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Abstract. This paper shows design studies with bent panels which are originally
rectangular or at least approximately rectangular. Based on recent results obtained
in the geometry processing community, we algorithmically approach the questions
of an exact rectangular shape of panels; of watertightness of the resulting paneling;
and of the panel shapes being achievable by pure bending. We conclude the paper
with an analysis of stress and strain in bent and twisted panels.

1 Introduction

This paper is concerned with panels of wood or metal, which are mounted on
freeform surfaces, and which in their flat state are rectangular (or can at least be
cut from rectangles). Figure 1 gives an impression of the kind of example we have
in mind. In particular we deal with a mathematical formulation and algorithmic ap-
proach to this topic. Such patterns occur in the cladding of general freeform (double
curved) shapes, for instance applied to interior surfaces. An experimental example,
which is taken from [Spuybroek 2004], is shown by Figure 2.

Figure 1: This image gives
an impression of rectangu-
lar panels mounted on a
freeform shape in an opti-
mized pattern: Gaps are de-
liberately left open in order
to illustrate how little the
panel widths would have
to be modified in order to
achieve watertight paneling
(cf. Figures 5, 14).
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Figure 2: Experimen-
tal cladding using pa-
per strips (left) results
in an office space de-
sign by NOX Archi-
tects (right, see [Spuy-
broek 2004]).

In order to understand the geometry which governs the behaviour of panels, we
discuss the various issues which arise when trying to cover freeform shapes with
rectangular panels. There are several properties of the resulting patterns which one
would like to have — each property being derived from practical considerations and
giving rise to its own mathematical theory. Unfortunately only in rare instances we
can have all of these properties at the same time. Usually a compromise will have
to be found.

The geodesic property. Long and thin panels easily bend about their weak axis
and may twist a bit, but for all practical purposes they do not bend about their strong
axis. This translates into the mathematical statement that such a panel, if laid onto a
surface, follows a geodesic curve. These curves are equally characterized by having
zero geodesic curvature, and by being the shortest curves which connect different
points of a surface. For more information on geodesics, the reader is referred to
textbooks of differential geometry such as [do Carmo 1976].

The constant width property. We think of panels whose original, unfolded shape
is a rectangle (see Figure 2, where those panels are represented as strips of paper).
Only special shapes can be covered by such panels in a seamless and non-overlap-
ping way: basically the only way in which this can happen is that the entire surface
is itself a developable surface. For all other surfaces, assuming we have no gaps or
overlaps, panels are not exactly rectangular when unfolded. In any case it is very
important for the practical fabrication of such panels that they can be cut from a
rectangular shape without too much waste. Mathematically this leads us to the re-
quirement that the geodesic curves which guide the panels must have approximately
constant distance from their neighbour curves.

The developable (or ‘pure bending’) property. The process of bending a sur-
face changes the distances of points only by a very small amount, if those distances
are measured inside the surface. A certain amount of twisting, as opposed to pure
bending, is present in the applications we have in mind. While the previous two
properties actively influence all our algorithmic approaches, the developable prop-
erty is present in only one of them.

The issues discussed above lead to the following questions:

Problem statement 1. We look for a system of geodesic curves in a freeform surface
which are at approximately constant distance from their neighbours, and which can
serve as guiding curves for the bending of rectangular wooden panels. Those panels
are to cover the surface with only small gaps and no overlaps.
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Problem statement 2. We look for a system of geodesic curves in a freeform sur-
face which serve as the boundaries of wooden panels whose development is approx-
imately straight and which can be cut from a rectangular shape. Those panels are
to cover the surface without gaps.

Previous work. Questions of this kind and generally the layout of geodesic pat-
terns on surfaces have recently attracted great interest in the geometry processing
community. [Kahlert et al. 2010] study the tiling of a surface by strips of controlled
width which are bounded by geodesics. They employ an evolution method, starting
from a single geodesic and proceeding from there until the surface under consider-
ation is exhausted. [Pottmann et al. 2010] investigate general and multiple patterns
of geodesics on freeform surfaces. They propose a mixture of methods (evolution,
level set, geodesic vector fields), and it is that paper which our work is mainly based
on.

— Related work: Computing geodesics. The theory of geodesics is found in
textbooks of differential geometry such as [do Carmo 1976]. For computational
purposes, shapes are represented as triangle meshes, and their geodesics are repre-
sented as polylines in meshes which are the shortest connections between points.
That definition is usually sufficient but may lead to ambiguities which can be re-
solved by the concept of “straightest geodesics” [Polthier and Schmies 1998] which
we use in our algorithms. Finding the truly shortest geodesic paths requires the
computation of distance fields, for which several efficient algorithms have been de-
veloped, see for instance [Chen and Han 1996] or [Kimmel and Sethian 1998], or
the later paper [Surazhsky et al. 2005].

— Related work: Timber constructions and geodesics. Geodesic curves have
made their appearance in freeform architecture in another context, namely in the
supporting structures of curved shells. [Pirazzi and Weinand 2006] show the design
of freeform timber rib shells which are composed of screw-laminated beams. If
such beams are considered as curves in the surface they support, then they have
zero geodesic curvature, i.e., they are geodesics.

— Related work: Rationalization of freeform surfaces by developable strips.
Early research on the cladding of freeform surfaces with developable panels evolved
from the architecture of F. Gehry [Shelden 2002]. That work however does not deal
with the decomposition of general shapes into developable strips, which problem
was algorithmically solved by [Pottmann et al. 2008]. Already in that paper a notion
of geodesic strips was defined: we discuss them later. The authors emphasize that
in general any decomposition of a surface into developable strips must be such that
the strip boundaries stay away from the asymptotic directions in the saddle-shaped
regions of the surface. Differential-geometric issues of that kind will also be present
in our work.
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2 The design of patterns of geodesics.

As a prerequisite for solving Problems 1 and 2 we first discuss patterns of geodesic
curves in surfaces and methods to create them. Subsequent sections translate the
geometric information stored in these curve patterns into actual paneling.

Let us rehearse the various properties of geodesics: They are the curves in a sur-
face with zero geodesic (i.e., sideways) curvature. They are uniquely determined by
an initial point and tangent. Mathematically, if a point p(t) is moving in time t with
unit speed, then it moves along a geodesic if and only if the second derivative vec-
tor p′′(t) remains orthogonal to the surface. Also the shortest connections between
points in the surface are geodesics.

2.1 Design by parallel transport.

In this section we describe how to find patterns of geodesics where either the max-
imum distance or the minimum distance between adjacent curves occurs at a pre-
scribed location. This method is briefly described by [Pottmann et al. 2010].

Differential geometry knows the notion of parallel transport of a vector V along
a curve s contained in a surface. It means moving that vector along s such that it
remains tangent to the surface, but such that it changes as little as possible (i.e.,
‖V ′(t)‖ is minimal). It is known that the length of that vector remains unchanged
[do Carmo 1976]. If, for computational purposes, a surface is represented as a mesh
and a curve is represented as a polyline with vertices P0,P1,P2, . . . , we emulate
parallel transport along that polyline by a simple step-by-step procedure explained
in Figure 3.

V0

P0

V1

P1

V2

P2

V0

V1

Figure 3: Parallel transport of a vector V0
attached to the vertex P0 along the poly-
line P0P1P2 . . . is algorithmically realized
as follows: Vi is found by orthogonal pro-
jection of Vi−1 onto the tangent plane of
Pi, and subsequent re-normalizing.

Parallel transport has the following property relevant to the design of patterns
of geodesics: Suppose a curve is sampled at points P0,P1, . . . as shown by Figure 3
and that geodesic parallel transport yields vectors V0,V1, . . . attached to these points.
Consider the geodesic rays which emanate from the point Pi in direction Vi and −Vi
(two such rays together make one unbroken geodesic). Figure 4 shows an example
of that. Then extremal distances between adjacent geodesics occur near the chosen
curve.
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Figure 4: Designing a sequence
of geodesics by choosing the lo-
cus (red) of minimum distance
or maximum distance between
neighbours. This is done by
the parallel transport method.
In this particular example, the
method is applied not to the en-
tire surface, but to previously se-
lected patches.

2.2 Design by evolution and by segmentation

We first briefly rehearse the evolution method proposed by [Pottmann et al. 2010].
Starting from a source geodesic somewhere in the given surface, we evolve a pattern
of geodesics, iteratively computing ‘next’ geodesics, each having approximately
constant distance from its predecessor. This is not possible in an exact way on
general surfaces, and if the deviation from a predefined width becomes too great one
might to have to introduce breakpoints and proceed further with piecewise-geodesic
curves. Figure 5 illustrates how this procedure works; for algorithmic details we
refer to [Pottmann et al. 2010].

Another method employed by [Pottmann et al. 2010] is based on the concept of
piecewise-geodesic vector fields. We cannot attempt to describe it here, but we men-
tion that it performs segmentation of the given freeform shape into parts which are
nicely coverable by a pattern of geodesic lines. Both Figure 4 and Figure 6 show an
example of this. For Figure 4, the single patches which emerge after segmentation
have been treated with the parallel transport method. For Figure 6, the evolution
method has been used.

3 Panels from curve patterns.

Panels as we consider them are originally flat, and when mounted onto a surface
they are bent (and twisted if necessary). We investigate two different ways of math-
ematical representation of such panels: One which produces almost exactly devel-
opable shapes which are achievable by pure bending, and another method where we
check for the amount of twisting only afterwards. Unfortunately the first method is
hindered by obstructions of a fundamental nature.

The exact relation between the ideal design surface Φ to be covered by the panels
on the one hand, and the panels themselves on the other hand, needs clarification.
One possibility is that we model the panel surfaces so that they are tangentially
circumscribed to Φ along given geodesic curves; and this is what we do.
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Figure 5: Evolution of a pattern of geodesics from a
source geodesic (blue). In the highly curved areas of
this surface, it is no longer possible to have geodesics
running parallel and one has to break them into pieces.
Breakpoint paths are shown in red (cf. Fig. 1).

Figure 6: Segmenting
a surface into pieces
which can nicely be
covered by a sequence
of geodesic lines. For
the covering, the evo-
lution method was em-
ployed.

Figure 7: This design
with bent rectangular
panels is based on Fig-
ure 6.
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Another idea is that the panel surfaces are inscribed into the design surface. For
instance we could connect two neighbouring geodesics by a developable surface
which is subsequently used for the panel. Algorithmically this is not easy [Rose
et al. 2007] and anyway we would rather have a geodesic running in the center of
the panel (which is achieved with the idea of circumscribed panels).

3.1 Panels with pure bending: the tangent developable method.

T

U

T

U
A1

A2

Figure 8: Illustration of asymptotic directions A1,A2 and conjugate directions T , U : Parallel
translation of a tangent plane (blue) by a small amount and intersection with the surface yields
a curve which approximates a conic section (the Dupin indicatrix). In negatively curved
areas this is a hyperbola, whose asymptotes A1,A2 define the asymptotic directions. Any
parallelogram tangentially circumscribed to the indicatrix defines two conjugate tangents T ,
U . It is known that A1,A2 are diagonals of any such parallelogram. Obviously choosing T
determines U . For both figures, the base surface is a torus.

For smooth surfaces the notion of conjugate tangents is defined; they are ex-
plained by Figure 8. Mathematically vectors v,w which are expressed in a coordi-
nate system whose basis are principal curvature vectors are conjugate, if and only
if vT diag(κ1,κ2)w = 0, where κ1,κ2 are the principal curvatures. Algorithmically,
curvatures and conjugate tangents can be computed from triangle meshes by well
known methods of geometry processing, see e.g. [Cazals and Pouget 2003].

Conjugate tangents play an important role here because they can be used to cre-
ate a developable surface Ψ which is tangentially circumscribed to a given surface Φ

along a curve s (see Figure 9). That tangent developable even has the nice property

Φ x

s Ψ
U(x)

T (x)
Figure 9: Consider a point x in a geodesic s
which lies in the surface Φ. If T (x) is tangent
to the geodesic, compute U(x) as being con-
jugate to T (x). Then the union of all tangents
U(x) is a developable ruled surface Ψ which
is tangentially circumscribed to Φ along the
curve s.
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ated with geodesics with even indices i are
trimmed by geodesics with odd index.

that s is a geodesic not only for Φ, but also for Ψ. Thus, when Ψ is unfolded into
the plane, s becomes a straight line.

This geometric information suggests the following algorithm to create panels:
First, for all geodesics si in a given geodesic pattern compute the tangent devel-
opable Ψi according to Figure 9. Trim those surfaces along the intersection curves
with their respective neighbours. Unfolding the trimmed Ψi’s yields the flat state of
panels.

Unfortunately this does not work in practice. One reason is that the rulings of
the tangent developables may behave in weird ways. Another reason is that the
intersection of neighbouring Ψs’s is often ill-defined, so trimming as suggested will
not work. We therefore have chosen the following modified procedure:

1. For the geodesics si where i is an even number compute the tangent devel-
opable Ψi according to Figure 9. That is, for a dense sample of points x on si
we compute the rulings Ui(x) which are conjugate to the tangent Ti(x).

2. Delete all rulings Ui(x) of Ψi where the angle enclosed with the tangent Ti(x)
is smaller than some threshold (say, 20 degrees) and fill the holes by interpo-
lation (this is a standard procedure).

3. On each ruling Ui(x) determine points Ai(x) and Bi(x) which are closest to the
geodesics si−1 and si+1, respectively (see Figure 10). This serves for trimming
the surface Ψi.

4. Optimize globally the positions of points Ai(x) and Bi(x) such that trim curves
are smooth, such that Ai(x) and Bi(x) are close to geodesics si−1, si+1, and
such that the ruling segments Ai(x)Bi(x) lie close to Φ. For this optimization
we need the distance fields of Φ and of the single geodesics. We only change
the surface a little bit and hope not to lose too much developability.

Figures 11, 12 and 13 illustrate panelizations of freeform shapes obtained by this
method. The degree of developability which is achieved can be evaluated by mea-
suring the Gauss curvatures of panel surfaces, such as done by Figure 16. The Gauss
curvature vanishes for exact developability. The exact values for the panelizations
of Figures 11 and 14, which work with the same design surface and comparable
strip width can be seen in the table at the end of Section 4.
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Figure 11: Almost-
developable strips con-
stituting a watertight
surface.

Figure 12: Detail of
Figure 11. The gaps in
between panels which
occur in highly curved
areas are hardly visi-
ble. The maximal strip
width is 0.4% of the
entire design’s bound-
ing box diagonal.

Figure 13: Watertight
panels based on the
segmentation and par-
allel transport meth-
ods. See also Figure 4.
The intrinsic curvature
of the rather broad pan-
els is too high to make
this design practicable:
its purpose is to illus-
trate the parallel trans-
port method.
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Figure 14: Below: A surface is covered by wooden panels of constant width. This is
achieved by the ‘evolution method’ illustrated by Figure 5: The pattern of panels evolves
from a well-placed source geodesic as long as the requirement of constant panel width is sat-
isfied up to certain thresholds. If the panel width deviates too much from the desired value,
the geodesics are broken. Subsequently panel surfaces have been created by the ‘binormal
method’. Above: Details. A further detail is shown by Figure 1.

3.2 The binormal method.

Our second method of defining panels (after a pattern of geodesics in the surface Φ

has been found) works directly with the geodesic curves.
Assume that such a geodesic s is traversed by a point P(t) moving with unit

speed, where t is a time parameter. For each time t we have the velocity vector T (t),
the normal vector N(t) of the surface Φ in the point P(t), and a third vector B(t) (the
binormal vector) which makes T,N,B a moving orthogonal right-handed frame.
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B(t)

T (t)
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Figure 15: The binormal method defines
a ruled panel surface from a central geo-
desic s via its Frenet frame T,N,B: The
ruling passing through the central point
P(t) on the geodesic is indicated by the bi-
normal vector B(t). The endpoints of the
ruling segment are points L(t) and R(t)
whose distance from P(t) is half the in-
tended panel width.

For computational purposes, the surface Φ is represented as a triangle mesh and
s is given as a polyline. Numerically the computation of the frame T,N,B is stable if
performed in the way described above, despite the fact that it is actually the Frenet
frame of s which usually exhibits numerical deficiencies (this connection with the
Frenet frame follows from the geodesic property).

For each geodesic, the associated panel surface is constructed according to Fig-
ure 15. Panelizations of freeform surfaces which have been achieved with this
method are shown by Figures 7 and 14.

3.3 Discussion

The previous two subsections proposed two different methods of defining ideal and
mathematically abstract surfaces which are to be followed by panels. The ‘tangent
developable’ method tries to produce panel surfaces which are achievable by pure
bending (in fact the tangent developable is the only surface with this property which
is also tangent to the original design surface). Thus the mathematical goal of devel-
opability is corresponding to a natural manufacturing goal. It seems reasonable to
let actual panels exactly follow the surfaces proposed by this algorithmic method.

The situation is slightly different for the second suggested way of defining panel
surfaces (the ‘binormal’ method). From a mathematical viewpoint it is a simple and
obvious way of defining panel surfaces, but it is unclear that this surface should be
the shape of a panel after it has been forced to follow a geodesic on the surface Φ.
Of course such a shape is subject to the existing constraints, but one would assume
that panels rather assume shapes achievable by pure bending. The purpose of the
binormal method is mainly to pin down a mathematically exact surface, for the
practical purpose of having shapes exactly defined. Anyway the following section
shows that the panel shapes defined by the binormal method are admissible from the
viewpoint of stresses and strain.

4 Stress and strain in panels.

This section investigates the deformation a rectangular strip of elastic material expe-
riences when it is bent into the shape of a ruled surface Ψ such that the central line
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Figure 16: Visualization of Gaussian curva-
ture of the design shown by Figures 11, 12.
Blue corresponds to zero, red to the maxi-
mum value −0.02 (this means ρ = 7.07). The
bounding box diagonal of this object is 188.

m of the strip follows a ‘middle geodesic’ s in Ψ. This applies to both our methods
of defining panel surfaces. It seems a reasonable assumption that the central line is
only bent, but not stretched. Due to the saddle shape (negative Gaussian curvature)
of all ruled surfaces, the lines parallel to m at distance d/2 are not only bent, but
also stretched. It is known that after introducing the radius of Gaussian curvature
ρ = 1/

√
|K|, the relative increment in length (the strain) of the strip boundaries is

given by

ε =
1
2
(d/2ρ)2 + · · · ,

where the dots indicate terms of higher order in d. We are first concerned with
tensile stress due to this stretching; for other stresses due to bending and shear see
the end of this section. A rough estimate, expressing stress by σ = Eε, yields

d/2ρ ≤C, with C =
√

2σmax/E,

where σmax is the maximum admissible stress and E is Young’s modulus. The
approximative nature of our computation implies using a suitable safety factor when
choosing σmax. The value C is a material constant which yields an upper bound
dmax = 2ρminC for the maximum strip with. With sample values for σmax we get

material Young modulus maximum stress (sample values) constant
E [N/mm2] σmax [N/mm2] C =

√
2σmax/E

steel 200000 250 0.05
wood 13000 80 0.11

Strip widths and their admissibility for models shown in this paper are collected in
the following table. Since these examples have been selected mainly with a view
towards visualization, some are not admissible. However they can easily be made
so by choosing narrower panels. The choice of units in this table is arbitrary.

Figure material actual panel |K|max ρmin bounding admissible admis-
No. width [m] [m−2] [m] box size [m] width [m] ible?

1, 5, 14 wood d = 0.7 0.1 3.16 188 0.7 yes
4, 13 steel d ≤ 0.1 5 0.44 2.8 0.04 no

wood 0.1 yes
11, 12 steel d ≤ 0.8 0.02 7.07 188 0.71 almost
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Bending and shear stress. Both bending stress and shear stress for a panel with
thin rectangular cross-section depend on the panel thickness h, but not on the panel
width d if h/d � 1; the maximum values of these stresses (denoted by σ, τ in this
paragraph) occur on the outer surface of the panel. These values depend on the
curvature κ of the panel’s central geodesic and the rate of torsion θ of the panel (we
have σ = Eκh/2 and τ = hGθ, where G is the shear modulus). Clearly the panel
surfaces obtained by the ‘tangent developable’ method experience less shear than
the ones created by the ‘binormal’ method. It is a standard matter to combine all
stresses (tension, shear, bending) and use this information for checking if the panel’s
dimensions are admissible.

It is interesting to know how the rate of torsion θ (twist angle per panel length)
is related to the Gaussian curvature of the panel: It is known that θ, measured in arc
per meter, does not exceed

√
|K| = 1/ρ, where the maximum value occurs in case

the central geodesic’s tangent happens to be an asymptotic direction of the panel
surface [do Carmo 1976].

5 Conclusion.

This paper treats paneling of freeform surfaces with rectangular (or almost-rectan-
gular) panels, which are known to follow geodesic curves. For the layout of a sys-
tem of geodesics several methods have recently been published. We survey some of
them in this paper, especially those which produce geodesics running approximately
parallel to each other. We further discuss the panel surfaces themselves under the
viewpoint of panel shapes achievable by pure bending and a watertight overall panel
surface, and we demonstrate our methods by means of some examples. Finally we
discuss tensile and shear stresses in panels which occur when they are mounted on
freeform surfaces.

Future research. The connection between geometry and mechanics is a very im-
portant and at the same time most challenging issue in any freeform design. One
topic of future research therefore is to combine geometric considerations with sim-
ple aspects of mechanics – our way of expressing stresses by Gaussian curvature
already points in this direction.

Panelization poses many geometric questions whose systematic investigation
would be rewarding: For instance, panels in the shape of generalized cylinders
which are important for bent glass; and more generally special shapes of panels
which are relevant for certain manufacturing techniques and specific applications in
building construction. Our aim must generally be to find construction-aware de-
sign tools which do not generate shapes first and lets us think about manufacturing
afterwards, but tools which actively, during the design phase, incorporate the side
conditions engendered by manufacturing constraints.
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