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Abstract. We investigate the propagation of errors through geometric trans-
formations, such as reflections, rotations, similarity transformations, and pro-
jections, and also the scalar product of vectors. This means computing toler-
ance zones of points which undergo such transformations, if these points and
the transformations themselves are given by toleranced input data.
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1. Introduction

Geometric objects whose precise location is undefined but are known to be
contained in some tolerance zone, are the basic entities of robust geometric com-
puting for Computer-Aided Design. Starting with interval arithmetic [1, 5, 6, 7,
8, 13, 14], which represents imprecise floating point numbers by small intervals,
there is a huge amount of literature which deals with the practical aspects of
representation and computing with such entities [9]. In this context, worst case
tolerancing means that some mathematical objects, which serve as an argument
for some function, are given by their tolerance zones, and we seek for the set of
possible outcomes, i.e., function values [12]. Interesting work has been done by
C. U. Hinze [4], who analyses several elementary constructions in the Euclidean
plane. An application to collision problem involving toleranced objects has been
given by Aichinger [2]. [15] considers affine and convex combinations of points
and also the circumcircle of three points from the viewpoint of error propagation.
[10] further considers metric constructions and the computation of boundaries of
tolerance zones. In this paper we are concerned with certain geometric transfor-
mations in the Euclidean plane. In this paper we consider the propagation of
errors through toleranced geometric transformations: central similarities, reflec-
tions, projections, and the scalar product of tolerances vectors.
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Figure 1. Fat lines with butterflies defining |A ∨ B|.

2. Preliminaries

2.1. Fat points and fat lines. In Euclidean geometry, points are the most
elementary geometric objects. A fat point is a set of points. Usually when
computing with fat points, one restricts attention to sets with certain properties,
like closed convex ones, or even balls. In general, small letters denote geometric
objects, and capital letters denote their ‘fat’ variants. In this paper, we restrict
ourselves to the case the Euclidean plane (i.e., d = 2).

We define a fat line by either of the two following definitions:

Def. 1. (Fat line, version 1) If A,B are fat points, then the fat L spanned by A,
B is set of lines which meet both A and B. We write L = A ∨ B.

(Fat line, version 2) For fat points A and B, the fat line L spanned by A, B
consists of all points contained in a line which meets both A and B. We write
|L| = |A ∨ B|. ♦

Two lines which are not parallel dissect the plane into four closed angular
domains, which fall into two pairs of opposite ones (see Fig. 1, left). Two parallel
lines dissect the plane into three closed regions (see Fig. 1, right), one of which
contains the two lines and is called, for the sake of consistency, an angular domain
also. The following is elementary:

Prop. 1. Suppose that the fat points A and B have two exterior common tangents
l1, l2 with the property that both A and B are contained in an angular domain
bounded by l1 and l2; and suppose further that A and B have two interior common
tangents l3, l4, with the property that A is contained in an angular domain bounded
by l3 and l4 and B is contained in the opposite one. Then the union of these three
angular domains equals |A ∨ B|.

Clearly the assumptions of Prop. 1 are fulfilled if both A and B are disjoint and
convex, or are contained in disjoint convex sets (see Fig. 1). We call the four lines
the butterfly structure defined by the fat points A and B. The lines contained in
the region |A ∨ B| may be or may not be the lines of A ∨ B. Examples for this
behaviour are seen in Fig. 1 left and right.
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Figure 3. Cyclographic interpretation of reflection.

2.2. Minkowski sum. We will employ the Minkowski sum operation: If A and
B are subsets of R

2, their Minkowski sum is defined by A + B = {a + b | a ∈
A, b ∈ B}.

For convex polygons, the Minkowski sum is computed easily [3]: Assume that,
up to parallel translations, the boundaries of A and B are given by concatenation
of edges eA

1 , . . . , eA
k and eB

1 , . . . , eB
l , respectively. These two lists are sorted by

angle. Then the boundary of A + B is given, up to a parallel translation, by the
concatenation of the list of edges which arises from merging the two previous lists
and sorting by angle.

Note that if an edge of A is parallel to an edge of B, that is, both the edges
have the same outer normal direction, their lengths are added automatically by
the concatenation process.

3. Central similarities

For a given point o, the transformation x → o+λ · −→ox = (1−λ)o+λx is called
the central similarity transformation with center o and factor λ. The special case
λ = −1 is the reflection in o.

If P , Q are fat points, the central similarity of P with center Q and factor λ
is given by the set (1 − λ)Q + λP . In the case that both P and Q are bounded
by convex polygons, this Minkowski sum may be computed by the algorithm
mentioned in § 2.2. See Fig. 2 for an example.

If a central similarity is defined by fat disks A = D(c, r) and B = D(c′, r′)
with centers c, c′ and radii r, r′, resp., then the result is the disk (1− λ)D(c, r) +
λD(c′, r′) = D((1−λ)c, |1−λ|r)+D(λc′, |λ|r′) = D((1−λ)c+λc′, |1−λ|r+ |λ|r′).
The special case of reflection (λ = −1) results in the disk D(2c− c′, 2r + r′) (see
Fig. 2).

Disks may be represented by points of three-space via the cyclographic mapping
(see [11]): We represent a on oriented circle with center c = (x, y) and signed
radius r by the point (x, y, r) in R

3. Now the fat points A, B, and A−(B−A) are
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Figure 4. Left: Tolerance zone of reflection of a point in a fat
line. Right: Butterfly structure.

represented by the three points (x, y, r), (x′, y′, r′), and (2x− x′, 2y − y′, 2r + r′),
respectively. These three points in space are related: Reflection of the first in the
second yields the third (See Fig. 3).

4. Reflection in a line

In this section, we consider reflection of a fat point in a fat line of butterfly
structure. Unfortunately reflection of a convex fat point in a fat line will result in
a non-convex tolerance domain of the image point. It is nevertheless not difficult
to compute that image point from the original fat point from the butterfly.

We denote the result of reflection of a point p in line l by ρ(p, l). The notation
“arc(c, p, q)” is used for the arc which is the path traversed by the point p when
rotated counter-clockwise into the point q about the center c.

4.1. Reflection of a point in a fat line. We first consider reflection of the
point p in a fat line L characterized by the butterfly structure consisting of the
four lines l1, . . . , l4.

Def. 2. (butterfly indices and wedges) The four lines l1, . . . , l4 defining a butterfly
structure have 6 intersection points mij, two of which are interior points, and four
of which are boundary points We assume that the four points mij are indexed in
such a way that while rotating the line li about the point mij counter-clockwise
into the line lj we stay inside the fat line. This set of lines traversed during that
rotation, is called the wedge Wij belonging to mij. ♦

This is illustrated in Fig. 4, where the boundary points are indicated in black,
and only one of the two interior points can be seen.



ERROR PROPAGATION THROUGH GEOMETRIC CONSTRUCTIONS 5

Prop. 2. If L has butterfly structure, the tolerance zone ρ(p, L) is the planar
domain bounded by the four arcs Aij = arc(mij, ρ(p, li), ρ(p, lj)), where mij is a
boundary point of the fat line according to Def. 2.

Proof. Reflecting p in all lines l ∈ Wij results in the arc Aij. This arc belongs to
a circle which passes through p itself, which implies the fact that if x ∈ Aij, then
the line segment xp intersects Aij in x and possibly in p, but in no other point.

For an arbitrary non-boundary line l ∈ L there are exactly two lines l′ and l′′

parallel to l and contained in wedges Wij and Wkl. (see Fig. 4). The reflections
ρ(p, l′), ρ(p, l), ρ(p, l′′) lie on a line, in that order, and this line contains p.

Thus we have shown that the set of all possible reflections ρ(p, l) is the union

of all possible line segments ρ(p, l′)ρ(p, l′′). These intersect each of four arcs in
the points ρ(p, l′) and ρ(p, l′′), and possibly in p itself, and their carrier lines are
incident with p. Thus we conclude that this union is actually bounded by the
four arcs Aij. �

4.2. Reflection of a fat point in a fat line. If ρ(p, L) denotes the reflection
of a point p in a fat line L, then the tolerance zone ρ(P,L) of reflection of a fat
point P in the fat line L is given alternatively by

ρ(P,L) =
⋃

p∈P ρ(p, L) =
⋃

l∈L ρ(P, l).

Algorithm 1 below computes the boundary of ρ(P,L) if P is a fat point without
holes. The result consists of arcs and parts of the boundary of P (see Fig. 5). It
assumes that the lines l1, . . . , l4 constitute the butterfly which determines the fat
line L.

Algorithm 1. (Computing the boundary of ρ(P,L) if L has butterfly structure
and P has no holes):

1. Find boundary points mij = li ∩ lj of the butterfly and index according to
Def. 2. Compute ρ(P, li) (i = 1, 2, 3, 4).

2. For all four points mij, trace the boundary curve of ρ(P, li) and determine

points m
(ij)
r (r = 1, 2, . . . ) on the boundary of P such that distance from mij

assumes local maxima and minima in the points ρ(m
(ij)
r ).

(a) special case: If mij is outside ρ(P, li) and P is convex, there is exactly
one maximum and one minimum.

(b) special case: If mij is inside ρ(P, li) and P is star-shaped with respect
to mij (and especially if P is convex), it is sufficient to consider the
maxima only.

3. For all points mij
r found in this way, consider the arcs arc(mij, ρ(mij

r , li),
ρ(mij

r , lj)).

4. Consider the union M of all arcs found in step 3 and also the four domains
ρ(p, li). The ‘inside’ of M is the tolerance domain we look for.
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Figure 5. Left and Right: Tolerance zone of reflection of a fat
point in a fat line.

The idea of this algorithm is to consider the path of P when subject to reflection
in the lines of L which path through the centers mij of the butterfly. Successive
reflection of P in lines incident with mij results in copies of P which can be
transformed into each other by rotation about mij. Thus we consider the four
copies ρ(P, li) and look for the domains traced out by ρ(P, l) when l is in L and
incident with mij. The boundary of this domain will consist of arcs and the
boundaries of ρ(P, li), ρ(P, lj) themselves (see Fig. 5).

Proof. (of correctness of Alg. 1) The region traced out the ρ(P, l) when l ∈ L and
mij ∈ l is bounded by ρ(P, li), ρ(P, lj), and the some arcs. Clearly the algorithm
finds all those arcs. It follows that the ‘inside’ of the union of the arcs belonging
to mij together with ρ(P, li) and ρ(P, lj) is the domain in question. In this way
we have shown that the algorithm does not exaggerate the tolerance zone ρ(P,L),

We still have to show that all ρ(p, L), with p ∈ P , are contained in the domain
described by Alg. 1. It is clearly sufficient to show that the four boundary arcs
of ρ(p, L) have this property. For any p, each of these four arcs can be generated
as the path of p when reflected successively in the lines of L incident with one of
the four points mij. Therefore each of the four arcs are contained in one of the
four regions considered in the previous paragraph, and we are done. �

Remark: If P does not intersect the fat line L and P is convex, algorithm 1
will find eight arcs, but only four contribute to the boundary of ρ(P,L) (see Fig.
5). ♦
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5. Projection of a point onto a line

Projection of a point p onto a line l occurs in many geometric computations.
Here it is denoted by π(p, l). The relation ρ(p, l) = 2π(p, l)−p between reflection
in l and projection onto l immediately shows

Prop. 3. The tolerance zone π(p, L) where L has butterfly structure is the pla-
nar domain bounded by the four arcs arc(mij, π(p, li), π(p, lj)), where mij is a
boundary point of |L| according to Def. 2.

Prop. 3 is illustrated by Fig. 6. Obviously, the projection π(P, l) of a fat point
onto a line l is an interval of that line. Thanks to the simple structure of π(P, l)
we have the following result:

Prop. 4. Assume that P is a fat point and L is a fat line of butterfly structure.
For all wedges Wij according to Def. 2, and all lines l ∈ Wij onsider the projection
π(P, l), which is an interval, and mark its endpoints. Consider the eight curves of
these endpoints together with the segments π(P, li) (i = 1, . . . , 4) — the interior
of the region defined by these twelve curves is π(P,L).

Proof. In a way analogous to the proof of correctness of Alg. 1 we have to show
that π(p, L) is contained in the region described by the proposition. This is true
because π(p, L) is bounded by arcs (see Prop. 3) which arise from projecting p
onto the lines of L incident with one of the points mij. �

Remark: The actual computation of π(P,L), if P is a convex polygon, is simple:
Successively projecting P onto the lines of L which are incident with one of the
point mij results in a sequence of arcs, the boundary points of which lie on the
lines li and lk, and also on lines incident with mij and orthogonal to an edge of
P (see Fig. 7, right). ♦
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6. Similarity Transformations

6.1. Toleranced similarity: Minkowski sum.

Def. 3. The general similarity transformation G(q, θ, λ) with center q, angle θ,
and factor λ maps a point p according to

p 7→ q + λAθ · (p − q), Aθ =

(

cos θ − sin θ
sin θ cos θ

)

.(1)
♦

We will show how the image of a toleranced point under a general similarity
transform with toleranced center is easily computed via Minkowski sums.

First we define complementary similarity matrices: If r is the result of applying
G(q, θ, λ) to p, then there is a similarity G(p, θ′, λ′) such that r also is the result
of applying G(p, θ′, λ′) to q. The relation between the θ, λ, θ′, λ′ can be seen from
the triangle of Fig. 8: We have

λ′ =
√

1 − 2λ cos θ + λ2, λ2 = 12 + λ′2 − 2λ′ cos θ′.(2)

Obviously the relation between θ, λ, θ′, λ′ involves neither center. There is also a
second relation: The equations

r = (E − λAθ)q + λAθp, r = (E − λ′Aθ′)p + λ′Aθ′q,(3)
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(where E is the 2 × 2 identity matrix) for all p and q show that

λAθ + λ′Aθ′ = E.(4)

The following is a direct consequence of Equ. (3).

Prop. 5. If P,Q are fat points, then the result of applying the general similarity
G(Q, θ, λ) to P is given by λ′Aθ′ ·Q + λAθP, where the relation between θ, λ and
θ′, λ′ is given by both Equ. (2) and (4).

Prop. 5 shows that we can compute the result of a toleranced general similarity
by a Minkowski sum. We have a look at the special cases λ = 1 (rotation) and
θ = 0 (central similarity) now.

Prop. 6. If P,Q are fat points, then the result of applying the rotation G(Q, θ, 1)
to P is given by λ′Aθ′ · Q + AθP, where θ′ and λ′ are given by

λ′ = 2 sin(θ/2), θ′ = π/2 − θ/2.(5)

Proof. This follows by letting λ = 1 in Equ. 2, or directly from Fig. 8. �

As to the central similarity, letting θ = 0 results in either θ′ = π and λ′ = λ−1,
or in θ′ = 0 and λ′ = 1 − λ, so we get the result of § 3 again.

6.2. Toleranced similarity: Support functions. We are going to express
Prop. 5 and Prop. 6 in terms of support functions: The real-valued 2π-periodic
function s is the support function of the fat point P , if the half-space x cosφ +
y sin φ ≤ s(φ) contains P and its boundary is tangent to P . It is easy to see that
the rotated copy P ′ = Aθ · P , the scaled copy P ′′ = λP with λ > 0, and the
reflected copy P ′′′ = −P have the support functions s′(φ) = s(φ − θ), s′′(φ) =
λs(φ), s′′′(φ) = s(φ + π), respectively. Equ. (2) always results in λ′ > 0. It is no
loss of generality if we restrict ourselves to scale factors λ > 0, because a negative
factor can always be expressed by an additional rotation through 180 degrees:

Aπ = −E, λAθ = (−λ)Aθ+π(6)

Now Prop. 5 reads as follows: If P and Q have support functions s and s′,
resp., then the support function s′′ of G(P, θ, λ) applied to P is given by s′′(φ) =
λ′s′(φ− θ′) + λs(φ− θ), where λ′ and θ′ are given by Equ. (2). The same applies
to the rotation G(P, θ, 1): using the explicit expressions of Equ. (5), we get
s′′(φ) = 2 sin θ

2
· s′(φ − π−θ

2
) + s(φ − θ).

6.3. Toleranced similarity: Polygons. If the fat points which define and
which undergo a general similarity transform are bounded by polygons, it is
not difficult to compute the polygons which occur as the results of that trans-
formation. We can use the algorithm of § 2.2 to compute the Minkowski sums
mentioned in Prop. 5 and Prop. 6. It is worth to note two properties of gen-
eral similarity transformations which follow directly from these two propositions,
and which are illustrated in Fig. 9. θ, λ, and θ′, λ′ belong to complementary
similarities.
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(1) For a given point p and a given line segment ab, applying G(ab, θ, λ) to p
results in a line segment, and so does applying G(p, θ′, λ′) to ab.

(2) If p1, . . . , pn are points and ab is a line segment, then the images of ab
under G(pi, θ, λ) are parallel, and so are the images of the points pi under
G(ab, θ′, λ′).

Fig. 9 shows the segments c0d0 = G(p0, θ
′, λ′)(ab) = G(ab, θ, λ)(p0) and c1d1 =

G(p1, θ
′, λ′)(ab) = G(ab, θ, λ)(p1). By property 2, they are parallel. Fig. 9 also

illustrates G(Q, θ, λ) applied to P , where both P and Q are triangles.

6.4. Toleranced similarity: disks. The change in size of tolerance zones is
best appreciated when considering disks as tolerance zones. Prop. 5 and Prop.
6 immediately give the following result: If P and Q are disks of radii r and r′,
respectively, then applying the similarity with center Q and parameter θ, λ to P
results in a disk of radius

r′
√

1 + λ2 − 2λ cos θ + rλ,(7)

if λ > 0. Applying the rotation with center Q and angle θ to P results in a disk
of radius

2r′ |sin(θ/2)| + r.(8)

7. Inner product of fat vectors

A ‘fat vector’, i.e., the tolerance zone of a vector, is nothing else than a fat
point once an origin of a coordinate system has been specified. The sum of fat
point P and a fat vector V is the fat point P + V (Minkowski sum).

The tolerance zone A · B of the scalar product of two fat vectors A, B is
an interval, if both A,B are compact and connected. Obviously, A · B =
[minx∈A,y∈B(x · y), maxx∈A,y∈B(x · y)]. In order to compute A · B for fat vectors
with smooth or piecewise smooth boundary curves we will need the concept of
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tangent of a such a curve in a point p. If p is in the interior of a smooth part of
the curve, the tangent is well defined in the usual sense. At vertices the curve is
thought to be rounded off by a very small arc, and the tangents of this arc are
defined to be tangents of the original curve in this vertex.

Prop. 7. Suppose that A and B are fat vectors bounded by piecewise smooth
curves. Then the pairs (x, y) with x ∈ A, y ∈ B where x · y assumes its max-
imum and minimum have the property that they are contained in the respective
boundaries of A and B, and that there exist tangents Tx, Ty such that

−→ox ⊥ Ty and −→oy ⊥ Tx.(9)

Proof. The function x ·y with both x and y ranging freely in R
2 has no stationary

point except at x = y = 0, and this is neither a maximum mor a minimum. This
shows that maximum and minimum must occur at the boundaries of A and B.

First we suppose that they can be smoothly parametrized by curves c(t) and
d(s). A necessary condition for a maximum or minimum is that ∂

∂t
(c(t) · d(s)) =

ċ(t)·d(s) = 0, ∂
∂s

(c(t)·d(s)) = c(t)·ḋ(s) = 0. Here ċ and ḋ denote derivatives. Thus
we have shown condition (9). The case of piecewise smooth boundaries follows
by a standard limit argument, as already indicated in the paragraph conderning
the definition of ‘tangent’. �

Fig. 10 illustrates condition (9) for polygons A and B. We will however see in
Prop. 8 that computing A · B in that case benefits from additional properties.

Remark: Morse theory implies the nontrivial fact that there are at least four pairs
of points which satisfy condition (9): at least one maximum, one maximum, and
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two saddle points of the function x·y where x, y range in the respective boundaries
of A and B, cf. [16]. ♦
Prop. 8. If the fat vectors A and B are bounded by polygons, the minimum and
maximum of x · y with x ∈ A and y ∈ B occurs for vertices x of A and y of B.

Proof. We have to show that the function x·y has neither minimum nor maximum
if both x and y range in straight lines. Thus we assume that x(t) = a + tb and
y(s) = c + sd and get

x · y = a · c + s(a · d) + t(b · c) + st(b · c).
If b ·c 6= 0 this is a quadratic function whose purely quadratic part (“st”) has only
one saddle point; and which therefore does not have a minimum or maximum;
if b · c = 0 this is a linear or even constant function, which has neither of them
also. �

It is therefore possible to compute the interval A ·B by evaluating x · y for all
vertices x ∈ A and y ∈ B. We may disregard vertex pairs which do not fulfill
condition (9).

8. Cumulation of errors

When studying the propagation error during the composition of geometric
transformations one has to have in mind the possibly dependence of input data
on each other.

As an example, look at a fat point P in the shape of a disk of radius r, which
first undergoes the rotation G(Q1, θ1, 1), and then the rotation G(Q2, θ2, 1), de-
fined by fat centers Q1, Q2, which are themselves disks of radii r′, r′′, respectively.
In view of Prop. 6 or more precisely Equ. (8), the resulting tolerance zone is a
disk of radius

2r′′ |sin(θ2/2)| + 2r′ |sin(θ1/2)| + r(10)

The fact that Q1 = Q2 can have two different interpretations: Maybe the two
rotations are independent and their centers, in principle being independent, hap-
pen to share the same tolerance zone. But maybe the two centers are meant to
be the same point, so the two rotations are no longer independent. Thus we not
only have r′ = r′′, but the image of P under their composition is a disk of radius

2r′ |sin((θ1 + θ2)/2)| + r.(11)

This is in general smaller than the radius which we get by letting r′ = r′′ in Equ.
(10).

This example is an instance of the general principle that applying indepen-
dently defined transformations G(Q1, . . . ) and G(Q2, . . . ) to a fat point P results
in the tolerance zone

G(Q2, . . . )(G(Q1, . . . )(P )),(12)
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whereas the tolerance zone of the composition is only a subset of (12), if the single
transformations are not independent. In this way the relation “(11) ≤ (10)” is
actually a proof of the inequality

|sin(α + β)| ≤ |sin α| + |sin β|.(13)

There may be transformations which do not exhibit this behaviour, for example
the central similarity transformation: We apply the central similarities with fat
centers Q1, Q2 and factors λ1, λ2 to the fat point P , which results in

(1 − λ2)Q2 + λ2((1 − λ1)Q1 + λ1P )

Letting Q = Q1 = Q2 results in

(1 − λ1λ2)Q + λ1λ2P,

which is the same as applying the central similarity with center Q and factor
λ1λ2 to P .
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