsed state where all
involved strips are arranged along a curve. Fig. 3 shows an example
where the collapsed state is described by a straight line. The hinges
are orthogonal to this central line. For simplicity we assume that
all edge lengths are equal. We also consider the case where the
collapsed structure is aligned with a circle, with the hinges lying
orthogonal to this central circle.
This restriction to lines and circles may seem arbitrary, but this

is not actually the case. Firstly, the geometry of central meshes
corresponding to these cases is very interesting, and their geometric
properties allow us to derive information on degrees of freedom for
deployment. Secondly, and more importantly, one can show that a
collapsed state which is neither straight nor circular considerably
restricts the shapes that can be achieved. The structure then is
automatically generated by rotation or by translation (see Th. 3.8).

2.1 C-meshes

Definition 2.1 (Strip arrangement). Assume the vertices of a
meshĉ = (Ē , ā, Ă ) are equipped with unit “normal” vectors Ĥ(Ĭ). The
strip arrangement de�ned by these data consists of one quadrilateral
strip per edge ě = (Ĭ,ĭ), which has vertices Ĭ ±ąĤ(Ĭ) andĭ ±ąĤ(ĭ).

We imagine the strips to be twisted versions of �at quadrilaterals,
and we consider only the case where the vectors Ĥ(Ĭ) are not far
from consistently oriented normal vectors of a smooth surface.

Fig. 5. A C-mesh from the combinatorial viewpoint is part of a regular

2D la�ice. In this sequence of images showing a collapse we see how this

regularity in the collapsed state is also expressed geometrically.

Ĭ

Ĭ0

Ĭ1 Ĭ2

Ĭ3

Ĥ(Ĭ)

collapse
−−−−−−−−−−→

Ĭ ′
Ĭ ′0

Ĭ ′1

Ĭ ′2

Ĭ ′3

Ĥ′(Ĭ ′)

ℓ

Ď
Ď

Ą

Fig. 6. Le�: A vertex Ĭ with neighbours Ĭ0, Ĭ1, Ĭ2, Ĭ3 in a C-mesh. The

constant edge length ℓ of the mesh and the sphere radius Ď determine the

angle Ą between the normal vector Ĥ (Ĭ) and the edges incident with Ĭ: An

isosceles triangle with edge lengths ℓ, Ď, Ď yields cosĄ =
1
2 ℓ/Ď. Right: This

vertex star collapses onto a circle.

Definition 2.2 (deployment, collapsed state). A deployment
of a meshĉ according to Def. 2.1 is a combinatorially equivalent mesh
ĉ ′ where corresponding edges have the same length, and correspond-
ing angles between normal vectors and edges are equal. If in addition
ĉ ′ is contained in a plane, with normal vectors being parallel to this
plane, we sayĉ ′ is a collapsed state ofĉ .

We think of this deployment as imitating an elastic deformation
of the strip arrangement. If a mesh is in a collapsed state, the strips
associated with it do not experience any twisting, and they lie on
top of each other. We are interested in meshes which collapse onto
a curve:

Definition 2.3 (C-mesh). A C-meshĉ is either a quad mesh or a
hex mesh of regular combinatorics, with all edge lengths being equal,
which can be deployed onto a collapsed state ĉ ′ whose vertices are
arranged in a regular manner along a straight line, or along a circle,
as illustrated by Figure 5.

The letter C in “C-mesh” refers to the property that the mesh is
the central mesh of the strip arrangement. It may also refer to the
arrangement being collapsible. It turns out that the C-mesh property
has a nice equivalent characterization:

Lemma 2.4. A regular quad mesh resp. hex mesh with constant
edge length ℓ is a C-mesh if and only if the angles between edges and
normal vectors Ĥ(Ĭ) are all equal
Equivalently, the mesh is a C-mesh, if for each vertex Ĭ there is a

sphere ď (Ĭ) which contains Ĭ together with its immediate neighbours,
and all spheres ď (Ĭ) have the same radius Ď. ď (Ĭ) degenerates into a
plane if Ď = ∞.

Proof. Ĥ(Ĭ) has the same angle Ą with all edges emanating from Ĭ

if and only if the vertex star of Ĭ can be collapsed to lie on a circle
with radius Ď. Fig. 6 shows that

cosĄ (ℓ) = ℓ/2Ď, (1)

with the limit case Ą (ℓ) = ÿ
2 for Ď = ∞. We write the angle as a

function of the edge lengths to emphasize the dependence on ℓ in
formulas where both ℓ and Ą occur. If the angle is the same also
for the other vertices, the collapse onto the same circle propagates
through the mesh.
The equivalence of the angle property with the sphere property

is elementary. □
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In § 3 we are going to show further geometric properties of C-
meshes. For computational purposes we model C-meshes and their
deployment by the following constraints and energies.

Energies for modeling C-meshes. Constant edge lengths and angles
are expressed by the constraints

ęlen (ě) = ∥ě ∥
2 − ℓ2, ęangle (Ĭ,ĭ) = ïĭ − Ĭ, Ĥ(Ĭ)ð − ℓ cosĄ (ℓ).

Together with the normalization constraint ęnorm (Ĭ) = ∥Ĥ(Ĭ)∥
2 − 1

we de�ne an energy which vanishes if and only if the mesh under
consideration has the C property:

ā (ĉ) = Ă1

∑
ě∈ā

ęlen (ě)
2 + Ă2

∑
Ĭ∈Ē

ęnorm (Ĭ)
2 .

+ Ă3

∑
(Ĭ,ĭ) ∈ā

(
ęangle (Ĭ,ĭ)

2 + ęangle (ĭ, Ĭ)
2)

For the actual computation we add a fairness energy which in the
quad mesh case expresses small 2nd order di�erences of all triples
(ī, Ĭ,ĭ) of successive vertices in the mesh:

āfair (ĉ) = Ăfair

∑

triples ī,Ĭ,ĭ

∥ī − 2Ĭ +ĭ ∥2

In the hex mesh case we employ the fairness energy proposed by
[Jiang et al. 2015] which penalizes a con�guration of two neighbour-
ing faces if it is not symmetric about the common edge midpoint.

Energies for Deployment. As to deployment, a meshĉ deploys to
ĉ ′ ifĉ,ĉ ′ are combinatorially equivalent, and both are C-meshes
with the same parameters ℓ , Ą . To regularize the deformation experi-
enced by the individual strips, for each edge ě = (Ĭ,ĭ) the amount
of twisting about an edge Ĭ,ĭ , measured by

twist(Ĭ,ĭ) = ∥(Ĥ(Ĭ) − Ĥ(ĭ)) × (Ĭ −ĭ)∥, (2)

should be small. Since twist(Ĭ,ĭ)2 = ∥Ĥ(Ĭ) − Ĥ(ĭ)∥2∥Ĭ − ĭ ∥2 −

(ïĤ(Ĭ), Ĭ −ĭð − ïĤ(ĭ), Ĭ −ĭð)2 and all terms except the �rst are
constant, we de�ne the energy ātwist (ĉ,ĉ

′) by letting

ātwist = Ătwist

∑

(Ĭ,ĭ) ∈ā

(∥Ĥ(Ĭ) − Ĥ(ĭ)∥2 − ∥Ĥ′(Ĭ ′) − Ĥ′(ĭ ′)∥2)2 .

Here Ĭ ′,ĭ ′ are the vertices corresponding to Ĭ,ĭ in the mesh ĉ ′.
ātwist (ĉ,ĉ

′) is small if the strips ofĉ experience the same torsion
as the strips ofĉ ′. Ifĉ ′ is in a collapsed state, there is no twist at
all, and the energy simply penalizes large twists inĉ . We will see
that this energy is actually not necessary in the quad mesh case,
since Prop. 3.2 ensures constant twist.

Finally, we give an energy which expresses that vertex stars inĉ
look similar to vertex stars inĉ ′ (which is de�nitely not the case if
ĉ ′ is in a collapsed state andĉ is not). We de�ne

āsti� (ĉ,ĉ
′) = Ăsti�

∑

Ĭ∈Ē

∑

Ĭ1,...,Ĭġ ∈link(Ĭ)

(∥Ĭğ − Ĭğ+1∥
2 − ∥Ĭ ′ğ − Ĭ

′
ğ+1∥

2)2 .

Here again the vertex Ĭ ′ğ ofĉ
′ is the vertex corresponding to Ĭğ ofĉ .

In the summation over the link of Ĭ , indices are modulo ġ . We used
this energy as a regularizer with low weight in certain examples.

Optimization. The examples in this paper have been produced by
minimizing a combination of the energies de�ned above. Depending
on the application, additional constraints are added, e.g. soft or hard
positional constraints, or soft proximity constraints when a C-mesh
is to follow a reference surface ¨. The corresponding energies are
quadratic and read

āpos = Ăpos

∑
dist(Ĭğ , Ĭ

0
ğ )

2, āprox = Ăprox

∑
dist(Ĭ Ġ ,ĐĬ∗Ġ )

2 .

Summation in each case is over those vertices for which constraints
are to be enforced. Following [Tang et al. 2014], proximity to ¨ is
achieved by penalizing deviation of vertices Ĭğ from the tangent
plane ĐĬ∗ğ in Ĭ

∗
ğ ∈ ¨, which is the closest point to Ĭğ . In our iterative

optimization procedure, we recompute points Ĭ∗ğ after each round,
using the approximate nearest neighbour algorithm on a triangle
mesh ¨ [Mount and Arya 2010].
For optimization we used a Levenberg-Marquardt method ac-

cording to [Nocedal and Wright 2006, Ch. 10]. The linear systems
occurring there have been solved by a preconditioned conjugate
gradient method. We emphasize that intermediate positions in the
deployment are not present in the optmization.

2.2 Verification of the Geometric Model

Our choice to use C-meshes for the description of deployable struc-
tures has been validated by physical simulation. For veri�cation
we perform a more realistic physical simulation, where strips are
modelled as discrete elastic rods with elliptic cross-section, which
is a generalization of the discrete elastic rods approach proposed
by [Bergou et al. 2008]. This choice is mainly motivated by the fact
that this model has been recently applied and validated successfully
in several computational design and fabrication applications. We
could just as well have used a rectangular cross-section.

To be precise, we use the setup of equations proposed by [Jawed
et al. 2018, p. 89, Eq. (8.18)]. The system of constraints expressing the
elastic behaviour of strips is augmented by constraints which �x the
relative position of strips at nodes. Figure 4 shows the deployment
of some examples computed in this way. For the actual computation,
a dynamic relaxation method according to [Otter et al. 1966] was
adopted (we used linear damping proportional to velocity). This
physical simulation is not considered a contribution of the paper.
Therefore we do not go into details and refer only to literature
references and to Figure 4. The results of simulation are also borne
out by measurements taken from physical models, see § 6.2 and
Fig. 22.

3 GEOMETRY OF QUADRILATERAL C-MESHES

This section discusses in detail the geometry of quadrilateral C-
meshes. It turns out that they are either discrete surfaces of constant
Gaussian curvature, or o�sets of such surfaces. This surface class is
known as the linear-Weingarten surfaces of hyperbolic type, which
immediately leads us to a discussion of surfaces with the linear
Weingarten property in general. This discussion serves two pur-
poses: Firstly it is important to appreciate that being a quadrilateral
C-mesh comes with shape restrictions. Secondly, the boundary of
the admissible variety of surfaces turns out to be easily accessible

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



6 • Daoming Liu, Davide Pellis, Yu-Chou Chiang, Florian Rist, Johannes Wallner, and Helmut Po�mann

Ĭ0

Ĭ1

Ĭ2

Ĭ3

ÿ13

ÿ02

Ĥ(Ĭ1)Ĥ(Ĭ3)

Ċ0

Ċ1

Ċ2

Ċ3 ý

ģ02

ģ13

Ĭ0

Ĭ1

Ĭ2

Ĭ3

ĭ0

ĭ1ĭ2ĭ3

ÿ13

ÿ02

Ċ0

Ċ1

Ċ2

Ċ3

Fig. 7. A quadrilateral face Ĭ0Ĭ1Ĭ2Ĭ3 of a C-mesh. Left: The normals Ċğ , Ċ Ġ
in opposite vertices Ĭğ , ĬĠ intersect on the axis of rotational symmetry. The

quad also enjoys a reflection symmetry w.r.t. the planeĂğ Ġ = span(Ĭğ , ĬĠ , ý) ,

where ğ, Ġ = 0, 2 or ğ, Ġ = 1, 3. Right: O�se�ing vertices Ĭğ along normals

changes the radius of the collapsed state of the mesh.

for design and can thus serve as initialization (that boundary con-
sists of the pipe surfaces which are de�ned by a central curve and
a radius). In § 3.5 we investigate what happens if we depart form
the requirement that C-meshes must collapse onto straight lines
or circles. We show that allowing this unexpectedly diminishes the
variety of available shapes.

3.1 Meshes with Straight Collapsed State

A quad structure that collapses onto a straight line is described
by a C-mesh exhibiting constant edge length ℓ and planar nodes.
Such meshes are well known in discrete di�erential geometry. The
constant edge length property makes them discrete Chebyshev nets.
The planar vertex stars reveal them as asymptotic nets, meaning that
the parameter lines of themesh are discrete asymptotic curves. In the
smooth case, the combination of these properties implies constant
negative Gaussian curvature. Indeed, C-meshes with planar nodes
are precisely the discrete surfaces of constant Gaussian curvature
which were studied in detail by [Bobenko and Suris 2008; Sauer
1970; Wunderlich 1951]. They are commonly referred to as K-nets.

As a preparation for the discussions below, we study a single quad
with vertices Ĭ0, . . . , Ĭ3 where all edge lengths equal ℓ (see Fig. 7).
The midpointsģ02 andģ13 of diagonals Ĭ0Ĭ2 and Ĭ1Ĭ3, respectively,
span a line ý. The quad is symmetric w.r.t. rotation about ý by 180◦.
This rotation permutes the pairs Ĭ0, Ĭ2 and also Ĭ1, Ĭ3. Further it is
clear from symmetry that the quad has a mirror symmetry w.r.t.
two planes, namely

Ă02 = span(ý, Ĭ0, Ĭ2), Ă13 = span(ý, Ĭ1, Ĭ3) .

In each vertex Ĭğ a discrete surface normal Ċğ is spanned by the
normal vectors Ĥ(Ĭğ ) (red arrows in Fig. 7). Since normals are or-
thogonal to the edges, the following is also clear from symmetry:
The con�guration of normals is symmetric w.r.t. the re�ections men-
tioned above. Consequently, normals at Ċ1, Ċ3 intersect in a point
ÿ13. Likewise the normals Ċ0, Ċ2 intersect in a pointÿ02. Both these
centers lie on the axis ý.

3.2 C-Meshes with Circular Collapsed State

A C-mesh collapsing onto a circle with radius Ď has a constant edge
length ℓ , and the star of each vertex is contained in a sphere with
radius Ď.
Wunderlich [1951] pointed out that the K-nets of §3.1 possess

constant-distance o�sets which are C-meshes in our sense: o�setting
turns a C-mesh with straight collapse into a C-mesh with circular
collapse. Remarkably, also the converse is true. We are able to show
a new result stating that all C-meshes can be created in this way:

Theorem 3.1. For a C-mesh collapsing onto a circle, equipped with
unit normal vectors Ĥ(Ĭğ ) in its vertices, there is a value Ě such that
the constant-distance o�set mesh at distance |Ě |, de�ned by vertices

ĭğ = Ĭğ + ĚĤ(Ĭğ )

is a K-net, i.e., a C-mesh collapsing onto a straight line.

Proof. By Equ. (1) all edges emanating from Ĭğ have the same
length ℓ , and they intersect the normal Ċğ under the angle Ą , where
ℓ = 2Ď cosĄ . Since Ď ≠ ∞,Ą is not 90◦ (that would be the K-net case).
Fig. 7, right, illustrates a face Ĝ = (Ĭ0Ĭ1Ĭ2Ĭ3). Since we require a
consistent orientation of unit normal vectors Ĥ(Ĭğ ), it is not possible
that, say Ĥ(Ĭ1) points upwards and Ĥ(Ĭ3) points downwards. Rather,
they look exactly like shown by Fig. 7. By symmetry, normals Ċ0, Ċ2

intersect in a point ÿ02 ∈ ý, normals Ċ1, Ċ3 intersect in a point
ÿ03 ∈ ý.

We now construct an o�set mesh with vertices ĭğ which arise
from Ĭğ by movement along the normal Ċğ . It is well known that
the shortest distance between straight lines Ċğ , Ċ Ġ occurs between
points ĭ∗ğ Ġ = Ĭğ + Ěğ ĠĤ(Ĭğ ) on Ċğ and ĭ

∗
Ġğ = Ĭ Ġ + Ě ĠğĤ(Ĭ Ġ ) on Ċ Ġ ,

and that the segmentĭ∗ğ Ġĭ
∗
Ġğ is orthogonal to both normals Ċğ , Ċ Ġ .

Lemma A.1 in the appendix shows that o�setting distances Ěğ Ġ , Ě Ġğ
are equal. By mirror symmetry, this o�setting distance is the same
for all edges of a face Ĝ ; we call this value Ě (Ĝ ) and we let ĭğ =
Ĭğ +Ě (Ĝ )Ĥ(Ĭğ ). If faces Ĝ , Ĝ

′ share an edge ĬğĬ Ġ then obviouslyĚ (Ĝ ) =
Ěğ Ġ = Ě Ġğ = Ě (Ĝ ′). Thus the constant o�set distance propagates
through the mesh. The orthogonality mentioned above means that
the edges of the o�set mesh are orthogonal to the normals. □

3.3 Strip Geometry in C-Meshes

The following is an interesting fact concerning the individual strips
making up the strip arrangement derived from a C-mesh:

Proposition 3.2. The twist of strips as de�ned by Equ. (2) is con-
stant throughout the mesh; all quadrilateral strips associated with
edges according to Defn. 2.1 are congruent to each other.

Proof. Consider �rst the case of a K-net, i.e., a C-mesh collapsing
onto a straight line. For any edge Ĭĭ , normal vectors Ĥ(Ĭ) and Ĥ(ĭ)
are orthogonal to Ĭ − ĭ , and the angle enclosed by Ĥ(Ĭ), Ĥ(ĭ) is
known to be constant [Wunderlich 1951]. Thus ∥Ĥ(Ĭ) − Ĥ(ĭ)∥ is
constant. Since edge lengths are likewise constant, so is the twist.
This remains true if o�setting is applied to create general C-meshes,
since vectors Ĥ(Ĭ), Ĥ(ĭ) do not change.
A quadrilateral strip associated with the edge Ĭĭ has vertices

Ĭ ±ĚĤ(Ĭ),ĭ ±ĚĤ(ĭ), cf. Defn. 2.1. The equality of angles mentioned
above ensures they are all congruent, which also follows from the
mirror symmetries visualized by Fig. 7. □
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pipe surfaces

surfaces with
ć = const. < 0

developables (ć = 0)

curves (degenerate surfaces)

surfaces with
ć = const. > 0

cmc surfaces
(Ą = const.)

surfaces with
constant
harmonic-mean
curvature Ą/ć

minimal surfaces (Ą = 0)

ė Ę

ę

Fig. 8. Classification of linear Weingarten surfaces. A surface enjoying the

relation ėć + ĘĄ + ę = 0 in this image is represented by the point (ė,Ę, ę)

which is normalized such that ė2 +Ę2 + ę2 = 1. Thin white and black curves

correspond to special transformations of surfaces: If a surface undergoes

o�se�ing resp. scaling, it moves along a black resp. white curve. The blue

part of the sphere corresponds to hyperbolic surfaces which represent the

shapes of C-quad meshes.

3.4 Smooth Surfaces Related to C-Meshes

3.4.1 Linear Weingarten Surfaces of Hyperbolic Type. Theorem 3.1
establishes C-meshes as o�set meshes of K-nets. Smooth counter-
parts of C-meshes therefore are found by o�setting surfaces with
constant Gaussian curvature ć < 0. It is well known that such
o�sets enjoy a linear relation between mean curvature Ą and Gauss
curvature ć :

ėć + ĘĄ + ę = 0, (3)

where ė, Ę, ę are constant throughout the surface. Such surfaces are
called Linear Weingarten. For us, the following result is convenient:

Lemma 3.3. If a smooth linear-Weingarten surfaceē with unit
normal vector �eld Ĥ enjoys the property ėć + ĘĄ + ę = 0, then its
o�set surfaceē ′ =ē + ĚĤ at distance |Ě | is also linear-Weingarten.
Its curvatures obey ė′ć ′ + Ę ′Ą ′ + ę ′ = 0, with

ė′ = ė − ĘĚ + ęĚ2, Ę ′ = Ę − 2ęĚ, ę ′ = ę. (4)

Proof. Consider the principal curvatures ċ1, ċ2, where Ą = (ċ1 +

ċ2)/2 and ć = ċ1ċ2, and similar ċ ′1, ċ
′
2 for the o�set surface. O�set-

ting causes the inverses of principal curvatures to shift by a constant
amount (the principal centers of curvature do not change under
o�setting): 1/ċ ′ğ = 1/ċğ + Ě.

A straightforward computation now allows us to relate Ą,ć with
the o�set’s mean curvature Ą ′ and Gaussian curvature ć ′:

ć =
ć ′

1 − 2ĚĄ ′ + Ě2ć ′
, Ą =

Ą ′ − Ěć ′

1 − 2ĚĄ ′ + Ě2ć ′
(5)

Inserting this into (3) shows the result. □

Linear Weingarten surfaces are traditionally classi�ed as having
elliptic, parabolic, or hyperbolic type, if Ę2 − 4ėę is positive, zero, or
negative, respectively. It is very interesting to know that the shapes
of C-meshes are represented exactly by one of these categories:

Lemma 3.4. The linear-Weingarten surfaces of hyperbolic type are
exactly the o�sets of surfaces of constant negative Gaussian curvature.

Proof. (1) Surfaces with ć = const obey a linear-Weingarten
relation ėć + ĘĄ + ę = 0 where Ę = 0. Hyperbolic type means
4ėę > 0, i.e.,ć < 0. (2) Equ. (4) shows that for any linear Weingarten
surface, an o�set with Ě = −Ę/2ę has curvatures Ą ′, ć ′ obeying
ė′ć ′ + ę ′ = 0, i.e., ć ′ = −ę ′/ė′ is constant. This value expands to

ć ′ =
4ę2

Ę2 − 4ėę
, (6)

which is negative for hyperbolic type. (3) The class of hyperbolic
linearWeingarten surfaces is invariant under o�setting, since (Ę ′)2−
4ė′ę ′ = Ę2 − 4ėę . □

Figure 8 gives an overview of the various types of linear Wein-
garten surfaces according to the de�ning relation ėć + ĘĄ + ę = 0.
O�setting changes the coe�cients ė, Ę, ę according to (4), and Fig. 8
shows the progress of selected surfaces through such an o�set fam-
ily. Likewise, scaling a surface by a factor Č changes Gauss curvature
ć and mean curvature Ą to ć/Č2 and Ą/Č, so coe�cients ė, Ę, ę are
replaced by ėČ2, ĘČ, ę . Also the progress of a surface through such a
scaling family is illustrated.

In §3.1 we related C-meshes with a straight collapse to K-surfaces
as their smooth counterpart. We established that the edges of the
mesh correspond to a Chebyshev net of curves exhibiting zero
normal curvature. The previous paragraphs established how other
C-meshes are generated by an o�setting operation. Analogously,
general linear Weingarten surfaces of hyperbolic type are gener-
ated from K-surfaces by an o�setting operation. The edges of the
C-meshes again correspond to a special curve network on the sur-
face. If the analogy between the mesh case and the surface case
is true, this must again be a Chebyshev net (since edge lengths in
the mesh are constant). Further, the curves in the network should
exhibit constant normal curvature, since in the C-mesh any triple
of successive vertices of a mesh polyline lies in a sphere of constant
radius Ď which is tangent to the surface (this discrete version of
normal curvature has already been used by [Pellis et al. 2020]).
The following result establishes that the analogy is indeed true:

A linear-Weingarten surface of hyperbolic type is covered by a
Chebyshev net of curves with constant normal curvature ċĤ , and
consequently is discretized by a C-mesh with radius Ď = 1/ċĤ .

Proposition 3.5. Any linear Weingarten surfaceē of hyperbolic
type which obeys the relation ėć + ĘĄ + ę = 0 contains a Chebyshev
net of curves exhibiting constant normal curvature

ċĤę = −Ę/2ė. (7)

The angle Ă between these curves and the �rst principal direction obeys

tan2 Ă = −
ċ1 (2ę + Ęċ1)

ċ2 (2ę + Ęċ2)
. (8)

Proof. We know from (6) that an appropriate o�setē ′ at distance
Ě = −Ę/2ę has constant Gaussian curvature ć ′ < 0. ē ′ has a
parameterization Į ′(ī, Ĭ) whose parameter lines are a Chebyshev
net (i.e., ∥Į ′ī ∥ = ∥Į

′
Ĭ ∥ = Ă = const.) of asymptotic curves, and there

is a normal vector �eld Ĥ(ī, Ĭ) with ∥Ĥ∥ = Ď = const. obeying the
so-called Lelieuvre conditions Į ′ī = Ĥ × Ĥī , Į

′
Ĭ = −Ĥ × ĤĬ [Bobenko
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Fig. 9. Deployable structures whose central C-meshes have been initialized

from a pipe surface (le�) and from a developable (right). Optimization

towards the C-mesh property changes the shape slightly.

and Suris 2008]. From ∥Ĥ∥ = const. we see that Ĥ, Ĥī are orthogonal.
From Į ′ī = Ĥ × Ĥī we derive that Į ′ī is orthogonal to both Ĥ, Ĥī
and further, ∥Ĥī ∥ =

Ă
Ď . A similar statement is true for Į ′Ĭ, Ĥ, ĤĬ .

Undoing the o�setting operation yields a parameterization Į (ī, Ĭ) =

Į ′(ī, Ĭ) ± Ě
ĎĤ(ī, Ĭ) of the original surface. From ∥Įī ∥

2
= ∥Į ′ī ±

Ě
ĎĤī ∥

2
= Ă2 + Ě2Ă2/Ď4 = const. and the analogous relation for ĮĬ

we see that Į (ī, Ĭ) is a Chebyshev net. Equations (7) and (8) are
proved in the Appendix. □

3.4.2 Parabolic linear Weingarten surfaces. General C-meshes cor-
respond to hyperbolic linear-Weingarten surfaces, i.e., to the blue
region in Fig. 8. Their shapes are not so easily understood, so we
suggest to approach the design space from its boundary (the green
curve in Fig. 8). These turn out to be a well known class of surfaces:

Proposition 3.6. A linear-Weingarten surfaceē of parabolic type
is either developable or a pipe surface, which is de�ned as the points
of constant distance Ĩ from a central spine curveē ′.

This fact should be well known, but we could not �nd an explicit
literature reference. To see it is true, we argue as follows.

Proof. Recall that parabolic type means that the coe�cients in
the linear-Weingarten relation ėć + ĘĄ + ę = 0 obey Ę2 − 4ėę = 0.
By Equation (4), this condition is invariant under o�setting. The
developables which exhibit ć = 0 fall into this class; they obey the
relation ėć + ĘĄ + ę = 0 with (ė, Ę, ę) = (ė, 0, 0). In the other para-
bolic cases we try to �nd an o�setē ′ of constant Gauss curvature
according to Prop. 3.5. This does not work, because Equ. (6) shows
thatē ′ has in�nite Gauss curvature.ē ′ therefore is not a surface,
it has degenerated into a curve. The o�set family consists of pipe
surfaces withē ′ as its spine.
On the other hand, the di�erential geometry of a pipe surface

(tubular surface)ē is well known. It is the envelope of spheres of
radius Ĩ centered at the spineē ′. These spheres touchē along
circles of radius Ĩ which constitute one family of principal curvature
lines. Thus one principal curvature equals 1/Ĩ , and we have Ą =

(1/Ĩ + ċ)/2, ć = ċ/Ĩ , with ċ being the other principal curvature. It
follows thatē obeys a linear-Weingarten relation ėć + ĘĄ + ę = 0
with ė = 1, Ę = −2/Ĩ , ę = 1/Ĩ2. Obviously, Ę2 − 4ėę = 0. □

When a hyperbolic linear-Weingarten surface (contained in the
blue region in Fig. 8) evolves towards the parabolic boundary (green
in Fig. 8), the special Chebyshev nets relevant for discretization

Fig. 10. Meshes deploying from a general profile (neither circle nor straight

line) have rotational symmetry or are cylinders. This theoretical result is

confirmed by these two examples which have been generated by optimiza-

tion from C-mesh constraints, without prior knowledge of the global shape.

degenerate: (8) yields Ă = 0, which says that the net degenerates to
the family of principal circles of constant normal curvature 1/Ĩ .

Remark 3.7. Developables are envelopes of planes, they can be seen
as pipe surfaces with Ĩ = ∞. Principal circles appear as rulings.

The discussion above inspires the following design method for
C-meshes: We cover a pipe surface with a quad mesh whose edges
lie symmetric w.r.t. the principal circles and have a small angle with
those circles. Our experiments show that subsequent optimization
towards the C-mesh property causes only a small shape change. The
same method works by starting from a developable surface and its
rulings. Results are shown by Fig. 9.

3.5 �ad Meshes Collapsing to General Curves

So far we considered only structures collapsing onto straight lines
or circles. It is natural to get rid of this restriction. Remarkably,
this does not increase the variety of available shapes, but quite the
opposite is the case.
We de�ne a generalized C-mesh as a regular quad meshĉ with

constant edge length ℓ that collapses onto a 2D polyline. To be more
precise, the polyline’s vertices are labelledĭġ , and the vertices ofĉ
are labelled Ĭğ, Ġ , with ğ, Ġ, ġ as integers. The immediate neighbours of
Ĭğ, Ġ are Ĭğ±1, Ġ and Ĭğ, Ġ±1. We now require thatĉ deploys to a mesh
ĉ ′ with vertices Ĭ ′ğ, Ġ = ĭğ−Ġ .

There is the following result concerning the global shape of gen-
eralized C-meshes. It is illustrated in Fig. 10.

Theorem 3.8. Generalized C-meshes which are not C-meshes rep-
resent either surfaces of revolution or cylindrical surfaces.

The proof is given in the Appendix. It shows that the shape
restriction also applies in case the collapsed state is a union of
circular arcs. The proof reveals the reason for the loss of degrees of
freedom: It is the loss of symmetries in the con�guration of faces
plus normals shown by Fig. 7.

Remark 3.9. The con�guration of ver-
tices plus normals of Fig. 7 can be
physically realized by rigid strips along
the edges which are connected by rev-
olute joints in the vertices. A twist in
the strip is used to model the constant torsion discussed by Prop.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



Deployable strip structures • 9

3.2. In general, a quad formed by four such strips is rigid, but if
its dimensions are derived from a C-mesh it is �exible. One can
even join an arbitrary number of such quads to form a �exible quad
mesh, see [Wunderlich 1951] and inset �gure. Quads derived from
generalized C-meshes do not enjoy �exibility. This corresponds to
their restricted shapes as described by Theorem 3.8.

4 HEXAGONAL C-MESHES

The detailed study of quadrilateral C-meshes in § 3 shows that they
have rich and interesting geometry but their shape space is restricted.
We therefore turn to hexagonal C-meshes in order to increase the
degrees of freedom in designing deployable structures that collapse
onto curves. Interestingly, the correspondence between discrete C-
meshes and their smooth counterparts is not of the same nature as
it was for quad meshes. For a quad C-mesh with a straight collapsed
state, we relate the edges to asymptotic curves on a smooth surface.
This cannot work in the hex mesh case (we would have 3 asymptotic
curves passing through every point). In fact, a hexagonal C-mesh
approximating a smooth surface must do so in a zigzagging way.
This non-smoothness is not visually apparent, however. Below we
use a local analysis to investigate the possible shapes of vertex stars
in hexagonal C-meshes.

4.1 Shapes of Vertex Stars in Hexagonal C-Meshes

Consider a hexagonal C-mesh ĉ according to Def. 2.3 which in
particular has constant edge length ℓ . We are interested in meshes
whose vertices lie in a smooth surface ď and start our discussion
with the case thatĉ has a straight collapsed state, i.e., each vertex
Ĭ has a plane Đ (Ĭ) containing the neighbours of Ĭ . Their distance
from Ĭ equals the constant value ℓ . Possible locations can therefore
be found by intersecting a circle with radius ℓ with ď . Replacing
ď by its osculating paraboloid, we see that in any case Đ (Ĭ) ∩ ď
can be approximated by a quadratic curve. Figures 11c,e,f show the
intersection of several such planes with ď .

Tangential approximation of a smooth surface. The plane Đ (Ĭ)
may be tangent to ď (sub�gure e), or may be inclined (sub�gures
c,f), in which case it is parallel to a tangent plane of ď not in Ĭ , but in
another point. If Đ (Ĭ) is the tangent plane in Ĭ , an intersection only
exists if ď has negative curvature. The intersection con�guration is

(a) (b) (c)

(d) (e) (f)

Ĭ

Ĭ Ĭ

Ĭ Ĭ
Ĭ

Fig. 11. Vertex configuration of a C-mesh inscribed in a smooth surface ď ,

which can have positive Gaussian curvature (top row) or negative Gaussian

curvature (bo�om row). Potential vertices can be found by intersecting a

certain circle with ď . We explore possibilities by positioning that circle in

di�erent ways.

Fig. 12. Le�: A hex mesh

with planar vertex stars and

one family of edges (red)

with zero torsion. Right: Con-

version to a hex mesh with

planar nonconvex faces.

symmetric, and thus better corresponds to a quad mesh than a hex
mesh. A hex mesh where Đ (Ĭ) is positioned tangentially uses only
3 of the 4 potential edges emanating from Ĭ , and will look like the
brick wall mesh shown by Fig. 13.

Non-convex faces in case of positive curvature. An interesting fact
is shown by Fig. 11c. Here ď has positive curvature. Obviously in
such a case all intersection points with ď lie to one side of a straight
line inside Đ (Ĭ). Thus the faces of the C-mesh cannot be convex,
the mesh looks like Fig. 12, right. In the positively-curved case, an
intersection exists only if the plane Đ (Ĭ) is inclined, so a C-mesh
cannot approximate ď tangentially.

C-meshes collapsing onto circles. In the more general case of C-
meshes which collapse onto a circle, the plane Đ (Ĭ) is replaced by a
sphere, but the points in the sphere at distance ℓ from the central
vertex still lie on a circle. All the previous arguments apply. This case
is illustrated by Fig. 11a,b,d. Also here a tangential approximation of
ď by a C-mesh leads to a symmetric intersection and is not suitable
for hex meshes. We conclude that hex meshes (other than the brick
wall case) do not approximate smooth surfaces smoothly, they can
do so only in a zigzagging way. The brick wall case is still useful for
initializing the computation of a hex mesh, see § 4.2.1.

4.2 Design of Hex C-Meshes From�ad C-Meshes

4.2.1 Initializing Hex Meshes from Brick Wall Pa�erns. By deleting
edges in a quadrilateral C-mesh as shown by Fig. 13, we formally
convert it to a hexagonal C-mesh. It still enjoys the de�ning prop-
erties of a C-mesh (constant edge length, planar/spherical vertex
stars).

Clearly, these special cases may not be those naturally occurring
under deployment of a strip structure. We may apply regularization
to achieve the expected shape of faces. Furthermore, the quad mesh
we started from might not follow our original design surface (quad
C-meshes are restricted in their shape). We can therefore use a
round of optimization to modify the brick wall mesh to approximate
the intended design surface. This automatically cause the shape of
faces to change, and in fact the examples in this paper have been
produced in this way. There is a catch, however: Hex C-meshes,
apart from brick wall meshes, are not capable of approximating
smooth surfaces tangentially at all. This phenomenon may or may
not be relevant for particular practical applications. It is in detail
discussed in § 4.1 above.

4.2.2 Initializing Hex meshes from Diagonals of

�adMeshes. The inset �gure shows anothermeth-
od of initializing a hex mesh: By introducing diago-
nals and deleting all interior edges in a 2×2 block of
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Fig. 13. Hex C-meshes whose vertices lie on a smooth surface and whose

vertex planes or spheres are tangent to it, appear as brick wall pa�erns. We

initialize such a brick wall hex mesh from a quad mesh (le�), and optimize

for more regular faces, or for fi�ing a di�erent shape (result on the right).

faces, we convert a quad mesh into a hex mesh. It no longer has the
C-property, which needs to be restored by optimization. However
we take this opportunity to generalize the notion of C-hex mesh
somewhat. We allow two di�erent edge lengths according to Fig. 16
and we say that such meshes are C-meshes in the wider sense. It is
easy to generalize the conditions expressing the C-property to this
case:

Lemma 4.1. The characterization of C-meshes by Lemma 2.4 re-
mains valid for hexagonal C-meshes in the wider sense (with two
di�erent edge lengths according to Fig. 16) if the angle condition is
rephrased: For each edge Ĭĭ , the angle Ą (ℓ) between a normal vector
Ĥ(Ĭ) and the edge Ĭĭ obeys Equ. (1), where ℓ = ∥Ĭ −ĭ ∥.

Accordingly, the optimization has to be changed slightly; the
constraint ęangle (ī, Ĭ) now involves a value Ą (ℓ) that depends on
the intended length of the edge īĬ . Fig. 14 shows a result.

4.2.3 Hex Meshes with Edges of Zero Tor-

sion. A hexagonal strip structure can be fab-
ricated by gluing. Individual strips are folded
in a zigzag fashion as shown by the inset �gure and glued where
indicated by the yellow color. This yields a hexagonal strip struc-
ture with one family of thicker strips along which it tends to have
less torsion. We account for this in our simpli�ed geometric model
by requiring zero torsion for such edges. For such an edge Ĭĭ we
require that the vectors Ĥ(Ĭ), Ĥ(ĭ), andĭ − Ĭ are co-planar. In the
optimization, this is achieved by 3 constraints expressing orthogo-
nality of these vectors to an auxiliary unity vectorģ(Ĭ,ĭ), which is
added as a variable to the optimization. Fig. 14 shows such a result.

Coplanarity of the two normals at both ends of an edge is a well
known discrete version of the property that this edge follows a
principal direction. Usually, this is di�cult to achieve. However, if
we convert a C-quad mesh into hex mesh by inserting diagonals

Fig. 14. A hexagonal C-mesh in the wider sense, exhibiting two di�erent

edge lengths. A�er cu�ing it becomes simply connected and collapses onto

a circular strip.

Fig. 15. Hex meshes via edge insertion. Spli�ing vertices in the quad-C-

mesh on the le� results in a hex mesh (center). Optimization yields a hex

C-mesh. The design surface approximated here is the one of Fig. 17a.

Fig. 16. A hexagonal C-mesh in

the wider sense collapsing onto

a polyline. It has both short and

long edges in an alternating way.

according to § 4.2.2, the newly inserted edges will already approx-
imately follow principal directions, according to Prop. 3.5. Thus
we can expect optimization to achieve zero torsion for these edges.
Fig. 14 shows an example of this kind.

Remark 4.2. Consider the special case of C-hex meshes with planar
vertex stars, where one family of edges has zero torsion (Fig. 12,
left). We delete those edges and reconnect the mesh by inserting
edges where the planes of vertex stars intersect (Fig. 12, right). This
creates a hex mesh with nonconvex planar faces. Such meshes are
a well investigated topic (see e.g.[Pluta et al. 2021]), however not
under our additional edge length constraints.

4.2.4 Hex Meshes Via Edge Insertion. Splitting all vertices converts
a quad mesh to a hex mesh. In the speci�c case of a C-quad mesh
approximating a smooth design surface, Prop. 3.5 states that we
can expect the principal directions to bisect the edges. We can
therefore easily e�ect a vertex split where the newly introduced
edges are aligned with principal directions. In our examples we
made these edges very short, and subsequently optimized towards
a C-mesh in the wider sense with two di�erent edge lengths. The
two edge lengths which occur in the mesh are variables ℓ1, ℓ2 in the
optimization. Previously existing edges are required to have length
ℓ1, newly inserted edges have length ℓ2 (ęlen has to be modi�ed
in the obvious way, with either ℓ1 or ℓ2 instead of ℓ). We add the
constraint ℓ1 − Ăℓ2 = 0 (Ă > 0) to our optimization, where Ă is the
intended ratio between the edge lengths.
Figure 15 shows an example. Since newly inserted edges follow

principal directions, they can also be optimized towards zero torsion,
as explained in § 4.2.3 above. We should mention that already Wun-
derlich [1973] mentions simple meshes of this kind (which enjoy
rotational symmetry).

5 INVERSE DESIGN

5.1 Inverse Design of �adrilateral C-Meshes

In this section we illustrate a method for the inverse design of quadri-
lateral C-meshes. It is based on the relation of such meshes with
their continuous counterparts (see § 3.4), namely, linear-Weingarten
surfaces of hyperbolic type. Brie�y, the design pipeline is as follows:
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(a) (b) (c) (d) (e)ć isolines

Ą isolines

Ą

ć

Fig. 17. Inverse design of quadrilateral C-meshes. (a) Given shape with isolines of Gaussian curvature ć and mean curvature Ą . (b) The result of optimization

towards a Weingarten surface with a linear relation between Ą and ć . Every Ą isoline is a ć isoline and vice versa. (c) The image of both the original surface

(yellow) and the optimized surface (blue) in the Ą -ć-plane. By fi�ing a straight line to the diagram corresponding to the optimized surface we derive a

linear relation between Ą and ć which applies in an approximate way. (d) C-directions are computed at sample points. (e) A quad mesh which follows the

C-directions is optimized for equal edge length and for spherical vertex stars of constant radius.

(1) Optimize a design surface to become linear-Weingarten;
(2) Remesh, guided by the cross �eld of directions representing

a Chebyshev net of constant normal curvature;
(3) Optimize for the C-mesh property.

5.1.1 Design of a Hyperbolic Linear Weingarten Surface. The op-
timization of surfaces towards the Weingarten property is treated
by Pellis et al. [2021]. Their method allows to impose further prop-
erties like Linear-Weingarten. It works with B-spline surfaces and
optimizes the control mesh of that B-spline such that it approxi-
mately ful�lls a generic or a speci�c relation between the Gaussian
curvature ć and the mean curvature Ą at sample points. It is based
on a standard Levenberg–Marquardt algorithm with quadratic con-
straints and quadratic target functions – for details we refer to
[Pellis et al. 2021]. For our application, we enforce a linear relation
ėć +ĘĄ +ę = 0, with a normalization constraint ė2 +Ę2 +ę2 = 1. To
achieve hyperbolic type, we use the constraint Ę2−4ėę = −ą2 +ąmax,
where ą is an auxiliary variable, and ąmax is a negative threshold.
Figures 17a–c illustrate this procedure. Sub�gures 17a,b show the
original surface ď and the optimized surfaceĉ ′ and how the isolines
of Ą and ć on ĉ ′ align. Fig. 17c shows the image of both ĉ and
ĉ ′ in the Ą -ć-plane, by plotting pairs (Ą,ć) for a dense sampling
of the surface. The image ofĉ ′ concentrates along a straight line.
By performing PCA on this 2D point cloud we compute an ideal
relation of the form ėć +ĘĄ +ę = 0 which is approximately ful�lled
by the optimized surfaceĉ ′.

5.1.2 �adrilateral Remeshing. In any point of the surface pro-
duced by § 5.1.1 we can compute the principal directions as well as
Gaussian curvatureć and mean curvatureĄ . Equation (8) computes
the direction of edges of a quadrilateral C-mesh which follows this
surface (we call them C-directions). We found that we achieve better
results if we use these formulae only after we modify the valuesĄ,ć
by closest point projection onto the ideal linear-Weingarten line
ėć + ĘĄ + ę = 0. Having thus achieved a cross �eld of C-directions
in a dense set of points (Fig. 17d), we convert to a triangle mesh and
apply the integer quadrangulation method of [Bommes et al. 2009]
to derive a quad mesh.
We cannot apply integer quadrangulation directly, since that

method requires an orthogonal cross-�eld as input. In order to make
the C-directions orthogonal, we apply a deformation that makes

these directions orthogonal. We represent the given surface as a
triangle mesh. For each face Ĭ0Ĭ1Ĭ2, we express the C-directions as a
linear combination Ăğ (Ĭ1 − Ĭ0) + ăğ (Ĭ2 − Ĭ0), ğ = 1, 2. We then move
vertices from original positions Ĭ0ğ to new positions Ĭğ , such that
C-directions become orthogonal, i.e.,

ęortho (Ĝ ) = ïĂ1 (Ĭ1 − Ĭ0) + ă1 (Ĭ2 − Ĭ0), Ă2 (Ĭ1 − Ĭ0) + ă2 (Ĭ2 − Ĭ0)ð

vanishes. We thus minimize

∑
Ĝ ∈Ă

ęortho (Ĝ )
2 + Ċ1

∑
Ĭ∈Ē
∥Ĭğ − Ĭ

0
ğ ∥

2 + Ċ2

∑
interior
vertices

∥�(Ĭ)∥2,

using a Levenberg-Marquardt algorithm. The terms multiplied with
small factors Ċğ are for regularization; �(Ĭ) means the umbrella
vector of [Kobbelt et al. 1998]. We then apply integer quadrangula-
tion to the deformed mesh, and map the result back to the original
surface (using barycentric coordinates). This quad mesh �nally is
optimized for the C-mesh property (Fig. 17e).

Remark 5.1. In this paper we impose constant edge length on quadri-
lateral C-meshes. It is possible to generalize and loosen this require-
ment, even if Fig. 5 shows that edge lengths must obey many condi-
tions. We expect that such a generalized C-mesh, assuming fairness,
still discretizes a linear-Weingarten surface, but parametrized in a
more general way. This would mean that the design space essentially
is not restricted by the constant edge length requirement.

5.2 Inverse Design of Hexagonal C-Meshes

We do not claim to solve the problem of inverse design of hexagonal
C-meshes in general. Basically we compute quadrilateral C-meshes
�rst, which involves a deviation from the original shape. Then we
apply one of the methods described by § 4.2 to derive a hex mesh
from it. Subsequent optimization for the C-mesh property involves
proximity to the original surface. The additional degrees of freedom
which are available for hex meshes mean that this procedure usually
succeeds. Figure 15 shows one example created by adding diagonals.
Another example is shown by Fig. 23: A quad mesh, the result of
inverse design, is projected back towards the original design surface
which it was unable to approximate. A vertex split and optimization
according to § 4.2.4 yield a hexagonal C-mesh.
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(a)
(b)

(c)

0 17◦

Fig. 18. Paneling with spherical panels. A diagonal net of a C-mesh has pla-

nar faces and allows paneling not only with planar panels (c), but even with

spherical panels of constant radius (a,b). The overall smoothness of such a

paneling is shown by visualizing angles between panels in subfigures b, c for

spherical resp. planar panels. For each panel the maximum angle occurring

at the boundary seems to be smaller in the spherical case. Individual angles

do not have to be smaller, especially in negatively curved areas. In positively

curved areas, spherical panels lead to a much smoother surface than planar

ones.

6 RESULTS

This section presents a result which is not directly connected with
the deployment of our strip structures, but nevertheless we feel is
important for freeform architecture. It concerns the possibility of
paneling quadrilateral C-meshes with spherical panels. The rest of
this section discusses generalizations (combinatorial singularities),
and the veri�cation of our theory by means of physical models. It
concludes with limitations and proposals for future research.

6.1 Paneling with spheres

Quadrilateral C-meshes have an interesting application for archi-
tectural skins, namely one with spherical panels of constant radius,
and a torsion-free support structure associated with the edges. The
construction is as follows:

Proposition 6.1. Consider a quadrilateral C-mesh deploying from
a circular collapsed state, and a “diagonal mesh” Ā ofĉ , i.e., a quad
mesh formed by face diagonals of ĉ . A face Ĝ of Ā is formed by

the immediate neighbours of a central vertex Ĭ Ĝ ∈ ĉ . The sphere

associated with Ĭ Ĝ is labelled ď (Ĝ ).
Then Ā is equipped with a torsion-free support structure compatible

with its sphere ď (Ĝ ). I.e., each vertex Ĭğ of Ā has a “normal” Ċğ , such
that each edge ě = ĬğĬ Ġ of Ā together with the normals Ċğ , Ċ Ġ lie in a
common plane Ăě . Further, if an edge ě = Ĝ ∩ Ĝ ′ is the intersection of
faces Ĝ , Ĝ ′, spheres ď (Ĝ ), ď (Ĝ ′) intersect precisely in Ăě .

Proof.

Ĭ Ĝ
Ĭ Ĝ
′Ĭğ

Ĭ Ġ

Ăě

The vertices of a face Ĝ of Ā
are contained in the sphere ď (Ĝ ). They

have constant distance from Ĭ Ĝ ∈ ĉ ,
so Ĝ has a circumcircle (which is con-
tained in ď (Ĝ )). Consider two faces
Ĝ , Ĝ ′ sharing an edge ě = ĬğĬ Ġ . The
con�guration of spheres ď (Ĝ ), ď (Ĝ ′) is
symmetric w.r.t. the symmetry plane
of sphere centers, which we take as
the plane Ăě . Since circumcircles of Ĝ , Ĝ ′ have the same radius, they

Fig. 19. Spherical glass

panels are used by one

of the largest spherical

buildings in the world, the

Nur Alem sphere in Astana,

Kazakhstan (photo Saliha

Kanaeva).

too enjoy symmetry w.r.t. Ăě . All spheres have the same size, so
ď (Ĝ ) ∩ ď (Ĝ ′) ¢ Ăě .

Now consider a vertex Ĭ0 ∈ Ā , and the edges and faces of Ā
incident with it. Each of the four edge planes Ăěğ are symmetry
planes of two sphere centers. We wish to show that they contain a
common line Ċ0; this would conclude the proof.

Considerĉ ′, the mesh of sphere centers ofĉ . It is an o�set ofĉ
since spheres have constant radius. By § 3.2,ĉ ′ is a C-mesh. Those

sphere centers corresponding to faces of Ā form a diagonal mesh Ā̃
ofĉ ′. Consider speci�cally the sphere centers associated with faces

incident with Ĭ0. They form a face Ĝ̃ of Ā̃ , which has a circumcircle

(Ā̃ being a diagonal mesh of a C-mesh). A plane Ăěğ bisects two

vertices of Ā̃ , so Ăěğ contains the axis “Ċ0” of the aforementioned
circumcircle. □

It follows that the planes of the torsion-free support structure
serve as natural boundaries of spherical panels associated with
faces. For an actual application in architecture, it is necessary to
be able to produce spherical panels. Fortunately, this is possible,
and in fact they are already in use, see Fig. 19. Figure 18 shows
spherical panelings of the diagonal mesh Ā of a quadrilateral C-
mesh illustrating Prop. 6.1.

Remark 6.2. A torsion-free support structure with bisecting planes
as described by Prop. 6.1 implies that Ā is not only a circular mesh,
but at the same time a conical mesh. This fact might contribute to
an eventual classi�cation of meshes which are both circular and
conical. We should also emphasize that all circular meshes have
panelings with spherical panels – one can easily �t spheres on
the circles associated with each face. However the intersections of
neighbouring spheres will in general not be related to any torsion-
free support structure.

6.2 Further Results and Discussion

C-meshes With Combinatorial Singularities. We established that
the edges of a quad-C-mesh correspond to a uniquely de�ned curve
network on a curvature-continuous smooth surface, more precisely
an o�set of the asymptotic curves on a K-surface. The combinato-
rial singularities of this curve network are well known: There are
none, since negative Gauss curvature implies a local saddle shape,
and absence of umbilics. However, if we relax our smoothness as-
sumptions to tangent continuity, we may paste individual curvature-
continuous K-surface pieces together. This topic has been studied
in depth in di�erential geometry, e.g. [Shearman and Venkatara-
mani 2021], and in fact such surfaces seem to occur even in nature,
e.g. on curly leaves. On the discrete side, it is no problem to stitch
individual regular quad C-meshes together and obtain results as
shown by Fig. 21. Edge polylines have a distinct change in direction
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Fig. 20. Deployment of a quadrilateral C-mesh from a circular polyline, and an actual paper model of this mesh made from lasercut strips assembled manually.

For an animation of the continuous deployment we refer to the accompanying video.

across seams (as would the aforementioned curve network in the
continuous case).
The inverse design pipeline for quadrilateral C-meshes is based

on curvature information, and in fact a C-mesh that is to approxi-
mate a given shape is guided by the network of principal curves. So
in general there will be combinatorial singularities (see Figures 17
and 25). The previous paragraph shows that the approximation by
C-meshes cannot involve approximation of curvatures also. Meshes
which are not simply connected or which have combinatorial singu-
larities usually cannot deploy from a single �at state; this is possibly
only after cutting has removed topological obstacles.

Experimental Veri�cation of the C-mesh Property. We experimen-
tally tested the approximation capabilities of C-meshes by machin-
ing a design surface and checking if a strip structure made from
paper can be made to deploy onto that surface, see Fig. 20.

For verifying the C-mesh property itself, we built several deploy-
able structures and performed measurements. Figure 22 shows both
a quad mesh and a hex mesh we used for this purpose. The white
boundary, which is an o�set of the central mesh, has been laser
scanned and measured. In the quad case we checked that boundary,
since o�sets of quadrilateral C-meshes are C-meshes themselves.
With the notation ℓ for the average edge lengths, the standard de-
viation of edge lengths in the quad case is 0.009ℓ . Sphericity of a
vertex star is measured by its diameter in direction of the normal; we
get standard deviation 0.006ℓ . These numbers con�rm the C-mesh
property to a satisfactory extent.

Fig. 21. These two examples of C-meshes with a combinatorial singular-

ity correspond to surfaces which are tangent-continuous and piece-wise

a K-surface (or o�set of a K-surface). A combinatorial singularity never

corresponds to a single piece of curvature-continuous surface. The small

symbolic figure shows how such a mesh can deploy from a flat state a�er

cu�ing it open.

The hex mesh of Fig. 22, left, has been fabricated by gluing strips
as shown in § 4.2.3, so edges are unequal. Consequently the standard
deviation of edge lengths of the reconstructed central mesh has the
larger value 0.035ℓ . Sphericity of a vertex star is measured by its
diameter in direction of the normal; we get a standard deviation
of 0.005ℓ . These numbers con�rm the C-mesh property to a lesser
extent than in the quad case.

Relations to Geometric Metamaterials. Meshes deploying from a
collapsed �at state have potential applications in situations where
transport and mounting is an issue, even if the mesh under consid-
eration no longer undergoes �exion in its �nal state. The principle
is similar to the deployment of geometric metamaterials, e.g. the
programmable auxetics of Konakovic et al. [2018]. As an example,
Fig. 23 shows a sandwich structure.

Statistics. Table 1 illustrates run times for examples of inverse
design according to the pipeline of Fig. 17 which involves the op-
timization of a surface towards the hyperbolic linear Weingarten
property �rst. Computation times refer to a Python implementation
which has been tested on a Intel® CoreTMi7-10750H CPU with 32
GB RAM. Computation times for further examples are given by
Table 2. These were treated by a C++ implementation running on an
Intel® Xeon® CPU E5-2699 v3 (2.30GHz, 256 GB RAM). Levenberg-
Marquardt optimization uses adaptive regularization weights and
stepsize control. Depending on the quality of the initialization and
the complexity of the example, we generally used 20–50 iterations.

Limitations. An obvious limitation of quadrilateral C-meshes is
that they cannot represent arbitrary shapes. A limitation of our

Fig. 22. Verification of the C-mesh property by means of scanning physical

models. Edge lengths are 20mm (quad case) resp. 14mm (hex case).
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Table 1. Optimization of C-meshes, Part 1.Đprep refers to the time spent for

approximating the given design surface by a linear-Weingarten surface of

hyperbolic type by the method of [Pellis et al. 2021]. The table further gives

the number of vertices of the meshes involved, the number of variables in

the optimization, the number of constraints, and the weights employed by

the energies defined in § 2.1.

Fig. |Ē | # var. # const. Ă1 Ă2 Ă3 Ăfair Ăpos Ăprox Đprep Đ [s] # it.

1 725 4352 5575 3 20 20 .8 .1 .2 17.5 1.03 14

17 464 2786 3496 5 50 50 .8 .1 .2 14.1 0.68 14

20 431 2588 3268 3 20 20 .8 .2 .4 25.5 0.59 12

23l 431 2396 3072 5 50 50 .5 .1 .1 17.9 0.85 18

25 629 3776 4792 3 80 80 .5 .05 1 36.5 1.42 20

Table 2. Optimization of C-meshes, Part 2. The table gives the number of

vertices, the number of variables in the optimization, and the weights of

energies defined in § 2.1. For inverse design examples, fairness and proximity

weights are adjusted to become zero as optimization progresses. The adjust-

ment rate proved di�icult to automatize, so it was performed interactively

by the user.

Fig. |Ē | # var Ă1 Ă2 Ă3 Ăfair Ăprox Ătwist Ăsti� Ăpos Ī [s]

9r 474 2844 1 1 1 0 0 0 0 0 .06
9l 794 4764 1 1 1 0 0 0 0 0 .10
10r 230 1380 1 1 1 0 0 0 0 0 .02
10l 230 1380 1 1 1 0 0 0 0 0 .02
13r 405 2430 1 1 1 .01 �0 .01 �0 0 0 0 .04
14 500 3000 1 1 1 0 0 1 0 0 .07
15r 828 4968 1 1 1 .01 �0 .01 �0 0 0 0 .12
20 431 2586 100 100 100 0 0 .1 .01 0 .05
26 804 4824 1 1 1 0 0 0 0 0 .11

paper is our focus on the theory and design of quadrilateral C-
meshes; §4.1 suggests that a theory on hexagonal C-meshes will be
more di�cult to establish.

Future Research. There are plenty of potential directions for future
research. Properties of materials have been neglected so far. More
work is needed to fully understand the shape space of hex structures,
and to answer geometric questions (e.g. if more general collapsed
states provide additional degrees of freedom). A further rewarding
topic are meshes with spherical faces and circular edges in general,
and their applications in architecture. Here additional fabrication-
related constraints are important, like a small number of sphere
radii, or torsion-free support structures.
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APPENDIX

Lemma A.1. Consider nonparallel straight lines Ċ0, Ċ1 and the
points ĭğ ∈ Ċğ which realize the shortest distance between Ċ0 and
Ċ1. If the straight line Ĉ intersects Ċ0, Ċ1 under the same angle Ą at
points Ĭ0, Ĭ1, then distances ∥Ĭ0 −ĭ0∥ and ∥Ĭ1 −ĭ1∥ are equal.

Proof. For a geometric proof, we parallel translate lines Ĉ, Ċ0, Ċ1

through the origin, which yields lines Ĉ̃, Ċ̃0, Ċ̃1. The line Ĉ̃ is con-

tained in the cone of all lines enclosing the angle Ą with the axis Ċ̃0,

Ċ̃0

Ċ̃1

Ĉ̃

Ċ0

Ċ1

Ĉ
ĭğ

Ĭ0

Ĭ1 Ċ̃0

Ċ̃1

Ĉ̃

Ċ0

Ċ1

Ĉ

ĭ1

ĭ0

Ĭ1

Ĭ0

Fig. 24. Proof of Lemma A.1.

and in a similar cone with axis Ċ̃1. We visualize this situation in
Fig. 24. The two sub�gures on the left view the situation in direction
of the segmentĭ0ĭ1, which is orthogonal to both Ċ0, Ċ1. The two

cones being congruent, Ĉ̃ is contained in a plane bisecting Ċ̃0, Ċ̃1.
The bisector property is visible in the projection and directly im-
plies that the two distances of Ĉ fromĭğ , �rstly measured along Ċ0,
secondly measured along Ċ1, are the same. □

Proof of Theorem 3.8. The idea of the proof is to show that the
ability to collapse onto a curve imposes so many conditions that
only the special meshes described in the theorem can do it. The
proof is divided into 6 parts. In Parts (1–3) we construct a certain
arrangement of circles, in Step (4) we show it must be symmetric,
and in Step (6) we draw conclusions about the shape of the mesh.
However, this chain of arguments does not work if the curves we
collapse onto are special (namely, circles and straight lines). This
case is treated in Step (5).

(1) Decomposition Into C-Meshes, De�ni-
tion of Normals. Recall that the general-
ized C-meshĉ collapses onto a polyline.
Since a short polyline with only 3 ver-
tices always lies on a circle, the given
mesh is the union of diagonal C-mesh strips which collapse onto
just 3 vertices and therefore are only 1 face wide, see inset �gure.
Any vertex star is contained in one such C-mesh, and so every vertex
has a well de�ned sphere and normal.

(2)
Ĭ0 Ĭ1

Ĭ3 Ĭ2

Ĭ Ĭ∗
Diagonal Quads are Circular. Consider a

vertex Ĭ and its star Ĭ0Ĭ1Ĭ2Ĭ3. Recall that the
normal in the central vertex is contained in
the symmetry plane of neighbours Ĭğ , Ĭğ+1
(indices modulo 4). This symmetry is shown by Fig. 7 – please note
however that labels Ĭ0, . . . , Ĭ3 in Fig. 7 denote the vertices of a face,
while here, Ĭ0, . . . , Ĭ3 denote the 1-ring of a central vertex Ĭ .

Neighbours Ĭğ have constant distance from Ĭ and lie on the sphere
of Ĭ , so the quad Ĭ0Ĭ1Ĭ2Ĭ3 is circular, i.e., has a circumcircle ÿ .

(3) Construction of a Parallel Quad From Normals. The stars of two
successive vertices, say Ĭ1, Ĭ2, have two vertices in common (Ĭ and
Ĭ∗ in inset �gure), so both normals Ċ1, Ċ2 lie in the symmetry
plane of Ĭ, Ĭ∗; they are co-planar. This allows us to perform the
following construction: Parallel translate normals through the origin
and intersect them with a plane parallel to span(Ĭ0, . . . , Ĭ3). This
yields a quad Ĭ̄0Ĭ̄1Ĭ̄2Ĭ̄3 whose edges are parallel to the corresponding
edges of the original quad. The circular property depends on angles
only, so also Ĭ̄0Ĭ̄1Ĭ̄2Ĭ̄3 has a circumcircle ÿ̄ .
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Fig. 25. A result of inverse design

of quad C-meshes according to the

method of § 5 and Fig. 17. Le�: Final

strip structure. Right: the C-meshwhich

serves as its central mesh, and the

linear-Weingarten surface it has been

derived from. The deviation of the mesh

from the surface is shown as a multiple

of the bounding box diagonal.

Ĭ0

Ĭ3

Ĭ1

Ĭ2

ÿ Ĭ̄0

Ĭ̄3

Ĭ̄1

Ĭ̄2

ÿ̄

←

ÿ01 ÿ23
Normals Ċ0, Ċ1 belong to oppo-
site vertices in a face of a C-mesh,
so they are in the symmetric po-
sition illustrated by Fig. 7. In par-
ticular, Ĭ0, Ĭ1 have the same dis-
tance from the intersection point

Ċ0 ∩ Ċ1. After parallel translation this symmetry is expressed as
∥Ĭ̄0∥ = ∥Ĭ̄1∥. Similarly, ∥Ĭ̄2∥ = ∥Ĭ̄3∥. The inset �gure shows the
corresponding level sets of the function ∥Į ∥ in the plane of the quad.
They are concentric circles ÿ01 ∋ Ĭ̄0, Ĭ̄1 and ÿ23 ∋ Ĭ̄2, ĭ̄3.

(4) Diagonal Quads are Trapezoids. Consider the re�ection in the
symmetry plane Ă of Ĭ̄0, Ĭ̄1. It leaves circles ÿ̄ and ÿ01 invariant,
and also ÿ23 because it has the same center as ÿ01. If ÿ01 ≠ ÿ23
we can reconstruct vertices from circles. Thus not only the circle
arrangement is symmetric, but also the quad Ĭ̄0Ĭ̄1Ĭ̄2Ĭ̄3. A regularity
assumption similar to Th. 3.1 excludes the nonconvex case. We
conclude that Ĭ̄0Ĭ̄1Ĭ̄2Ĭ̄3 is a trapezoid. By parallelity, so is Ĭ0Ĭ1Ĭ2Ĭ3.

(5) The Special Case of C-Meshes. If the mesh under consideration
is actually a C-mesh, then also the normals Ċ1, Ċ2 correspond to
opposite vertices of a face in a C-mesh, and so are in a symmetric
position. This implies ∥Ĭ̄1∥ = ∥Ĭ̄2∥, and circlesÿ01,ÿ23 coincide. We
can no longer reconstruct vertices from the circles present, and we
cannot conclude that Ĭ0Ĭ1Ĭ2Ĭ3 is a trapezoid.

(6) Ă′ Ă

Ĭ0

Ĭ3

Ĭ1

Ĭ2

Ĭ

Global Shape of Generalized C-Meshes. Above
we showed that the star Ĭ0Ĭ1Ĭ2Ĭ3 of any vertex
Ĭ is symmetric w.r.t. the re�ection in a plane Ă
which maps Ĭ0 ←→ Ĭ1. That re�ection is already
de�ned by two vertices, so Ă is the symmetry
plane of Ĭ2, Ĭ3 as well as the symmetry plane of
vertices Ĭ0, Ĭ1. Thus, symmetry w.r.t. Ă extends to neighbours, and in
turn extends to an entire column of trapezoids. By symmetry, Ĭ ∈ Ă ,
and in fact an entire column of vertices lies in Ă . Repeating the
argument for a neighbour of Ĭ we get a similar re�ective symmetry
w.r.t. a plane Ă ′ which again contains a column of vertices. Since
that column is sill symmetric w.r.t. Ă , the symmetry plane of the
column positioned on the other side of Ă is found by re�ecting Ă ′

in Ă . The columns involved in this argument are now symmetric
w.r.t. the composition of re�ections in Ă, Ă ′: If Ă, Ă ′ intersect in a
line, this composition is a rotation, otherwise a parallel translation.
This local rotational/translational symmetry propagates through
the mesh, which concludes the proof. □

Remark A.2. The proof shows that already a pro�le composed of
only two circular segments leads to these special surfaces. The argu-
ment in the proof is applied to a vertex where the two segments join.
The rotational symmetry established locally propagates through the
entire mesh.

Proof of Equations (8) and (7). We follow the terminology of
[do Carmo 1976] and switch to a principal parametrizationĭ (ī, Ĭ)
ofē , so that principal curvatures ċğ (ī, Ĭ) obey Ĥī = −ċ1ĭī , ĤĬ =
−ċ2ĭĬ and both the �rst and second fundamental forms I, II are
diagonal matrices. Without loss of generality, in the point of interest
I = diag(1, 1), so II = diag(ċ1, ċ2). O�setting yields the parametriza-
tionĭ ′(ī, Ĭ) = ĭ (ī, Ĭ) + ĚĤ(ī, Ĭ), with

ĭ ′ī = (1 − Ěċ1)ĭī , ĭ ′Ĭ = (1 − Ěċ2)ĭĬ .

It follows that in the point of interest, the 1st and 2nd fundamental
forms of the o�set surface are given by I′ = diag((1 − Ěċ1)

2, (1 −
Ěċ2)

2), II′ = diag(ċ1 (1 − Ěċ1), ċ2 (1 − Ěċ2)).
A direction ( �ī, �Ĭ) de�nes a vector �īĭī+ �ĬĭĬ tangent to the surface

ē and a corresponding vector �īĭ ′ī + �Ĭĭ
′
Ĭ tangent toē

′. The normal
curvature associated with this direction is

ċĤ ( �ī, �Ĭ) =
( �ī, �Ĭ) II ( �ī, �Ĭ)Đ

( �ī, �Ĭ) I ( �ī, �Ĭ)Đ
, (9)

in the surfaceē . An analogous expression involving I′, II′ expresses
the normal curvature ċ ′Ĥ ( �ī, �Ĭ) in the o�set surfaceē ′.

To show (8), we recall that the curves in question are asymptotic
curves inē ′ which have zero normal curvature:

ċ ′Ĥ ( �ī, �Ĭ) = 0 ⇐⇒ ċ1 (1 − Ěċ1) �ī
2
= −ċ2 (1 − Ěċ2) �Ĭ

2 . (10)

This yields the direction ( �ī, �Ĭ) up to sign. Since we chose I =

diag(1, 1), we can compute angles between tangent vectors directly
in the ( �ī, �Ĭ)-plane. The angle Ă enclosed by ( �ī, �Ĭ) and the 1st prin-
cipal direction (1, 0) obeys tanĂ = �Ĭ/ �ī, so (8) follows directly from
(10). As to Equation (7), the value ċĤ is computed by inserting ( �ī, �Ĭ)
in (9), and some elementary manipulations. □

Fig. 26. A hexagonal C-

mesh in the shape of a

trefoil knot constructed

from a pipe surface ac-

cording to § 3.4.2.
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