
Form-finding with Polyhedral Meshes Made Simple

Chengcheng Tang, Xiang Sun, Alexandra Gomes
King Abdullah University of Science and Technology (KAUST)

Johannes Wallner
TU Graz

Helmut Pottmann
KAUST / TU Wien

Abstract

We solve the form-finding problem for polyhedral meshes in a way
which combines form, function and fabrication; taking care of user-
specified constraints like boundary interpolation, planarity of faces,
statics, panel size and shape, enclosed volume, and last, but not
least, cost. Our main application is the interactive modeling of
meshes for architectural and industrial design. Our approach can
be described as guided exploration of the constraint space whose
algebraic structure is simplified by introducing auxiliary variables
and ensuring that constraints are at most quadratic. Computation-
ally, we perform a projection onto the constraint space which is
biased towards low values of an energy which expresses desirable
“soft” properties like fairness. We have created a tool which ele-
gantly handles difficult tasks, such as taking boundary-alignment
of polyhedral meshes into account, planarization, fairing under pla-
narity side conditions, handling hybrid meshes, and extending the
treatment of static equilibrium to shapes which possess overhang-
ing parts.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: Discrete differential geometry, architectural geometry,
form-finding, static equilibrium, self-supporting surfaces, polyhe-
dral surfaces, constraint space, guided projection

Links: DL PDF

1 Introduction

Shape modeling systems often provide the user with little support
to satisfy constraints implied by function and fabrication of the de-
signed product. Very recently however we see a trend towards novel
design tools combining form, function and fabrication. This new in-
tegrated approach is a big challenge and obviously more specific to
the intended application than classical geometric modeling, see e.g.
[Umetani et al. 2012].

Geometrically complex architecture is one of the areas where an in-
tegrated design approach is in high demand. Most of the previous
work in this field deals with the combination of form and fabrica-
tion; it has already entered a variety of real projects, one of the
most recent and prominent ones being the Eiffel Tower Pavilions
[Schiftner et al. 2012]. We go one step further and integrate other
key aspects like statics, panel sizes, enclosed volume, total weight,
and cost. This application scenario however is not the only one

↑ ↑
boundary interpolation
(self-supporting mesh)

Figure 1: Form-finding with polyhedral meshes for architectural
design. We develop an interactive modeling system for polyhe-
dral meshes which can handle geometric properties like alignment
constraints of boundary vertices and planarity of faces, as well as
statics constraints like compressive-only equilibrium forces in the
edges (overcoming the height field limitation in previous treatments
of the self-supporting property).

where our methods can be applied. The basic problem we solve is
geometric and structural form-finding with polyhedral meshes, i.e.,
meshes with planar faces, where we particularly emphasize those
with mostly quadrilateral faces. This problem may be formulated
as follows: Provide a system for interactive design of polyhedral
meshes which fit given boundaries and other constraints provided
by geometry, statics, manufacturing and user input.

An example of the kind of problem solved in this paper, is geomet-
ric form-finding with planar quad (PQ) meshes and given boundary.
Using available structural form-finding tools to pass a surface S
through the boundary and then remeshing it by a geometrically fair
PQ mesh, will usually not achieve that vertices are placed exactly
on the boundary other than by simple trimming generating a cut-
off look. This is because of the close relation between PQ meshes
and the surface’s curvature behavior. Remeshing a surface by a PQ
mesh in static equilibrium has an even stronger relation to curvature
and exhibits similar behaviour: there is no freedom in the directions
of edges [Vouga et al. 2012]. Also here, remeshing is incapable of
producing boundary aligned meshes, in the sense that vertices lie
exactly on prescribed boundary curves in a geometrically fair man-
ner such as shown by Fig. 1 (the boundary becoming either a mesh
polyline or a sequence of face diagonals).

Related Work. Polyhedral meshes and in particular PQ meshes
have a number of favorable properties which make them great can-
didates for architecture [Glymph et al. 2004]. Research in Archi-
tectural Geometry thus had a rather strong focus on PQ meshes and
their relatives [Liu et al. 2006; Pottmann et al. 2007] and meanwhile
led to effective algorithms for remeshing (rationalization) [Liu et al.
2011; Zadravec et al. 2010] and optimization [Bouaziz et al. 2012;
Poranne et al. 2013b]. Spaces of polyhedral meshes and other con-
strained meshes have been exploited for design and exploration
[Yang et al. 2011; Vaxman 2012; Poranne et al. 2013a; Deng et al.
2013]. In particular we point to two contributions which address
issues relevant to our paper: an important technical detail has been
proposed by Poranne et al. [2013b]. They introduce normal vectors
of faces as extra variables but did not fully exploit the potential of

http://doi.acm.org/10.1145/2601097.2601213
http://portal.acm.org/ft_gateway.cfm?id=2601213&type=pdf


this idea for real-time computations. The latter aim is something
we share with [Kaspar and Deng 2013; Deng et al. 2014].

The combination of structural analysis and shape modeling is prob-
ably best studied for self-supporting masonry. In particular we here
refer to the thrust network method [Block and Ochsendorf 2007;
Block 2009], which may be seen as a non-conforming finite element
discretization of the continuous theory of stresses in membranes
[Fraternali 2010], and which is the basis of recent work on the in-
teractive computational design of self-supporting masonry. Vouga
et al. [2012] uses Maxwell’s reciprocal force diagram and a dis-
crete Airy potential to embed self-supporting surfaces into discrete
differential geometry. The various degrees of freedom inherent in
thrust networks were employed in different ways for computation of
self-supporting surfaces by de Goes et al. [2013], Liu et al. [2013],
and Panozzo et al. [2013]. All these methods treat self-supporting
surfaces at least locally as height fields (which is a restriction over-
come by our paper).

As to form-finding for self-supporting shapes (unrelated to poly-
hedral meshes) see the references in [Vouga et al. 2012], in par-
ticular hanging chain or membrane models [Heyman 1998; Kotnik
and Weinstock 2012]. Force density methods [Linkwitz and Schek
1971] linearize the form-finding problem by solving for static equi-
librium with respect to position variables, given prescribed pre-
stresses in the form of axial force densities [Gründig et al. 2000].

There is very little work on statically sound polyhedral meshes. The
statics-sensitive design of planar quad meshes has been addressed
by Schiftner and Balzer [2010] in a decoupled form-finding and
PQ-remeshing fashion, which is a method with many limitations.
Vouga et al. [2012] showed that self-supporting PQ meshes are
guided by the coupled curvature of the design surface and the Airy
stress surface. However, this approach has not been extended to a
solution of the present form-finding problem.

2 Contributions — System Overview

Before discussing algorithms we start with an overview of the fea-
tures which our modeling system for polyhedral meshes presents to
the user. From a higher viewpoint, this system consists of guided
exploration of the space of meshes defined by constraints, and its
main novelty lies in the unified treatment of side conditions which
concern both geometry and statics. The good numerical perfor-
mance of the system is due to the simple algebraic structure of the
constraint manifold which is achieved by making constraints and
fairness energies quadratic.

−→
• A basic task within the system
is to modify a mesh such that its
faces become planar (planariza-
tion). The constraint of planarity
of faces is maintained throughout all computations and during in-
teractive deformations of meshes, e.g. when a user drags a vertex.

• Our system allows to define
meshes by subdivision, followed
by a nonlinear step. This defines
a coarser layer of handles, or even
several layers of handles, which

allow for intuitive multiresolution design in the manner which is
well known for subdivision surfaces.

•We can create and interactively
edit thrust networks of forces, and
even of compressive forces useful
to design self-supporting masonry. It is a particular feature that

we can deal with networks which have overhanging parts. This
distinguishes our approach from others.

• A new feature is the handling
of meshes which have both pla-
nar faces, and equilibrium forces
in their edges. Again, we handle

meshes which are not height fields.

• We can do exploration of
meshes with constraints like cir-
cular faces or other offset-rele-
vant properties.

• For given combinatorics, we
can explore the possible shapes
of polyhedral meshes with this
combinatorics which fit a given

boundary (inset figures show interactive deformation guided by en-
closed volume). This exploration extends to meshes in static equi-
librium, to meshes with offset properties, and other kinds of con-
strained meshes.

• The system offers fairing of
meshes (plus fairing of Gauss im-
ages) under the constraint that
faces remain planar. This exam-
ple concludes this brief system overview. For more details we refer
to the individual results presented later.

3 Algorithms and Results

Our approach to the exploration and design of polyhedral surfaces
can be described as projection onto a manifold defined by con-
straints which is biased towards small values of an energy derived
from fairness and “soft” constraints. This section describes this pro-
cedure in detail: the choice of variables and the constraints they are
subject to in §3.1, soft constraints in §3.2, the algorithmic part in
§3.3, and initialization of variables in §3.4. In order not to interrupt
the flow of the presentation we first present only a simple setup, and
describe extensions in §3.5.

3.1 Variables and Constraints

In contrast to triangle meshes, which are encoded in a simple man-
ner by the connectivity and coordinates of vertices, the vertex co-
ordinates of general polyhedral meshes are not independent, and
finding an independent set of variables for a polyhedral mesh can be
hard. It also turns out that the introduction of additional variables
yields to very efficient computations. This section describes our
choice of variables for a modeling system for polyhedral meshes,
which is guided by the principle that the constraints imposed on the
variables should be linear or quadratic.

Vertex coordinates and face normals as variables. For a mesh
M = (V,E, F ), we use the vertex coordinates vi and also normal
vectors nk of faces fk as variables, amounting to a total of 3|F |+
3|V | scalar variables. Constraints imposed on them are firstly the
conditions nT

knk = 1, expressing that all normal vectors are unit
vectors. Secondly, we use the condition

nT
k(vi − vj) = 0

to express that the edge vivj is contained in the face fk with nor-
mal vector nk. For each n-gon fk there are n such conditions. We
use them all for reasons of symmetry even if we would need only



(a) (b) (c)

Figure 2: Self-supporting meshes which are not height fields. (a) The user models a subdivision surface (via control points) to be used as
reference shape. From there, we initialize geometry variables directly, and initial forces by calling a bounded least squares algorithm [Liu
et al. 2009]. Subsequent projection onto the constraint manifold involves, among others, compressive nature of forces, approximation of the
reference shape (a soft nonlinear constraint), gliding of the boundary along the reference shape’s boundary (a hard nonlinear constraint),
and equally distributed areas of faces. The resulting mesh is shown in (b) and also in Figure 1. (c) Color-coded magnitude of equilibrium
forces in the edges of the mesh.

n − 1 of them. We emphasize that unlike usual constrained op-
timization procedures, our computational approach is robust w.r.t.
dependencies between constraints.

Remark: We require that normal vectors are consistent with an ori-
entation of the mesh (e.g., they are all pointing outwards).

Edge lengths and forces as variables. Since stability and the
self-supporting property of meshes are included in our computa-
tions, we introduce the length lij ≥ 0 of an edge vivj ∈ E and
a force coefficient wij as new variables: The vector wij(vi − vj)
represents the force exerted on vertex vi, while the opposite force
wij(vj − vi) is exerted on the vertex vj . Tensile forces (like in
cables) have wij ≤ 0, while compressive forces have wij ≥ 0.

These 2|E| new variables introduce new constraints, beginning
with the defining equations l2ij = (vi − vj)

T(vi − vj) of edge
lengths. As to forces, our setup is typically applied to a mesh
which guides a structure whose beams follow the edges of the mesh
(actually, a bar and joint framework whose members follow the
mesh). With the cross-section Aij of members and density ρij of
the material, the edge vivj corresponds to a member of total weight
lijAijρij . We require that in each unsupported vertex vi, the sum
of incoming forces counterbalances the weight of members thought
to be lumped in that vertex:∑

j: vivj∈E

wij(vj − vi) =
( 0
0
1

)
·
∑

j: vivj∈E

1

2
ρijAij lij .

Remark: By introducing the areas of faces as additional variables
(see §3.5) we can model other types of loads besides the members’
own weight.

Counting degrees of freedom. Summing up, we have intro-
duced a vector x ∈ R3|V |+3|F |+2|E| of variables. For counting
constraints, taking redundancies into account, we consider the av-
erage number k of edges per face. Note that |E| ≈ k

2
|F |. There are

|F | constraints for normalizing normal vectors, (k− 1)|F | for pla-
narity, |E| for edge lengths, and 3|V | for equilibrium. This yields
|E| − (k− 3)|F | ≈ (3− k/2)|F | degrees of freedom. For triangle
meshes and quad meshes this number is firmly positive.

General form of equality constraints. The above-mentionedN
constraints are quadratic, so there are symmetric matrices Hi, vec-
tors bi and constants ci such that the collection of constraints reads

ϕi(x) =
1

2
xTHix + bT

i x + ci = 0, i = 1, . . . , N. (1)

The fact that the constraints are quadratic is beneficial in several
ways: They are easy to linearize, and it is known exactly how well
the linearized constraints fit the original ones. This quadratic na-
ture of constraints is due to the introduction of additional variables
ni, lij , . . . , which is a well-known trick in scientific computing.

Weighting of constraints. The data Hi,bi, ci defining a constraint
are not unique, but can be multiplied by an arbitrary factor (which
is used to attach more or less importance to individual constraints).

Inequality constraints. If the members of a structure follow the
edges of a mesh, then the material used for a member vivj defines
lower and upper bounds σmax

ij , σmin
ij for the axial stress force

cross-section =
wij lij/Aij experienced by this member. These inequalities are
turned into equality constraints by introducing dummy variables:

wij lij
Aij

= σmin
ij + λ2

ij
wij lij
Aij

= σmax
ij − µ2

ij .

The special cases σmax
ij = 0, resp., σmin

ij = 0 correspond to the
requirement that stresses are tensile, resp. compressive, and lead to
the simplified constraints wij = −µ2

ij , resp., wij = λ2
ij .

Remark: For a comparison between this oversimplified model and
finite element analysis, see §4.

Nonlinear constraints. Some constraints cannot be made qua-
dratic, e.g. the condition that vertices of a mesh should lie in a pre-
scribed curve, or should not deviate from a reference surface. Such
constraints should be called nonlinear or highly nonlinear. They are
handled by geometrically meaningful linearization, cf. §3.3.

3.2 Soft Targets and Energies

In contrast to the constraints of §3.1, we here consider desirable
properties of meshes like fairness which are expressed by a low
value of a certain energy function. Among the many possible fair-
ness energies we choose the following, which is based on 2nd order
differences of mesh polylines and the graph Laplacian. For any ver-
tex v temporarily denote the cycle of its immediate neighbours by
w1,w2, . . . ,wn and let

EM,fair(v) =
∥∥∥v − w1 + w3

2

∥∥∥2 +
∥∥∥v − w2 + w4

2

∥∥∥2, (n = 4),

EM,fair(v) =
∥∥∥v − w1 + · · ·+ wn

n

∥∥∥2, (n 6= 4).

A low value of EM,fair expresses fairness of the mesh M near v.



(a) (b) (c) (d)

Figure 3: Fairing under planarity constraints. (a), (b) This hybrid “flying carpet” mesh M (Louvre, Paris) has high variation of normal
vectors (visualized in (b) by color coding the area of the Gauss map of vertex stars). (c), (d) 2, resp. 5 iterations of guided projection onto the
constraint space defined by planarity of faces will decreases this variation. We use a fairness energy composed of EM,tang and EM∗,tang.

Tangential fairness, Gauss image fairness. The curvature of
a curve in a surface is decomposed into a normal and a tangen-
tial component, where the surface determines most of the normal
component and the curve is responsible for the tangential com-
ponent. This motivates us to consider the tangential component
EM,tang(v) of the local fairness energy: It is defined in the same
way as EM,fair(v) but all vertices are first projected onto a tangent
plane at the vertex v (in our computations, that tangent plane is de-
fined by a normal vector at the vertex v which is estimated and kept
fixed during each iteration).

The normal vectors nj of faces of the mesh M are, by definition,
the vertices of the Gauss image M∗ of M (the combinatorics of
M∗ are dual to the primal mesh M). Since we have introduced
the normal vectors ni as variables, expressions EM∗,tang(nj) are
immediately available. By adding them to the total fairness energy,
we include fairness of the Gauss image into our computations. This
directly translates to a good distribution of curvatures of the primal
mesh M. (Remark: Meshes M,M∗ must have comparable scale,
otherwise mixing energy terms from both M,M∗ does not make
sense).

Total Energy. The total fairness energy of the mesh is a weighted
sum of local contributions Efair(vi), or Etang(vi), or Etang(nk), in
all those places where these kinds of fairness are to be applied. In
any case the total fairness energy is the sum of squares of expres-
sions which are linear in the vector x of variables, and which can
therefore be written in the form kT

i x−si. Each is given a weight εi
(see Fig. 9 for details). With s = (ε1s1, ε2s2, . . . )

T and the matrix
K with rows εikT

i , we get

Etotal =
∑

i
ε2i (kT

i x− si)2 = ‖Kx− s‖2. (2)

3.3 Guided Projection Algorithm

The most basic computational task we solve is to modify a given
mesh (together with auxiliary variables, encoded in a vector of vari-
ables x) such that the prescribed constraints are obeyed. Among the
possible solutions of the constraint equations we seek one which
has small energy. I.e., we look for x which solves (1) such that
the energy (2) is small. Assuming we are given an initial instance
x = x0, we successively compute vectors x1,x2 and so on un-
til x = xn accurately enough represents a mesh with the desired
properties. This iterative algorithm stops whenever the desired ac-
curacy is reached or whenever there is no more improvement. The
examples in this paper needed at most 10 iterations.

Iterative algorithm. One round of iteration in our guided projec-
tion procedure works as follows. We are given an instance x = xn

of the variables, and we linearize the constraint equations (1) there.

Letting x = xn + δx and deleting terms which are quadratic in the
increment δx converts (1) into the linear system

ϕi(x) ≈ ϕi(xn) +∇ϕi(xn)T(x− xn) = 0, i = 1, . . . , N.

In the notation of (1), the gradient∇ϕi ofϕi is given byHixn+bi.
We rewrite the linearized constraint equations in matrix form:

Hx = r, H =

 ∇ϕ1(xn)
T

...
∇ϕN (xn)

T

, r =

 −ϕ1(xn) +∇ϕ1(xn)
T
xn...

−ϕN (xn) +∇ϕN (xn)
T
xn

.
This linear system typically is underdetermined, but contains re-
dundant equations which due to inevitable numerical errors lead
to a solution space which is too small, badly positioned, and fre-
quently useless for further computations. We therefore do not solve
Hx = r directly. We use the distance from the previous value x∗

and the energy of (2) as a regularizer, and solve

‖Hx− r‖2 + ‖Kx− s‖2 + (ε‖x− x∗‖)2 → min (3)

instead. Note that both K and s are small. We set ε = 0.001
throughout. The solution of (3) is denoted by xn+1 and represents
an almost-solution of the linearized constraint equations biased to-
wards a small energy value. It is computed from the linear system
(HTH + KTK + ε2I)x = HTr + KTs + ε2x∗ by Cholesky
factorization.

Interpolation and approximation of reference shapes. A typ-
ical constraint imposed on a mesh is that certain vertices vi are
confined to curves Ci (e.g. for the modeling application in Figures
1, 2) or that the mesh is to approximate a reference surface Φ (e.g.
for fairing in Fig. 3). Such nonlinear constraints are linearized as
follows: The condition vi ∈ Ci is replaced by vi ∈ T ∗i , with T ∗i
as the tangent of the curve Ci in the point which is closest to vi.
This amounts to 2 linear constraints, which are recomputed in each
round of iteration (similarly for Φ, where T ∗i is a tangent plane,
yielding 1 constraint).

We use this manner of linearization because if vi is close to Ci,
then locally dist(x, Ci)

2 ≈ dist(x, T ∗i )2, in the sense of limits of
2nd order Taylor expansions (similar for Φ, [Pottmann et al. 2006]).

Using guided projection in applications. To employ this iter-
ative algorithm for a concrete application, we must find an initial
value x = x0, which is discussed in §3.4. The iteration itself is
a Newton method with a higher-dimensional common zero set of
the equations (1). The energy (2) acts as Tikhonov-type regularizer
and decides which point of the zero set to converge to. Interpolation
or approximation constraints must be given, otherwise the fairness
energy will cause the mesh to shrink.



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Exploring the design space and experiencing its limitations: Firstly we observe that polyhedral meshes filling the same boundary
(a) and having different combinatorics, generally lead to similar shapes, see (b), (c), (d). User interaction may yield meshes which either
have sharp features like (e), or are skewed like (f), or both like (g). Subsequent optimization for equilibrium forces acts like smoothing and
reconstructs a dome-like shape apparently largely independent of the combinatorics, see (h).

A particular application is to continually call guided projection dur-
ing interactive deformation. We describe the details in §4, where we
compare our method to [Deng et al. 2014].

3.4 Initialization

Various application scenarios yield different kinds of information
on the starting point x0 employed to initialize the iterative projec-
tion algorithm. A simple case is the fairing example of Figure 3,
where only vertex coordinates and normal vectors play a role. Here
x0 is known, since the mesh to be faired already is polyhedral.
Another typical case, see Fig. 2, is an initial mesh provided by a
user. Here, geometry variables are easily initialized (vertices, edge
lengths, and estimated face normals). To initialize the force vari-
ables wij , we solve the equilibrium equations for nonnegative val-
ues wij , using the “HLBFGS” procedure of [Liu et al. 2009].

A more complex application scenario is that only a boundary curve
C is known, and the mesh combinatorics is part of the design. Here
we project C into the xy plane and use e.g. the method of Peng et
al. [2014] or Takayama et al. [2013] to fill its interior by a coarse
quad mesh, applying subdivision to refine it. A standard relaxation
scheme finds a mesh, having that combinatorics, which fits C (left
hand figure):

→ →

The user now yields information about the desired shape, e.g. by
dragging a vertex. We perform a quick auxiliary guided projec-
tion to achieve a mesh with this property (center image, using only
fairness, proximity to the previous mesh, and user-imposed con-
straints) and then proceed with whatever guided projection the user
has in mind. See Figures 4 and 13 for examples. We in particular
refer to the accompanying VIDEO.

3.5 System Extensions

In order not to disrupt the flow of presentation, §3.1 and §3.2
presented only a basic set of variables, constraints, and energies.
More features, requiring additional variables and constraints, are
discussed here. It is not difficult to extend our system even further.

Offset-relevant constraints The relevance of the circular and
conical properties of meshes are well known: they are related to
shape characteristics like principal curvature lines, and they are
intimately connected with the existence of constant-distance off-
sets and support structures [Liu et al. 2006; Pottmann et al. 2007].
Observe that vertices v1, . . . ,vn ∈ fk lie on a circle ⇐⇒
there is a point ck (on the axis of the circle) such that for all i,(
vi+1 − vi

)T(vi+vi+1

2
− ck

)
= 0 (indices mod n), meaning

that any connection between axis and edge midpoint is orthogonal
to that edge. Thus, adding variables ck and the above-mentioned
equations, extends our system to include circularity. Similarly we

add conicality which is nothing but circularity of the Gauss image.
[SEE VIDEO]

Figure 5: Vectorial areas can be used to
express the signed volume of a mesh over
the xy plane (which for closed meshes is
the usual volume). The z coordinate of the
vectorial area ak of an n-gon fk equals the
signed area of its projection onto the xy
plane. Multiplying by an average z coor-
dinate of vertices of fk, and summing over
all faces fk yields an approximate volume.
The example at left shows growth of meshes
by a user prescribing the total volume.

Areas and volumes. For various applications a nice distribution
of areas of faces is important. For that we introduce as new vari-
ables the vectorial areas of faces, defined by ak = 1

2

∑
vi × vi+1

(where the sum is over the positive cycle of vertices of fk). Fur-
ther new variables are the scalar areas Ak defined by A2

k = aT
kak.

In order to set up a fairness energy which favours equidistribu-
tion of areas, we introduce the yet undetermined common area of
faces as an additional variable A, and add individual contributions
EM,area(fk) = (A − Ak)2 to the total energy function. See Fig. 6
for a hex mesh produced with and without this term, respectively.

Figure 6: Effect of computing meshes with “equal area” soft con-
straints (right) and without (left).

Since the new relations between variables are quadratic, they fit our
framework. Fairing using areas has been used e.g. in the example of
Figures 1, 2. Fig. 5 shows how to employ areas to define volumes.
Unfortunately global constraints (like total area or volume) lead to
equations which involve many variables. This considerably slows
down our algorithms, as matrices are no longer sparse.

Force fairness, cost, and further extensions. In engineering,
uniform distribution of forces is a desirable property (because then
the maximum forces are lower). To achieve this, we define a low-
weight constraint expressing equality of forces in opposite edges of
every quad (this leads to equations of the type lijwij−lklwkl = 0).
Interestingly, this “force fairing” has also geometric fairing effects,
see Fig. 7a,b.

Many aspects of the cost of building a structure can be expressed
directly in terms of the variables we employ (edge lengths and ar-
eas of faces). It is easy to incorporate those aspects of cost into
our system, as well as bounds on edge lengths and areas (because



(a) (b) (c) (d) (e)

Figure 7: Architectural design of a roof covering a rectangular courtyard. (a) Optimization of this geometry via guided projection takes
planarity of faces into account, as well as fairness and static equilibrium. The magnitude of forces is shown by color coding the edges of the
mesh. (b) Similar optimization, with an additional “force fairing” contribution to the total energy. (c) This design encloses more volume than
(a) and (b), but with upper bounds on cost, i.e., upper bounds on edge lengths and areas. (d), (e) Different views of an architectural design
based on the mesh shown in (a).

reasonably priced panels are available only up to a certain size)
and bounds on forces (because otherwise better materials or thicker
members have to be used), see Fig. 7c. Since every relation ex-
pressible via rational functions can be made quadratic if additional
variables are introduced, one can include many more features in our
system, see e.g. Fig. 8. This section presented only some of them.

Figure 8: The right hand mesh differs from the left hand mesh by a
contribution to the total energy whose presence tends to make each
face a parallelogram (it is a sum of squares of differences of op-
posite edges in quads). The mesh’s combinatorics and a preferred
geometry of faces together cause features to emerge.

3.6 Results Summary

In the course of this paper we have already mentioned some par-
ticular applications and results. Fairing under planarity constraints
has been tested on a mesh representing freeform architecture which
has actually been built (Fig. 3). Our system is generally useful for
form-finding (Fig. 4). Geometric modeling with polyhedral meshes
and the additional complication of the self-supporting property is
the topic of the examples of Figures 1+2, 11 and 12.

A simpler example which nevertheless represents a typical and im-
portant application is shown by Fig. 7: fitting a dome-like polyhe-
dral mesh to a boundary with corners (taking statics into account).
The side condition of a straight line being contained in a smooth
mesh with planar faces rather restricts the possible shapes of that
mesh, cf. the discussion in the “limitations” section.

Fig. |V | statics? wplanar wforce wcompr. wbdry wprox warea wpara εfair εtang εGauss #IterT [sec]
2 1726 yes 1 1 1 1 .1 .001 .9n 5 2.8
3c 1766 no 1 1 .1 .002 .002 2 .45
3d ” ” ” ” ” ” ” 5 1.1
8b 1121 no 1 1 .01 .01 5 .4
11 481 yes 1 1 1 1 .1 .01 .05 5 .6
12 521 yes 1 1 1 .05 ·.9n .05 ·.9n 10 1.5
13 1056 yes 1 1 1 1 .05 ·.95n 10 3.3†
† computation preceded by 0.8 sec “lifting” phase w/o planarity constraints, with boundary interpolation

and the constraint that the mesh projects onto the flat mesh it is initialized from [SEE VIDEO].

4 Discussion

Implementation Details. Figure 9 gives details on the computa-
tion for several of our examples. The timings refer to a Thinkpad
T530 with a two-cores Intel R© CoreTM i5-3320M CPU [2.60GHz
and 8G RAM]. Note that guided projection onto the constraint
space is fast enough for real-time geometric modeling, SEE VIDEO.

Comparison with related work. The following paragraphs com-
pare our paper with several recent contributions dealing with the
geometric modeling of constrained meshes, namely [Deng et al.
2014], [Bouaziz et al. 2012], and [Poranne et al. 2013b].

Comparison of performance. We compare only with these three pa-
pers, since they themselves compare with previous work and show
that they outperform methods which do not use the trick of intro-
ducing auxiliary variables. Fig. 10 gives an account of the conver-
gence behaviour of our method and of both [Deng et al. 2014] and
[Bouaziz et al. 2012] when used for “planarization” (i.e, optimizing
a mesh with nearly-planar faces such that faces become planar but
stay close to the reference geometry).

We performed several other comparisons, including on circular
meshes, which yielded similar results. We also implemented [Po-
ranne et al. 2013b], which inspired part of our work. Their alternat-
ing approach yielded a much larger deviation (1–2 orders of mag-
nitude) from the original mesh, so no data are included in Fig. 10.

Comparison of interactive modeling capabilities. The accompany-
ing VIDEO shows a side-by-side comparison of our method and the
method of [Deng et al. 2014] when both are used for interactive
design of a larger mesh with planar faces (|V | = 3504).

Our interactive modeling procedure works as follows: Let the cur-
rent mesh be described by variables x0. When a user selects a han-
dle, we linearize all constraints, defining a tangent space T of the
constraint manifold C . While the user drags the handle, we ap-
ply the smallest deformation in T which lets the mesh follow the

Figure 9: Statistics. We give the following
data: • mesh size • weights of constraints,
namely wplanar for planarity of faces, wforce
for force balance, wcompr. for compressive
forces, wbdry for boundary interpolation,
wprox for proximity to reference geometry,
warea for equal areas, wpara for the “par-
allelogram” constraint of Fig. 8 • weights
εfair, εtang, εGauss associated with fairness,
cf. Equ. (2) • number of iterations • time.



δmax =1.6·10−2
δavg =2.7·10−3

0 .01

(A): σavg = .019

(B): σavg = .027

(C): σavg = .02

(D): σavg = .019

δ
m

ax
—

—
—

δ
av

g
··
··
··

[Deng et al. 2014]

(A) (B)

[Bouaziz et al. 2012] (ours)

(D)

Figure 10: Different “planarization” methods which optimize the mesh “M” (left) from [Zadravec et al. 2010] such that faces become
planar. We compare the following methods: (A) [Deng et al. 2014], (B) [Bouaziz et al. 2012], (C) our method with cubic constraints, without
auxiliary variables; (D) our method. The chart illustrates convergence by means of the planarity measure δ and the deviation σ from the
reference mesh M: δ = distance of diagonals

avg. edge length , σ = deviation from M
bounding box diameter . The planarity measure is the only significant difference between the respective

results, which are almost indistinguishable (see right hand figures).

handle. When the handle is released, we apply 10 iterations of our
projection onto C : weights associated with hard constraints are set
to 1, and for regularization we use the following rule of thumb: In
the n-th iteration, 1 ≤ n ≤ 5, we use mesh fairness with weight
0.2 · 0.9n, while for 5 < n ≤ 10 no fairness is employed.

On the other hand, Deng et al. [2014] use a fixed soft energy for
fairness of the deformation, and another one for achieving the user’s
design intent. This causes behaviour different from our method:
(i) Switching off fairness will result in meshes which satisfy the
constraints but which are not fair. (ii) Starting from a mesh which is
not fair usually does not produce fair meshes. The main difference,
however, is that we do not try to find a minimum of the fairness
energy but use it only for regularization.

Summing up, the experiments yield an impression similar to
Fig. 10: In contrast to related work, our method is capable of satis-
fying constraints (up to machine precision) quickly.

Work on self-supporting meshes. Self-supporting surfaces which
are not height fields could be handled by [Vouga et al. 2012], but re-
quire special treatment of vertical face planes. Our method achieves
greater accuracy and is faster, owing to their alternating approach
and highly nonlinear planarity formulation.

Comparison with local exploration methods. An alternative ap-
proach to constrained meshes are methods which locally explore
the constraint manifold C by Taylor expansion [Yang et al. 2011].
They can be extended to include force variables as well, but they
solve a different kind of problem. They have a particular limitation,
namely being unable to start exploring C from most flat meshes
(which is a feature an interactive tool should provide). The reason
for this lies in the fact that the flat meshes constitute a “trivial” lin-
ear component of C [Poranne et al. 2013a]. It is known that a flat
mesh is connected to the nontrivial components of C if and only if
it possesses an equilibrium system of forces.

Robustness. The algorithm is not sensitive to parameters
(weights of fairness terms). It was not necessary to tune them for
better computational performance. The hard constraints form an
underdetermined system and can be enforced with high precision,
even in the presence of regularizing energies. Unlike e.g. [Deng
et al. 2014] we are not aiming at minimizing those energies.

Convergence. We are attributing the good behaviour of our
guided projection algorithm to the fact that it is essentially a reg-
ularized Newton method (with a higher-dimensional zero set) ap-
plied to equations which enjoy only the simplest kind of nonlin-
earity. Using fairness energies as a regularizer is enough for our

purposes. Our experiments exhibit a lin-
ear convergence rate: In the inset fig-
ure, the orange line is a logarithmic plot
of “planarity” δ over the iterations, for
the example of Fig. 10. The blue lines
show the progress of planarity and cir-
cularity (dashed) for another mesh with
384 faces.

δ

# of iterations

10−4

10−8

10−12

1 3 5 7 9

Limitations. The limitations of our method are essentially those
of a classical Newton method for solving nonlinear equations,
which is in widespread and successful use but of course can be
made to fail despite the additional regularization we employ. Be-
low we describe limitations of a quite different kind, which are ge-
ometric and which would apply to any method used for exploring
possible shapes of polyhedral meshes.

• Often architectural designs require straight boundaries. For
quad meshes, if that boundary is to be a mesh polyline, then all
faces incident with it lie in a common plane. This restriction is
apparent in Figure 7.
• Often a designer intends a quad mesh with a mesh polyline in

the xy plane, such that transverse edges meet that polyline under
right angles (see e.g. Fig. 13). For smooth surfaces, an analogous
property would be that its intersection with the xy plane is a prin-
cipal curvature line (the edges of a polyhedral quad mesh follow
a conjugate curve network, which together with orthogonality im-
plies the principal property, cf. [Liu et al. 2006]). Joachimsthal’s
theorem then says that the surface meets the xy plane under con-
stant slope. This effect can be observed in Fig. 13.

These limitations are consistent with our experiences with local
shape space exploration methods (e.g. by Yang et al. [2011]: many
variations will be either tangential, or reduce smoothness).

Verification by FE analysis. Our computations do not model an
actual structure, but a bar and joint framework with flexible joints.
The magnitude of forces in that framework does not allow us to
draw conclusions as to the magnitude of stresses in an actual struc-
ture (which arises from that framework e.g. by making joints rigid
and modeling the edges with beams undergoing bending and tor-
sion). There is the following heuristic, however: equilibrium in
the hypothetical framework means that an actual structure, under
its own deadload, is in equilibrium without any moments in the
nodes. In order to find out to what extent this heuristic is justified,
several of the meshes we produced were submitted to linear static
FE analysis, using Ansys Mechanical (R14.5). For the example of
Figures 1, 2, edges are modeled as beams with thin-walled square



(b)

(a)
(c)

(e)(d)

Figure 11: Like Figure 2, this is an example of a self-supporting polyhedral mesh created by interactive subdivision modeling, coupled with
guided projection onto the constraint manifold [SEE VIDEO]. (a) initial subdivision surface with control points. (b) final subdivision surface,
initializing projection. (c) projected mesh with color-coded magnitude of equilibrium forces in its edges, which is the basis of the architectural
design shown in (d) and (e). Note that our method provides perfect user-controlled boundary interpolation: Partly the boundary is a mesh
polyline, partly the boundary consists of diagonals.

cross-sections from S235 structural steel, while the example of Fig-
ure 11 was modeled with 20cm circular “Portland cement” concrete
beams. Joints were modeled with infinite stiffness. The structure
was subsequently subject to its own deadload with fixed boundary.
We observe:

• The axial load is of the same order of magnitude as the re-
spective values occurring in our algorithm. The constraint wij ≥ 0
is not quite sufficient to ensure compressive forces, since usually
some beams carry negligible tension forces.
• Stresses due to bending are of the same magnitude and are su-

perimposed on the axial stresses. The occurrence of tensile stresses
is not negligible here.
• Stresses are 2 orders of magnitude less than the recommended

maximum, except in the case of tension in concrete, where they are
one order of magnitude below. There was no flexural buckling.

We conclude that including equilibrium forces in our algorithm pre-
pares well for subsequent structural analysis, but cannot replace it.
This is in line with the goal of statics-aware geometric modeling:
avoid infeasible designs, but do not replace structural analysis.

5 Conclusion and Future Work

We have presented a framework for the interactive modeling of
polyhedral surfaces or – more generally – meshes constrained by
equalities and inequalities. In particular we handle self-supporting
meshes and give the user control over both combinatorics and ge-
ometry. The framework goes well beyond meshes for architecture
(which we used as our main motivation).

On the technical level, we have solved constraint equations for
meshes by a two-step process: Preprocessing (i.e., the choice of
variables) makes the constraint equations quadratic as far as possi-
ble. The actual computation is done by a Newton-type method, nu-
merical problems due to redundant constraints being circumvented
by using a fairness energy for regularization.

The main successes of our approach are its speed (it is fast enough
to allow for interactive modeling of constrained meshes without
GPU implementation), and also the easy way to deal with prob-
lems which so far have been considered difficult: handling force
equilibrium and force constraints in meshes which are not locally
height fields, and manipulating both combinatorics and shape. The
authors are not aware of previous work in this area which for in-
stance is able to combine statics with planarity constraints.

Future work. The combination of form, function and fabrication
is a wide and open field of research which is not confined to archi-
tecture. We are confident that the method of guided projection onto
constraint manifolds presented in this paper will find applications
completely unrelated to architecture, and even unrelated to meshes.

Acknowledgments

We are grateful to the anonymous referees for their comments. We
would particularly like to thank Bailin Deng and Alexandre Kaspar
(EPFL) for their extensive help and support concerning compar-
isons, and Wito Engelke and Marko Tomičić for help with illustra-
tions. This research was supported by the Austrian Science Fund
(FWF) via grants P23735-N13 and I706-N26 (DFG-Collaborative
Research Center, TRR 109, Discretization in Geometry and Dy-
namics). Chengcheng Tang and Xiang Sun were supported by
KAUST base funding, Alexandra Gomes by the Visual Computing
Center at KAUST.

References

BLOCK, P., AND OCHSENDORF, J. 2007. Thrust network analysis:
A new methodology for three-dimensional equilibrium. J. Int.
Assoc. Shell and Spatial Structures 48, 3, 167–173.

BLOCK, P. 2009. Thrust Network Analysis: Exploring Three-
dimensional Equilibrium. PhD thesis, M.I.T.

BOUAZIZ, S., SCHWARTZBURG, Y., WEISE, T., AND PAULY, M.
2012. Shape-up: Shaping discrete geometry with projections.
Comp. Graph. Forum 31, 1657–1667. Proc. SGP.

DE GOES, F., ALLIEZ, P., OWHADI, H., AND DESBRUN, M.
2013. On the equilibrium of simplicial masonry structures. ACM
Trans. Graph. 32, 4, #93, 1–10. Proc. SIGGRAPH.

DENG, B., BOUAZIZ, S., DEUSS, M., ZHANG, J., SCHWARTZ-
BURG, Y., AND PAULY, M. 2013. Exploring local modifica-
tions for constrained meshes. Comp. Graph. Forum 32, 2, 11–20.
Proc. Eurographics.

DENG, B., BOUAZIZ, S., DEUSS, M., KASPAR, A., SCHWARTZ-
BURG, Y., AND PAULY, M. 2014. Interactive design exploration
for constrained meshes. Computer-Aided Design. to appear.

FRATERNALI, F. 2010. A thrust network approach to the equi-
librium problem of unreinforced masonry vaults via polyhedral
stress functions. Mechanics Res. Comm. 37, 2, 198 – 204.



Figure 12: A triangle mesh which is not a height field and which is
self-supporting for a load proportional to the area of faces.

Figure 13: Architectural freeform design in static equilibrium with
planar faces (“greenhouse”) by lifting a flat mesh filling out a given
boundary.

GLYMPH, J., SHELDEN, D., CECCATO, C., MUSSEL, J., AND
SCHOBER, H. 2004. A parametric strategy for free-form glass
structures using quadrilateral planar facets. Automation in Con-
struction 13, 2, 187 – 202.

GRÜNDIG, L., MONCRIEFF, E., SINGER, P., AND STRÖBEL, D.
2000. A history of the principal developments and applications
of the force density method in Germany 1970–1999. In 4th Int.
Coll. Computation of Shell & Spatial Structures.

HEYMAN, J. 1998. Structural Analysis: A Historical Approach.
Cambridge University Press.

KASPAR, A., AND DENG, B. 2013. Realtime deformation of con-
strained meshes using GPU. In Symposium on GPU Computing
and Applications. to appear.

KOTNIK, T., AND WEINSTOCK, M. 2012. Material, form and
force. Architectural Design 82, 104–111.

LINKWITZ, K., AND SCHEK, H.-J. 1971. Einige Bemerkungen
zur Berechnung von vorgespannten Seilnetzkonstruktionen. In-
genieur-Archiv 40, 145–158.

LIU, Y., POTTMANN, H., WALLNER, J., YANG, Y.-L., AND
WANG, W. 2006. Geometric modeling with conical meshes
and developable surfaces. ACM Trans. Graph. 25, 3, 681–689.
Proc. SIGGRAPH.

LIU, Y., WANG, W., LÉVY, B., SUN, F., YAN, D.-M., LU, L.,
AND YANG, C. 2009. On centroidal Voronoi tessellation –
energy smoothness and fast computation. ACM Trans. Graph.
28, 4, #101, 1–17.

LIU, Y., XU, W., WANG, J., ZHU, L., GUO, B., CHEN, F., AND
WANG, G. 2011. General planar quadrilateral mesh design using
conjugate direction field. ACM Trans. Graph. 30, 6, #140, 1–10.
Proc. SIGGRAPH Asia.

LIU, Y., PAN, H., SNYDER, J., WANG, W., AND GUO, B.
2013. Computing self-supporting surfaces by regular triangu-
lation. ACM Trans. Graph. 32, 4, #92, 1–10. Proc. SIGGRAPH.

PANOZZO, D., BLOCK, P., AND SORKINE-HORNUNG, O. 2013.
Designing unreinforced masonry models. ACM Trans. Graph.
32, 4, #91, 1–12. Proc. SIGGRAPH.

PENG, C.-H., BARTON, M., JIANG, C., AND WONKA, P. 2014.
Exploring quadrangulations. ACM Trans. Graph. 33, 1, #12,1–
12.

PORANNE, R., CHEN, R., AND GOTSMAN, C., 2013. On linear
spaces of polyhedral meshes. ArXiv:1303.4110.

PORANNE, R., OVREIU, E., AND GOTSMAN, C. 2013. Interactive
planarization and optimization of 3D meshes. Comp. Graph.
Forum 32, 1, 152–163.

POTTMANN, H., HUANG, Q.-X., YANG, Y.-L., AND HU, S.-M.
2006. Geometry and convergence analysis of algorithms for reg-
istration of 3D shapes. Int. J. Computer Vision 67, 3, 277–296.

POTTMANN, H., LIU, Y., WALLNER, J., BOBENKO, A., AND
WANG, W. 2007. Geometry of multi-layer freeform structures
for architecture. ACM Trans. Graph. 26, 3, #65,1–11. Proc.
SIGGRAPH.

SCHIFTNER, A., AND BALZER, J. 2010. Statics-sensitive lay-
out of planar quadrilateral meshes. In Advances in Architectural
Geometry 2010. Springer, 221–236.

SCHIFTNER, A., LEDUC, N., BOMPAS, P., BALDASSINI, N.,
AND EIGENSATZ, M. 2012. Architectural geometry from re-
search to practice — the Eiffel Tower Pavilions. In Advances in
Architectural Geometry 2012. Springer, 213–228.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32, 4, # 97,1–8.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4, #86, 1–11. Proc. SIGGRAPH.

VAXMAN, A. 2012. Modeling polyhedral meshes with affine maps.
Comp. Graph.. Forum 31, 1647–1656. Proc. SGP.

VOUGA, E., HÖBINGER, M., WALLNER, J., AND POTTMANN, H.
2012. Design of self-supporting surfaces. ACM Trans. Graph.
31, 4, #87, 1–11. Proc. SIGGRAPH.

YANG, Y., YANG, Y., POTTMANN, H., AND MITRA, N. 2011.
Shape space exploration of constrained meshes. ACM Trans.
Graph. 30, 6, #124,1–11. Proc. SIGGRAPH Asia.

ZADRAVEC, M., SCHIFTNER, A., AND WALLNER, J. 2010. De-
signing quad-dominant meshes with planar faces. Comp. Graph.
Forum 29, 5, 1671–1679. Proc. SGP.


