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Abstract

In this paper the Laguerre geometry of three-dimensional Galilei space,

that is, the geometry of oriented planes and cycles of an a�ne Cayley-Klein

space with absolute line and two conjugate complex absolute points on it,

is studied. Several di�erent models are presented: A cyclographic model

and an isotropic model together with their duals and an interpretation in

terms of geometrical optics of Galilei space. We also have a closer look on

Laguerre transformations. Galilei geometry arises naturally in the context

of rational surfaces which possess rational circular o�set surfaces, and it

can also be used for modeling rational circular o�set surfaces, e. g., with

Galilei cyclides.

1 Introduction

There are two reasons why Laguerre geometry of Galilei space is interesting.

First the geometry of planes in Galilei space and the di�erent models of isotropic

M�obius geometry connected with it deserve interest.

Second, within the search for rational surfaces with rational o�sets, which

has its origin in computer aided geometric design applications, we have to treat

the case of a circular o�set surface, which, for instance, is traced out by a point

of the axis of a cylindrical milling tool when shaping a given surface. The

geometry of planes of Galilei space here occurs naturally.

On the one hand, we rely on R�oschel [13] and Brauner [2]. On the other

hand, we follow the work done by Pottmann and Peternell [8, 9, 10, 11].

2 Fundamentals of Galilei Laguerre Geometry

2.1 Galilei Space

We repeat some de�nitions and elementary properties of Galilei space [13].

De�nition Galilei space is three-dimensional real projective space P

3

(R) to-

gether with the geometry induced by the conformal Galilei group H

8

and its

subgroup, the Galilei motion group B

6

. H

8

consists of the transformations

which, in homogeneous coordinates, are given by

x

0

0

= x

0

;

x

0

1

= rx

0

+ � cos(�)x

1

+ � sin(�)x

2

+ ux

3

;

x

0

2

= sx

0

� � sin(�)x

1

+ � cos(�)x

2

+ vx

3

;

x

0

3

= tx

0

+ wx

3

;

(1)
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and B

6

is the subgroup de�ned by � = w = 1.

In the terminology of Cayley-Klein geometries [5], Galilei space is the real part of

three-dimensional complex projective space P

3

(C ), equipped with the absolute

�gure

! � f � fI

1

; I

2

g; (2)

where ! is the absolute plane x

0

= 0, f is the horizontal absolute line x

0

=

x

3

= 0, and I

1

, I

2

are the horizontal absolute points (0; 1;�i; 0)C .

Galilei motions leave the two Galilei distances invariant:

d

2

1

((x

1

; y

1

; z

1

); (x

2

; y

2

; z

2

)) = (z

2

� z

1

)

2

; (3)

d

2

2

((x

1

; y

1

; z); (x

2

; y

2

; z)) = (x

1

� x

2

)

2

+ (y

1

� y

2

)

2

: (4)

2.2 Galilei Laguerre Space

Galilei Laguerre geometry is the geometry of oriented non-horizontal planes in

Galilei space.

De�nition An oriented hyperplane " of P

n

(R) is a set

" = (e

0

; : : : ; e

n

)R

+

; e

i

2 R; " 6= (0; : : : ; 0):

The hyperplane corresponding to the oriented hyperplane (e

0

; : : : ; e

n

)R

+

has

the equation

e

0

x

0

+ : : :e

n

x

n

= 0: (5)

A point p = (x

0

; : : : ; x

n

)R 2 P

n

(R) is incident with the oriented hyperplane

(e

0

; : : : ; e

n

)R

+

, if it ful�lls (5). If n = 3, an oriented (hyper-)plane is hori-

zontal, if the corresponding plane contains the line x

0

= x

3

= 0. Then three-

dimensional Galilei Laguerre space G is the set of non-horizontal oriented planes:

G = f(e

0

; e

1

; e

2

; e

3

)R

+

j(e

1

; e

2

) 6= (0; 0)g:

Obviously for every " 2 G there is exactly one coordinate vector (e

0

; e

1

; e

2

; e

3

)

which describes " and which satis�es e

2

1

+ e

2

2

= 1.

De�nition The cycle c = (m

x

; m

y

; m

z

; r), m

x

; m

y

; m

z

; r 2 R, is the set

c = f(e

0

; : : : ; e

3

)R

+

2 Gje

2

1

+ e

2

2

= 1; e

0

+ e

1

m

x

+ e

2

m

y

+ e

3

m

z

+ r = 0g: (6)

The carrier of the cycle is the circle of radius jrj, which is contained in the

horizontal plane x

3

=x

0

= m

z

and has center (m

x

; m

y

; m

z

).

If r 6= 0, the planes of a cycle c are tangent to the carrier of c. If r = 0, all " 2 c

are incident with (1; m

x

; m

y

; m

z

)R.
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2.3 The Cyclographic Model

De�nition The cyclographic map � maps the oriented planes of G to hyper-

planes of P

4

(R):

� : G ! P

4

(R)

�

; (e

0

; e

1

; e

2

; e

3

)R

+

7! (e

0

; e

1

; e

2

; e

3

;

q

e

2

1

+ e

2

2

)R: (7)

By (6), the following is clear:

Lemma 2.1 � maps the cycle c = (m

x

; m

y

; m

z

; r) to the set �(c) of those

hyperplanes of �(G), which pass through the point (1; m

x

; m

y

; m

z

; r)R.

We de�ne a quadric


 : x

0

= x

3

= x

2

1

+ x

2

2

� x

2

4

= 0: (8)

Then for all cycles c = (m

x

; m

y

; m

z

; r), we consider the quadratic cone �(c)

with vertex (1; m

x

; m

y

; m

z

; r)R and base quadric 
. It can be parametrized by

�(c) = f�(1; m

x

+ r cos t;m

y

+ r sin t;m

z

; 0) + �(1; m

x

; m

y

; m

z

; r);

t; �; � 2 R; �� 6= 0g:

(9)

We embed R

3

in P

4

(R) by letting (x

1

; x

2

; x

3

) 7! (1; x

1

; x

2

; x

3

; 0)R. Then, by

closer inspection of the de�nitions, the following holds:

Lemma 2.2 �(G) consists of those hyperplanes H 2 P

4

(R)

�

, which ful�l jH \


j = 1. For all cycles c, the carrier of c coincides with �(c) \R

3

.

2.4 The Blaschke Cylinder

De�nition Let � be the duality de�ned by

� :

(

P

4

(R)

�

! P

4

(R);

(e

0

; e

1

; e

2

; e

3

; e

4

)R 7! (e

4

; e

1

; e

2

; e

3

; e

0

)R:

(10)

The set � � �(G) is called Blaschke cylinder, which is justi�ed by the following

Lemma 2.3

1. � � �(G) is contained in the a�ne part R

4

of P

4

(R) and coincides with the

cylinder � = S

1

�R

2

, whose projective extension has the equation

� : x

2

1

+ x

2

2

= x

2

0

: (11)

2. We de�ne H to be the set of hyperplanes of P

4

(R) which do not contain

the point (0; 0; 0; 0; 1)R. Then for all cycles c there is an H(c) 2 H such

that �(c) = � \H(c) and vice versa.

Proof: The �rst part is clear by (7). For the second part, we note that by

Lemma 2.1 and (10), the points of � � �(c) are contained in the hyperplane

(r;m

x

; m

y

; m

z

; 1)R.
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2.5 The Isotropic Model

It is well known that a quadric can be represented as conformal closure (in

some well-de�ned sense dependent on the quadric) of an a�ne space. In order

to perform this task for the Blaschke cylinder �, we apply a stereographic

projection to it.

Consider the point w = (0; 1; 0; 0)2 � and its generator subspace

W = T

w

(�)\� : e

1

= 0; e

2

= 1: (12)

De�nition We embed R

3

in P

4

(R) by letting (x; y; z) 7! (1; x; 0; y; z)R. Then

� is the projection of � nW with center w to R

3

.

The stereographic projection � is in coordinates described as follows:

� :

8

<

:

� nW ! R

3

;

(1; e

1

; e

2

; e

3

; e

0

)R 7!

1

1� e

2

(e

1

; e

3

; e

0

):

(13)

If c is the cycle (m

1

; m

2

; m

3

; r), then � � � � �(c) is the set 	 of points, which,

in coordinates, is given by

	 : z = f

c

(x; y) = �

r +m

2

2

x

2

�m

1

x�m

3

y �

r�m

2

2

: (14)

If r 6= �m

2

, then 	 is a parabolic cylinder, whose projective closure has the

vertex (0; 0;�m

3

; 1)R. If r + m

2

= 0, then 	 is a plane. Equation 14 shows

that the � � � � �-images of cycles are precisely the M�obius spheres of twofold

isotropic space in the sense of [2].

Oriented planes (e

0

; 0; 1; e

3

)R

+

do not have an image under � � � � �. This

leads to the following de�nition:

De�nition The disjoint union I

3

= R

3

[W is called isotropic model of Galilei

Laguerre geometry.

Then I

3

is the conformal closure of a�ne R

3

in the sense of twofold isotropic

M�obius geometry [2]. We extend � by:

�(x) :=

(

�(x); if x 62 W;

x; if x 2 W;

(15)

and de�ne

� : G ! I

3

; e 7! � � � � �(e): (16)

Then for all cycles c, the set �(c) � I

3

consists of the graph surface fx; y; f

c

(x; y)g

together with � � �(c) \W .

The inverse map �

�1

maps points of I

3

to oriented planes of G, and is, in

the a�ne part R

3

of I

3

described by:

�

�1

: (x; y; z) 7!

1

1 + x

2

(2z; 2x; x

2

� 1; 2y)R

+

: (17)
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2.6 The Dual Isotropic Model and Geometrical Optics

A plane h = (h

0

; h

1

; h

2

; h

3

)R

+

2 G, h

2

1

+ h

2

2

= 1, intersects the horizontal plane

x

3

=x

0

= c in the oriented line (h

0

+ch

3

; h

1

; h

2

)R

+

. We use this for the following

De�nition Let the oriented lines a = (a

0

; a

1

; a

2

)R

+

, b = (b

0

; b

1

; b

2

)R

+

of R

2

and the line c = (c

0

; c

1

; c

2

)R be given. Assume that a

2

1

+ a

2

2

= b

2

1

+ b

2

2

= 1, and

denote the non-oriented lines corresponding to a, b by a

0

, b

0

. Then c is called

bisector of a and b, if c is a euclidean bisector of a

0

and b

0

, and there is a � 2 R

such that (c

1

; c

2

) = �(a

1

+ b

1

; a

2

+ b

2

).

The non-horizontal plane "

1

2 P

3

(R)

�

is the bisector of "

2

; "

3

2 G if and only

if for all horizontal planes � � R

3

, the intersection line � \ "

1

is the bisector of

the oriented intersection lines � \ "

2

and � \ "

3

.

The connection between this de�nition and the next one will become apparent

later. The dual isotropic model of Galilei Laguerre space is the conformal

closure of a subset of dual three-dimensional projective space. The oriented

planes of G whose � � �-image is not in W (cf. (12)), are again represented by

planes.

We de�ne a mapping � by

(

� : G n (� � �)

�1

(W )! P

3

(R)

�

;

(e

0

; e

1

; e

2

; e

3

)R

+

7! (e

0

; e

1

; e

2

�

p

e

2

1

+ e

2

2

; e

3

)R:

(18)

and de�ne

De�nition The dual isotropic model I

�

3

of Galilei Laguerre geometry is the

disjoint union I

�

3

= �(G n (� � �)

�1

(W ))[W . The mapping �

�

is de�ned by

�

�

: G ! I

�

3

:

(

g 7! �(g) if � � �(g) 62W

� � �(g) if � � �(g) 2W

(19)

The name dual isotropic model is explained by the following

Lemma 2.4 Let � be the duality given by

� : P

3

(R)! P

3

(R)

�

; (x

0

; x

1

; x

2

; x

3

)R 7! (x

3

; x

1

;�x

0

; x

2

)R: (20)

Then for all g 2 G such that �(g) 2 R

3

� I

3

, � ��(g) = �

�

(g).

Proof: Clear from (7), (13) and (20).

Lemma 2.5 The mapping �

�

is one-to-one. Let g

0

= (0; 1; 0; 0)R

+

. For all

g 2 G with � � �(g) 62 W , the plane �

�

(g) is the bisector of g and g

0

.

Proof: Because of Lemma 2.4, �

�

is one-to-one. The statement about the bi-

sector property is veri�ed by an elementary calculation.

We want to show a connection between �

�

and geometrical optics. For this

purpose, we consider an immersed surface f : U � R

2

! R

3

, such that (i) for

the normal vector �eld n

f

= f

x

� f

y

= (n

1

; n

2

; n

3

) always n

1

6= 0 holds, and (ii)

the (euclidean) Gaussian curvature never vanishes. Then we have the following

5



Lemma 2.6 If f has the above properties, the family of �

�

-images of the ori-

ented tangent planes

(x; y) 7! f

�

(x; y) = �

�

((�hn

f

; fi; n

1

; n

2

; n

3

)R

+

) (21)

envelopes a surface which is then called the dual isotropic image of f .

Proof: From n

1

6= 0 it follows that the ���-image of the oriented tangent plane is

not inW , so its �

�

-image is in the projective part of I

�

3

. The Gaussian curvature

of f is not zero, so the di�erential of the (euclidean) spherical mapping (x; y) 7!

n

f

(x; y)=kn

f

(x; y)k is nonsingular. This implies that also the di�erential of the

mapping, which maps (x; y) to the unit normal vector of f

�

(x; y), is nonsingular,

and the envelope surface exists.

We consider a bundle of light rays, which is (Galilei) re
ected at the surface

f . A surface which intersects the re
ected rays (Galilei) orthogonally, is called

anticaustic surface with respect to the given light rays. It remains to de�ne

`re
ection' and `orthogonal' in Galilei geometry. This can simply be done by

stating that re
ection at a vertical plane is de�ned by euclidean re
ection, and

all other re
ections are images of this one under Galilei motions. Orthogonality

between a horizontal line and a plane is de�ned in exactly the same way. Then

we have the following:

Theorem 2.7 Let f be an immersed surface f : U � R

2

! R

3

satisfying the

conditions of Lemma 2.6. Then f is an anticaustic surface of the dual isotropic

image of f with respect to the bundle of parallel light rays emanating from

(0; 1; 0; 0)R.

Proof: The light rays are horizontal, and therefore stay horizontal after the

re
ection. An elementary calculation shows that the �

�

-images of the oriented

tangent planes along a horizontal level curve of the surface f touch the dual

isotropic image of f along a horizontal curve. Therefore, and because of the

de�nition of the bisector plane together with Lemma 2.5, it is su�cient to

restrict attention to the situation in a horizontal plane, which is well known

(see e.g. [10]).

3 Galilei Laguerre Transformations

De�nition A Galilei Laguerre transformation is a bijection G ! G which in-

duces a bijection in the set of cycles. The group of Galilei Laguerre transfor-

mations will be denoted by L.

Theorem 3.1 For all Galilei Laguerre transformations f 2 L there is a pro-

jective automorphism � of P

4

with �(�) = �, such that the � � �-image of f

coincides with �j�.

Proof: The � � �-image g of an f 2 L is a bijection �! �. By Lemma 2.3, g

induces a bijection in H, also denoted by g. We are going to show that g is an

automorphism of a circle geometry in the sense of [3], p. 992.
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In the terminology of [3], a 2-dimensional plane " 6� � intersects � in a

proper circle k = " \�, if the a�ne span [k] equals ". We denote the absolute

plane x

0

= 0 by !, the line x

0

= x

1

= x

2

= 0 by f , and the point (0; 0; 0; 0; 1)R

by u. The proper circles of � are therefore those conics (" \ f = ;) and pairs

of parallel lines (" \ f = fpg), which are not entirely contained in a generator

subspace. Two proper circles k

1

, k

2

touch at a if either a 2 k

1

= k

2

or [k

1

]\ [k

2

]

has dimension 1 and is tangent to � in a. A conic k

1

and a pair k

2

of parallel

lines never touch, because [k

1

] \ [k

2

] then would contain a point of f 2 [k

1

].

If three points p

1

; p

2

; p

3

2 � span a 2-dimensional generator subspace U ,

there is no H 2 H such that p

i

2 H. Therefore there is no H

0

2 H such that

g(p

i

) 2 H

0

and g thus maps U into another generator subspace. g

�1

enjoys the

same properties as g, thus the set X � � is contained in a generator subspace

if and only if g(X) is.

For every irreducible conic k � � there exist H

1

; H

2

2 H, such that H

1

\

H

2

\� = k, and k is not contained in a generator subspace. Therefore neither

is g(k) = g(H

1

) \ g(H

2

) \�, and g(k) is a proper circle.

If k consists of two parallel lines l

1

, l

2

, such that [k] \ f 6= u, there exist

H

1

; H

2

2 H such that k = H

1

\H

2

\�. There is no generator subspace which

contains k, and there are generator subspaces U

i

� l

i

, i = 1; 2. Thus g(k) is not

contained in a generator subspace, but g(l

i

) is. Because of g(l

i

) � g(H

1

)\g(H

2

),

we have g(l

1

)kg(l

2

) and g(k) is a proper circle with u 62 [g(k)].

For all lines l 3 u, also g(l) 3 u, because for any two points p; q 2 l there

is no H 2 H such that p; q 2 H , and therefore there is no H 2 H such that

g(p); g(q) 2 H , and vice versa. Thus also those proper circles k which pass

through u are mapped to proper circles g(k) 3 u.

We are going to show that g is compatible with the touching relation: As-

sume that the proper circles k

1

6= k

2

are conics. Let V = [k

1

] \ [k

2

] and let U

a

be the generator subspace of a 2 �. Then k

1

and k

2

touch at a, if and only if

dimV = 1 and V \� � U

a

. The intersection V \ f is empty because neither

[k

1

] nor [k

2

] intersect f . This implies that (i) there is exactly one H 2 H with

k

i

� H and (ii) within this H , whose intersection H \ � is a non-degenerate

elliptic cylinder Z � k

i

, the set k

1

\ k

2

has no points outside the Z-generator

line H \ U

a

.

The converse is also true: if k

1

6= k

2

with a 2 k

1

\k

2

, and there is an H 2 H

containing the k

i

, then dimV = 1; and if k

1

\ k

2

� H \ U

a

, then V is tangent

to �, which means that the k

i

touch in a.

Conditions (i) and (ii) are invariant with respect to g, and therefore so is the

touching relation, when restricted to conics. Pairs of lines, however, touch if and

only if one of their lines coincide, so g leaves the touching relation invariant.

Thus g is an automorphism of circle geometries in the sense of [3], and we

can use Schr�oder's theorem ([3], p. 992 or [14]) to deduce the existence of a

projective automorphism � of P

4

with �(�) = � and �j� = g.

In [2], H. Brauner considered M�obius geometry of twofold isotropic space. It

turns out that isotropic M�obius geometry and Galilei Laguerre geometry are iso-

morphic. The result in [2], which describes all isotropic M�obius transformations

as collineations automorphic for some quadric, which is of the same projective

7



type as the Blaschke cylinder, has been obtained by assuming continuity. This

is the reason why we re-proved it on basis of [14].

We are able to write down the � � �-image of Galilei Laguerre transforma-

tions:

Theorem 3.2 In homogeneous coordinates, the projective automorphisms � of

the Blaschke cylinder are given by a matrix

A =

 

A

0

0

A

1

A

2

!

; (22)

where A

0

is the matrix of a projective automorphism of the unit circle x

2

0

=

x

2

1

+x

2

2

, and A

2

2 GL(2;R). Thus L is a 13 dimensional transformation group.

Proof: For all x

3

; x

4

, �((0; 0; 0; x

3

; x

4

)R) = (0; 0; 0; x

0

3

; x

0

4

)R holds, therefore the

upper right corner in (22) is zero.

Embed P

2

(R) into P

4

(R) by letting (x

0

; x

1

; x

2

)R 7! (x

0

; x

1

; x

2

; 0; 0)R and

let � : P

2

(R)! P

2

(R) be de�ned by � followed by the central projection with

center x

0

= x

1

= x

2

= 0 onto P

2

(R). Then �jS

1

is a projective automorphism

of the unit circle. A is invertible if and only both A

0

and A

2

are.

Obviously these conditions are also su�cient for � being an automorphism

of � and therefore dimL = 13.

4 Rational Circular O�set Surfaces

In analogy to the Pythagorean-Normal surfaces of [8, 11] we now will consider

rational surfaces with rational circular o�sets [9]. A circular o�set surface is

formed by the o�set curves at distance d to the level curves of the original

surface in horizontal planes. If we de�ne the Galilei normals to a surface as the

horizontal lines perpendicular to level curves, the de�nition of circular o�set

surfaces is in accordance with the usual de�nition of an o�set surface as a

surface whose distance to the given surface, measured along the common surface

normals, is constant.

De�nition A two-dimensional rational parametrization p is a tuple (p

0

(x; y);

: : : ; p

n

(x; y)) of rational functions such that not all of them are zero. p(x; y)

then is de�ned for all (x; y) except for those which are contained in an alge-

braic subset of dimension at most one. We say that p is de�ned for almost all

(x; y) and the mentioned algebraic set is negligible. The (possibly degenerate)

rational surface �(p) of P

n

(R) de�ned by p is the smallest projective algebraic

variety which contains all points (p

0

(x; y); : : : ; p

n

(x; y))R. If �(p) is not entirely

contained in the absolute plane x

0

= 0, the set R

n

\ �(p) will also be called

rational surface (of R

n

).

If p parametrizes a rational surface ofR

n

, for almost all parameter values (x; y),

the point p(x; y)R is de�ned and actually contained in R

n

� P

n

(R).
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De�nition If p(x; y) 6= 0, the hyperplane h = (h

0

; : : : ; h

3

)R 2 P

3

(R)

�

is tan-

gent to p = (p

0

; : : : ; p

3

) at p(x; y)R, if hh; p(x; y)i= hh;

@

@x

p(x; y)i = hh;

@

@y

p(x; y)i =

0. If p 62 !, the vector �(h

1

; h

2

; 0), � 2 R, is then called Galilei normal vector

of p in p(x; y)R.

De�nition A rational surface �(p) of R

3

is called a rational circular o�set

surface, if there are rational functions n

1

(x; y), n

2

(x; y) and r(x; y), r nonzero,

such that

1. for all (x; y) such that n

i

(x; y) is de�ned and p(x; y) 6= 0, the vector

(n

1

(x; y); n

2

(x; y); 0) is Galilei normal to p in p(x; y)R and

2. the equation n

2

1

+ n

2

2

= r

2

holds in R(x; y).

The name rational circular o�set surface is justi�ed by the following

Lemma 4.1 If p is a parametrization of a rational circular o�set surface, then

indeed for all d 2 R there exist rational parametrizations p

d

of surfaces, which

have the property that the distance to �(p), measured along the common Galilei

normal, equals d.

Proof: Without loss of generality we can achieve n

2

1

+ n

2

2

= 1 by changing n

1

and n

2

to n

1

=r and n

2

=r, respectively. Then an easy calculation shows that the

surface given by

p

d

= (1;

p

1

p

0

+ dn

1

;

p

2

p

0

+ dn

2

;

p

3

p

0

);

has the following properties: (i) for almost all (x; y), the point p

d

(x; y) is de�ned.

(ii) if both are de�ned, the Galilei distance between p

d

(x; y)R and p(x; y)R

equals d.

We are now going to de�ne the surface �

�

(p) dual to a rational surface �(p).

Because of possible degeneracies, we have to distinguish several cases. We de�ne

p

x

(x; y) =

@

@x

�

p

1

p

0

;

p

2

p

0

;

p

3

p

0

�

and p

y

(x; y) =

@

@y

�

p

1

p

0

;

p

2

p

0

;

p

3

p

0

�

: (23)

1. If dim�(p) = 2, for almost all (x; y) the vectors p

x

(x; y) and p

y

(x; y) are

linearly independent and n

p

(x; y) = p

x

(x; y)� p

y

(x; y) is nonzero.

2. If dim�(p) = 1, at least one of p

x

and p

y

, say p

x

, is nonzero. There exists

a vector n

0

2 R

3

which is independent of p

x

(x; y) for almost all (x; y).

Thus for almost all (x; y) the vector n

p

(x; y) = p

x

(x; y)� n

0

is nonzero.

3. If dim�(p) = 0, let n

p

(x; y) = (x; y; 1).

De�nition If p and n

p

are as de�ned above, the rational surface �(p)

�

of

P

3

(R)

�

parametrized by

p

�

= (�n

1

p

1

� n

2

p

2

� n

3

p

3

; n

1

p

0

; n

2

p

0

; n

3

p

0

) (24)

is called the surface dual to �(p).
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We leave the veri�cation that p

�

is actually well-de�ned to the reader. We have

the following

Lemma 4.2 When de�ned as in (24), p

�

(x; y) is tangent to p in p(x; y). Both

the iterated dual p

��

and p de�ne the same surface. If p de�nes a rational

circular o�set surface with Galilei normal vector �eldm

1

, m

2

, there is a rational

function m

3

such that p

�

and (�m

1

p

1

�m

2

p

2

�m

3

p

3

; m

1

p

0

; m

2

p

0

; m

3

p

0

) de�ne

the same surface �(p

�

).

Proof: In regular points p(x; y) we can use di�erential geometry to verify the

lemma, and the set of parameter values corresponding to singular points is

negligible.

Not both n

1

, n

2

are zero, so assume that n

1

is nonzero. Both (n

1

; n

2

; 0) and

(m

1

; m

2

; 0) are Galilei normal to p and therefore (m

1

; m

2

; 0) = (m

1

=n

1

)(n

1

; n

2

; 0)

holds in R(x; y). Then de�ne m

3

= m

1

n

3

=n

1

.

We are going to show that Galilei Laguerre transformations do not destroy the

property of being a rational circular o�set surface. But �rst we have to de�ne

what dual surface means in terms of Galilei Laguerre space.

De�nition Let p

�

= (h

0

; h

1

; h

2

; h

3

) be a rational parametrization of a surface

in P

3

(R)

�

which does not entirely consist of horizontal planes. Then the set of

those p

�

(x; y)R

+

, which are not horizontal, is called dual surface to p considered

as a subset of G.

Then the following theorems hold:

Lemma 4.3 The transfer � � � from Galilei Laguerre space to the Blaschke

cylinder � maps the duals of rational circular o�set surfaces to rational surfaces

which are contained in �, and vice versa.

Proof: Without loss of generality we can assume a parametrization h of the dual

surface which satis�es h

2

1

+ h

2

2

= 1. Then � � �(h(x; y)R

+

) 2 �. Conversely,

for a rational parametrization q = (q

0

; q

1

; q

2

; q

3

; q

4

) of a surface contained in �,

q

0

is nonzero, so without loss of generality q

0

= 1. This implies q

2

1

+ q

2

2

= 1

and p

�

= (� � �)

�1

(q) de�nes a surface parametrized by p

��

, which is a rational

circular o�set surface.

Theorem 4.4 Galilei Laguerre transformations map the duals of rational cir-

cular o�set surfaces to the duals of rational circular o�set surfaces.

Proof: The � � �-image of a Galilei Laguerre transformation is a projective

automorphism of � and therefore preserves rationality. The theorem follows

immediately from Lemma 4.3.

The stereographic projection � de�nes a bijective map between rational surfaces

in � nW and rational surfaces in the isotropic model I

3

nW , which gives us a

simple construction of rational circular o�set surfaces.
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Theorem 4.5 The geometric transformation �

�1

, which describes the change

from the isotropic model of Galilei Laguerre space to the standard model, maps

rational surfaces to the duals of rational circular o�set surfaces, with the single

exception of one degenerate rational surface consisting of a horizontal point at

in�nity.

Proof: The stereographic projection preserves rationality and the only rational

surface which could lie entirely in W is one which corresponds to a bundle with

vertex situated on the absolute horizontal line. The converse is obvious.

5 Special Rational Circular O�set Surfaces

5.1 Normal Forms of Quadratic Graphs

We consider the graph 	 = f(x; y; f(x; y)g of the quadratic function

f : R

2

! R; (x

1

; x

2

) 7!

X

i+j�2

a

ij

x

i

y

j

(25)

as a subset of R

3

� I

3

and ask for its �-preimage in G. It will turn out

that �

�1

(	) consists of the set of tangent planes of a cubic surface with special

properties (see next section). In order to simplify the discussion, we are looking

for geometric transformations � which do not destroy the Galilei geometric

properties of �

�1

	, and transform 	 with the �-image of � . The result is

Lemma 5.1 We are able to transform the graph surface to the graph of one

the following normal forms:

1: z = ax

2

+ by

2

; a; b 2 R; b 6= 0 (26)

2: z = cxy; c 2 Rn 0: (27)

3: z = d; d 2 R: (28)

Proof: The transformation is achieved by by letting � = v = 0 in (1) and

adjusting the other parameters appropriately.

5.2 Parabolic Galilei Cyclides

We consider the isotropic model I

3

of Galilei Laguerre Geometry and the nor-

mal form (26) of quadratic graphs. �

�1

transforms this graph into a rational

parametrization of a surface of class 4, whose corresponding point surface �

has the homogeneous equation

� : x

2

3

x

2

+ 2ax

2

3

x

0

+ 2b(x

2

1

+ x

2

2

)x

0

+ 4abx

2

x

2

0

= 0: (29)

If necessary, we also consider the complex extension �

C

� P

3

(C ), which is de-

�ned by the same equation. These surfaces are called parabolic Galilei cyclides.

For cyclides in Galilei space, see also [7].
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Equation 29 obviously de�nes an algebraic surface of degree three. Its in-

tersection with the plane ! : x

0

= 0 at in�nity is

� \ ! : x

2

3

x

2

= x

0

= 0; (30)

so � touches ! in all points of the horizontal line x

3

= x

0

= 0. The line

l : x = 0; y = �2a is easily seen to be contained in �.

De�nition An algebraic surface is called a Blutel's surface [4], if almost all

of it is covered by a one parameter family of conic sections, such that for all

of these conics the tangent planes in the points of the conic are tangent to a

quadratic cone.

Lemma 5.2 The surface � carries a one-parameter family of horizontal circles

and a one-parameter family of parabolas in vertical planes all of which contain

the line l. � is a Blutel's surface with respect to both families of conics.

Proof: Horizontal planes intersect the a�ne part of � in circles or points. The

intersections of � with planes " � l consist, by the surface's degree, of l and

a conic. These conics touch ! in their horizontal points at in�nity. They are,

therefore, parabolas.

We want to show that the planes tangent to � in the points of a horizontal

circle form a (Galilei) cone of revolution. For this purpose we notice that for

all v 2 R, along the plane y = const = v, the quadratic graph (26) touches

a parabolic cylinder with ideal vertex situated on the line x

0

= x

1

= 0, the

�

�1

-image of which is a cycle. The carrier of this cycle therefore is contained

in �. The tangent planes along this circle are, by �

�1

, those with coordinates

(2(au

2

+ bv

2

); 2u; u

2

� 1; 2v)R (v 2 R). The line x = 0; y = �2a intersects them

in a point p independent of u. This shows that along its horizontal circles, � is

touched by cones whose vertices p are situated on l.

Analogously it is easily veri�ed that � is touched by horizontal parabolic

cylinders along the parabolas mentioned above.

Lemma 5.3 The complex extension �

C

either possesses two conic singularities

or one biplanar singularity situated on l. Additionally, �

C

has conic singulari-

ties in the absolute points J

1;2

= (0; i;�1; 0)R.

Proof: The �rst part is proved by looking at the intersection points of l and one

(and then, all) of the parabolas mentioned above. If one (and then, all) of the

parabolas touch l in a point p, fpg is the intersection of � with the horizontal

plane " 3 p. The intersection �

C

\ ", however, consists of [pJ

1

] [ [pJ

2

], which

de�nes the two tangent planes of p.

The second part is clear from the fact that the midpoints of the horizontal

circles contained in � are situated on a parabola, which then serves as a base

curve for the tangent cones of both J

1

and J

2

.

Figure 1 shows an example of a parabolic Galilei cyclide. Those special Galilei

transformations, which have been used to transform a general quadratic graph
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Figure 1: Parabolic Galilei Cyclide

to its normal form, are a�ne transformations, whose restrictions to the hor-

izontal planes are translations. Thus all �

�1

-images of quadratic graphs are

parabolic Galilei cyclides carrying circles in horizontal planes, whose centers

are situated on a parabola with horizontal axis in the plane x = 0.

The general parabolic cyclide then is the image of � under a Galilei trans-

formation. Not all of them are �

�1

-images of quadratic graphs. For all of them,

however, there is a special choice of the center of the stereographic projection

�, such that they become �

�1

-images.

The �-preimages of the quadratic graphs of the remaining normal forms of

(26) are described by the following

Lemma 5.4 The normal form (27) is the �-image of the surface dual to the

cubic conoidal ruled surface with equation

(x

2

� c

2

)y � 2xz = 0: (31)

The normal form (28) corresponds to the cycle (0; d; 0;�d).

Proof: The result is veri�ed by elementary calculations. The second part also

follows directly from (14).

5.3 Galilei Cyclides

The most general Galilei cyclides are, in their a�ne part, generated by circles in

horizontal planes z = c, whose centers are situated on a parabola with horizontal

axis and contained in a non-horizontal plane, and whose radius is a quadratic

polynomial function of c. They either are Galilei cylinders/cones of revolution

or are the images of the parabolic cyclide � under Galilei transformations and

the quadratic transformation

 : (x; y; z) 7! (x; y+ �z + 
z

2

; z):
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Those Galilei cyclides will be called proper ones. Let p = (m

x

+ r cos�;m

y

+

r sin �;m

z

) and v = (n

x

� r cos�; n

y

� r sin�; n

z

). Then the tangent vector

(p; v) is mapped by d to ( (p);w) with w = v + (0; n

z

(� + 2m

z


); 0). This

tells us that a surface touching a Galilei cone of revolution along a horizontal

circle does not lose this property when being transformed by  .

Furthermore, the second component of w depends linearly onm

z

. This tells

us that if the vertices of all those cones are situated on a line l, they also do so

after the  -transform. This implies:

Theorem 5.5 A proper Galilei cyclide is a twofold Blutel's surface carrying

a horizontal family of circles. The vertices of the cones tangent to the surface

along these circles are situated on a straight line.

6 Modeling Rational Circular O�set Surfaces

6.1 Galilei Canal Surfaces

In analogy to [10], where a canal surface has been discretised and approximated

by a sequence of Dupin cyclides, we can ask for a discretisation and approxi-

mation of Galilei canal surfaces by Galilei cyclides:

De�nition Surfaces of the form

f : I �R! R

3

; (u; �) 7! (m

x

(u) + r(u) cos(�); m

y

(u) + r(u) sin(�); u):

are called Galilei canal surfaces.

A Galilei cyclide touches such a surface along a horizontal circle u = const:, if

and only if both surfaces have both the circle and the tangent cone along this

circle in common.

De�nition If f is de�ned as above, its medial axis is the curve

c

f

: I ! R

3

; u 7! (m

x

(u); m

y

(u); r(u)):

Clearly, two Galilei canal surfaces f and g touch each other along the circle z =

u, if and only if their medial axes touch each other in the point c

f

(u) = c

g

(u).

If the curve of centers (m

x

(u); m

z

(u); u) is of the form a + ub + u

2

c with

a; b; c 2 R

3

such that c is horizontal and b is not, c

f

is a parabola or a straight

line, and f becomes a parametrization of a Galilei cyclide. Conversely, every

parabola of R

3

corresponds to a proper Galilei cyclide, and every straight line

to a Galilei cylinder/cone of revolution. Thus the problem of approximating a

Galilei canal surface is equivalent to the problem of approximating a curve of

R

3

by a quadratic B-spline, which has been studied extensively. A picture is

shown in �gure 2.
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Figure 2: Piecewise Galilei Cyclide Surface

6.2 A Powell-Sabin Method

Let T be a triangulation of a polygonal subset U � R

2

and let for each vertex

v

i

a value z

i

and a linear functional d

i

2 R

2�

be given. Then the algorithm

of Powell and Sabin [6] gives a piecewise quadratic C

1

(U) function f with the

property f(v

i

) = z

i

and df(v

i

) = d

i

for all i. Moreover, the points where f is

not C

2

are those of the edges of a six-fold re�nement of T . This can be used for

interpolating given values and derivatives by a rational circular o�set surface,

simply by interpolating the appropriate values and derivatives in the isotropic

model. For classical Laguerre geometry, this has been done in [8].
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