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Abstract. The necessity to process data which live in nonlinear ge-
ometries (e.g. motion capture data, unit vectors, subspaces, positive
definite matrices) has led to some recent developments in nonlinear
multiscale representation and subdivision algorithms. The present
paper analyzes convergence and C1 and C2 smoothness of subdivi-
sion schemes which operate in matrix groups or general Lie groups,
and which are defined by the so-called log-exponential analogy. It
is shown that a large class of such schemes has essentially the same
smoothness as the linear schemes they are derived from. This work
extends previous work on Lie group subdivision schemes – we con-
sider alternative definitions of analogous schemes, arbitrary dilation
factors, and symmetry of the nonlinear scheme.

§1. Introduction

1.1. Motivation
For many applications it is necessary to handle data which live in certain
nonlinear geometries. Examples of such data types are unit vectors, po-
sitions of a rigid body, subspaces of Rn, or points on a surface. In these
cases, a manifold “M” containing the data would be the unit sphere, the
Euclidean motion group, a Grassmann manifold, or a surface. Whenever
M is globally embeddable in a vector space Rm, a universal coordinate
system is available, and numerical representation of data is no problem.
Comparing data by computing distances in Rm may work well (e.g., for
two unit vectors v and w the distance ‖v−w‖ makes perfect sense), but
there are situations where the notions which are derived from the ambi-
ent space, like difference vectors and averages, do not have the desired
meaning.
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Subdivision in general is a tool to create continuous limit curves and
surfaces from discrete data – prominent applications of this concept are
in geometric modeling [8] and the definition of wavelet-type transforms
[3]. Thus properties of subdivision schemes, also nonlinear ones, have
received much attention. Smoothness of the limits produced by a subdivi-
sion process is important for various reasons: One is fairness of shapes for
geometric modeling, but another one is that for wavelet-type transforms
based on interpolatory subdivision schemes, smoothness of data is related
to the decay of wavelet coefficients provided the subdivision scheme in use
is smooth enough [11].

1.2. Previous Work

The papers [13, 12, 9] present a general theory of convergence and smooth-
ness of univariate and multivariate nonlinear subdivision rules which are
analogous to linear rules. This analogy is also a central notion in the
present paper. The method of investigation is via proximity of linear and
corresponding nonlinear subdivision schemes: If S is a linear scheme of Ck

smoothness, and T is a nonlinear scheme sufficiently close to S, then also
T enjoys Ck smoothness. In this way, C1 smoothness of a large class of
univariate and multivariate schemes has been shown, as well as C2 smooth-
ness of a smaller class of univariate ‘factorizable’ schemes. This general
principle of proximity has been used before, e.g. in the analysis of non-sta-
tionary linear schemes in [7], and nonlinear schemes in [1, 16]. Recently,
proximity methods have been employed in [17] to show Ck smoothness
of interpolatory schemes which work in the sphere and related manifolds,
and which are constructed from a linear scheme by adding a projection
step after each round of subdivision. The paper [15] analyzes subdivi-
sion schemes operating in Lie groups, namely log-exponential analogues of
linear subdivision schemes. These have been introduced in [4] and are dis-
cussed in [11]. There are several ways to define such analogues – while the
definition employed by [15] converts a sequence of group elements into a
sequence of vectors and works with them, the present paper as well as [11]
uses a different construction which among other things is better suited for
generalization to the multivariate setting [9]. Another difference between
the present paper and [15] is that here we allow arbitrary dilation factors.

§2. Log-exponential Analogues of Linear Subdivision Rules

We consider a linear subdivision rule S with dilation factor N , which
takes as input a sequence p = (pi)i∈Z of points and constructs a refined
sequence “Sp ” from it: SpNi+k =

∑
j∈Z aNi+k−Njpj . We consider only

the case that the mask (ai)i∈Z has only finitely many nonzero coefficients.
It is well known that S can be convergent only if it is affinely invariant,
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i.e.,
∑

i aj−Ni = 1 for all j. Consequently,

SpNi+k = pi +
∑

j∈Z
aNi+k−Nj(pj − pi), (pi ∈ Rm) (1)

The alternative definition of S by (1) is well suited to define a Lie group
analogue with, as shall be demonstrated by the next subsection.

2.1. Group analogues for addition, subtraction, and subdivision
Geometrically, adding a vector v to a point p in Rn amounts to shooting
a ray cp,v(t) = p + tv from p in direction of v, and following that ray for
the appropriate length, until we have reached the point cp,v(1) = p + v.
The operation of computing a difference vector of points p, q is to solve
the equation cp,v(1) = q, which results in v = q−p. For a matrix group or
general Lie group, a ray system is given by the curves cp,v(t) = p exp(tv),
where v is an element of the Lie algebra g, i.e., the tangent space of the
group unit. This leads to the operations p ⊕ v and p 	 q, where p, q are
points and v is a vector:

p⊕ v := p exp(v), p	 q := log(q−1q), (p, q ∈ G, v ∈ g). (2)

These operations (but not the notation) are also employed in [15, 11]. We
use them to further define the midpoint of points p, q, which is denoted
by “mean(p, q)”:

v = q 	 p =⇒ mean(p, q) := p⊕ (v/2) (3)

The expression “mean(p, q)” is symmetric in its two arguments, because
p	 q = −q 	 p, and mean(p, q) = p exp v exp(−v/2) = q exp((p	 q)/2) =
mean(q, p). Of course, the logarithm in G is defined only in a (not too
small) neighbourhood of the unit. For instance the group GLn has a
globally defined logarithm in the subset of matrices which do not have
non-positive real eigenvalues. The definitions of (2) are invariant with
respect to left translations in the group: For all g, p, q ∈ G, v ∈ g we have
gp 	 gq = p 	 q, gp ⊕ v = g(p ⊕ v), and g mean(p, q) = mean(gp, gq). A
natural and invariant analogue “T” of the scheme S which operates on
group-valued data consequently is given by

TpNi+k = pi ⊕
∑

j∈Z
aNi+k−Nj(pj 	 pi), (pi ∈ G). (4)

Remark 1. In a Riemannian manifold it would be natural to use the
geodesic line emanating from the point p and having initial tangent vector
v as the ray cp,v(t). Such rays obey the homogeneity law cp,tv(s) = cp,v(ts)
like the ones defined above. This is common to curves defined as solutions
of initial value problems of a certain type of second order differential equa-
tion in a manifold known as spray.
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Remark 2. The paper [15] uses a different way of constructing a log-ex-
ponential analogue. The scheme S is not expressed in terms of differences
pj − pi as in (1), but those differences are further expressed in terms of
differences ∆pj = pj+1 − pj . This has the advantage that in both the lin-
ear and the nonlinear cases, the sequence (pi)i∈Z is uniquely determined
by a single point pi0 and the sequence of difference vectors pi+1−pi ∈ Rm

or pi+1 	 pi ∈ g, respectively.

Remark 3. The vector space Rn is a group with addition as basic opera-
tion. It fits in the matrix group formalism after identifying a point p ∈ Rn

with the matrix p̃ =
(

1 0
p E

)
∈ R(n+1)×(n+1), and a vector v ∈ Rn with

the matrix v̂ =
(
0 0
v 0

)
∈ R(n+1)×(n+1), because then p̃ + q = p̃ · q̃. Further

properties are p̃−1 = −̃p; exp(v̂) =
∑

k≥0 v̂k/k! = ṽ (because v̂2 = 0);
p̃ + v = p̃ṽ = p̃ exp v̂ = p̃⊕ v̂; and p̃	 q̃ = log(p̃−1q̃) = log(p̃− q) = p̂− q.
So in this particular matrix group the schemes T analogous to a linear
scheme S are actually equal to S.

2.2. Symmetry of subdivision schemes
The subdivision rule S might have the property that reversing the order
in which the input data are indexed has no influence on the result of
subdivision (i.e., qi = p−i =⇒ Sqj = Spj0−j , for some fixed index j0 and
all j ∈ Z). It depends on the number of points of the sequence pi which
contribute the the points Spi whether or not also the nonlinear analogue
T has this symmetry property. If T is not symmetric, we may consider
a modified analogue defined by (6), which is based on the alternative
representation of S given by (5):

SpNi+k =
1
2
(pi + pi+1) +

∑
j∈Z

aNi+k−Nj(pj −
1
2
(pi + pi+1)) (5)

TpNi+k = mean(pi, pi+1)⊕
∑

j∈Z
aNi+k−Nj(pj 	mean(pi, pi+1)). (6)

Example 1. Consider the interpolatory four-point scheme with weight
w, which is given by the rules Sp2i = pi for the even points and Sp2i+1 =
1
16 (−w(pi−1 + pi+2) + ( 1

2 + w)(pi + pi+1)) for the odd points (see [6]). Its
nonlinear analogues have the general form below. We let the ‘base point’
bi equal pi when using (4), and equal mean(pi, pi+1), when using (6):

Tp2i = bi ⊕ (pi 	 bi) = pi, Tp2i+1 = bi ⊕
(
− w(pi−1 	 bi)

− w(pi+2 	 bi) + (
1
2

+ w)(pi 	 bi) + (
1
2

+ w)(pi+1 	 bi)
)
.

Obviously, the analogue constructed with (6) is invariant with respect to
inversion of indices.
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§3. Proximity Inequalities

For our smoothness analysis we employ concepts commonly used in the
smoothness analysis of a linear curve subdivision scheme S, such as the
symbol a(z) =

∑
ajz

j , and the derived scheme S∗ defined by the commu-
tation relation N∆S = S∗∆S, where ∆p is defined by ∆pi = pi+1 − pi.
S∗ has the symbol NzN−1a(z)/(1 + z + · · ·+ zN−1). A further notion is
the norm of a scheme, which is computable by ‖S‖ = maxj

∑
i |aj−Ni|.

For more information and properties, we refer to the literature [5, 8].
The proximity methods according to [13, 14, 12] require to establish

certain inequalities involving the distance of schemes S, and T , in order
to conclude smoothness of T from smoothness of S. With the notation
‖p‖ = supi ‖pi‖ and d(p) = supi ‖pi+1 − pi‖, these inequalities are

‖Sp− Tp‖ ≤ Cd(p)2, (7)

‖∆Sp−∆Tp‖ ≤ C(d(p)d(∆p) + d(p)3), (C > 0). (8)

They are required to be true whenever d(p) is small enough. Usually (7),
which is needed for showing convergence and C1 smoothness of T , is easy
to show, but (8), required for C2 smoothness of T , is harder. The reader
will note that (7) and (8) indiscriminately compare points Spi of Rn and
points Tpi which are supposed to be elements of the Lie group G. This
way of putting the proximity inequalities therefore makes sense only if G
is a matrix group, i.e., a subgroup of GLn: Then every p ∈ G at the same
time is an element of Rn×n = Rm with m = n2. The canonical Euclidean
norm in Rn corresponds to the Frobenius norm ‖g‖2 = tr(ggT ) in the
matrix group G. However, it turns out that, without loss of generality,
analysis can be restricted to the case of matrix groups (cf. the proof of
[15, Theorem 5]).

3.1. The exponential function in matrix groups

We here derive several inequalities concerning the matrix exponential func-
tion and the matrix logarithm which are needed later.

Lemma 1. Assume that U is a bounded neighbourhood of the unit in
the matrix group G where the matrix logarithm is a diffeomorphism, and
that pi is a G-valued sequence. Then there are constants C,C ′, C ′′ > 0
such that

‖pj 	 bi‖ ≤ Cd(p), (bi = pi or bi = mean(pi, pi+1)) (9)

‖(pj 	 bi)− 2(pj+1 	 bi) + (pj+2 	 bi)‖ ≤ C ′d(∆p) + C ′′d(p)2, (10)

if all differences p	 q are such that p−1q ∈ U , and |i− j| is bounded.
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Proof: The inequality (9) follows immediately from the relations x−1 =
e−x+o(‖x‖2), log(e+x) = x+o(‖x‖2), and exp(x) = e+x+o(‖x‖2). For
(10), we use the abbreviation vj

i = pj 	 bi. The exponential series implies
that there is γ1 > 0 such that ‖(vj

i −2vj+1
i +vj+2

i )− (exp vj
i −2 exp vj+1

i +
exp vj+2

i )‖ ≤ γ1 supj ‖v
j
i ‖2, which in turn is bounded by γ2d(p)2 (γ2 =

C2γ1). We conclude that ‖vj
i − 2vj+1

i + vj+2
i ‖ ≤ ‖ exp vj

i − 2 exp vj+1
i +

exp vj+2
i ‖+ γ2d(p)2 = ‖b−1

i (∆2pj)‖+ γ2d(p)2 ≤ ‖b−1
i ‖‖∆2p‖+ γ2d(p)2. If

we let C ′ := sup ‖b−1
i ‖, this is what we wanted to show.

3.2. Some facts concerning Laurent polynomials
The proof of the inequality (8) which is the key for C2 smoothness will
need some properties of Laurent polynomials. In the following, N is the
dilation factor of the subdivision scheme S.

Lemma 2. Let a(z) =
∑

ajz
j be the symbol of the subdivision scheme

S, and assume that a(ζi) = a′(ζi) = a′′(ζi) = 0 for all i = 1, . . . , N − 1,
where ζN = 1 and ζk 6= 1 for k = 1, . . . , N − 1 (i.e., ζ is a primitive Nth
root of the unit). Then for all k ∈ Z,

(
∑

i
iak+1−Ni)2 − (

∑
i
iak−Ni)2 =

∑
i2(ak+1−Ni − ak−Ni). (11)

Proof: We define S1,k =
∑

i iak−Ni, S2,k =
∑

i i2ak−Ni, and observe
that (11) can be expressed as S2

1,k+1 − S2
1,k = S2,k − S2,k+1. This re-

lation is verified as follows: We define the Laurent polynomials ak(z) =∑
i ak−Niz

k−Ni, and compute a′k(1) =
∑

i(k−Ni)ak−Ni = k−N
∑

iak−Ni

(the last equality was by affine invariance), whence S1,k = 1
N (k − a′k(1)).

We further observe that ak(z) can be written as an average: ak(z) =
(a(z) + ζk

∑N−1
j=1 a(ζjz))/N . Differentiation yields a′k(z) =

(
a′(z) + ζk·∑N−1

j=1 ζja′(ζjz)
)
/N , which implies a′k(1) = a′(1)/N because of our as-

sumption that a′(ζj) = 0 for j = 1, . . . , N − 1. Thus we have shown
S1,k = 1

N (k− a′(1)
N ). A similar computation shows that S2,k = 1

N2 (a′′(1)
N2 −

k(k − 1) + (2k − 1)(k − a′(1)
N )). Now (11) can be verified directly.

Lemma 3. The bivariate Laurent polynomial A(x, y) can be written in
the form A(x, y) = (1 − x)2a(x, y) + (1 − y)2b(x, y) with Laurent poly-
nomials a(x, y), b(x, y) if and only if A(1, 1) = Ax(1, 1) = Ay(1, 1) =
Axy(1, 1) = 0. Here the index indicates differentiation.

Proof: The ‘if’ part is trivial. For the ‘only if’ part we first observe that
multiplication of A with powers of x and y does not affect the result. Thus
we can without loss of generality assume that A is a polynomial, and the
desired expression follows from the Taylor expansion of A at (x, y) = (1, 1)
(every monomial of which is a multiple of either (1− x)2 or (1− y)2).
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3.3. The proof of proximity inequalities
Having established Lemmas 1–3, we are now ready to show under which
circumstances inequalities of the form (7) and (8) hold.

Lemma 4. Consider a matrix group G, a linear subdivision rule S, and
the nonlinear subdivision rule T which is defined either by (4) or (6). If S
has derived schemes up to order three, then S and T satisfy the proximity
conditions (7) and (8) for all bounded input data (pi)i∈Z where successive
points pi, pi+1 are close enough.

Proof: The inequality (7) has been shown in [9], and is anyway much
easier than (8). In order to show (8), we have to give an upper bound for
Fl+1−Fl, where Fl = Tpl−Spl. We do this by considering that expression
as a function of the vectors vl

i = pl	bi, where the base point either equals
pi or mean(pi, pi+1), depending on whether we use (4) or (6) as definition
of T . Recall that

TpNi+k−SpNi+k = bi exp(
∑

aNi+k−Njv
j
i )−bi−

∑
aNi+k−Nj(bie

vj
i −bi).

It is easy to see that when expanding the exponential series here, that
the first order terms vanish. In our analysis of second order terms in the
expansion of Fl+1 − Fl, we consider two cases.

Case 1: l = Ni + k with k ∈ {0, . . . , N − 2} and i ∈ Z. Here both terms
Tpl+1 and Tpl are defined via the same base point bi, and one easily finds,
by considering the first terms of the exponential series, that the second
order Taylor polynomial of Fl+1 − Fl has the form

bi

2
[
(
∑

j
aNi+k+1−Njv

j
i )

2 − (
∑

j
aNi+k−Njv

j
i )

2

−
∑

j
(aNi+k+1−Nj − aNi+k−Nj)(v

j
i )

2
]
.

Case 2: l = Ni + N − 1 for some integer i. In this case, the base points
which occur in the definition of Tpl+1 and Tpl are different, and there
occur vectors of type vj

i as well as vectors of type vj
i+1. By definition,

pl = bi+1 exp vl
i+1 = bi exp vl

i = bi+1 exp vi
i+1 exp vl

i. (12)

The Campbell-Hausdorff formula (cf. [10]), which in general reads exp(v) ·
exp(w) = exp(v + w + 1

2 [v, w] + · · · ), implies that vj
i+1 = vi

i+1 + vj
i +

1
2 [vi

i+1, v
j
i ] + · · · , where the dots indicate higher order terms. In or-

der to relate the different base points, we use pi+1 = pi exp vi+1
i and

mean(pi+1, pi+2) = mean(pi, pi+1) exp( 1
2vi+1

i ) exp( 1
2vi+2

i+1). When we use
these formulas to replace all references to bi+1 and vl

i+1 in Fl+1 by expres-
sions whose dominant term is bi or the vl

i’s, we see that vectors of type
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vl
i+1 occur only in higher order terms, and that the second order Taylor

expansion of Fl+1 − Fl is the same as in case 1.

We continue to discuss the second order Taylor polynomial of Fl+1−Fl,
which has the form 1

2bi

∑
Arsv

r
i vs

i , with

Ars = aNi+k+1−NsaNi+k+1−Nr − aNi+k−NsaNi+k−Nr (s 6= r)

Ars = a2
Ni+k+1−Ns − a2

Ni+k−Ns + (aNi+k+1−Ns − aNi+k−Ns) (s = r).

As ‖bi‖ is bounded, it does not affect the desired upper bound, so we
discard this factor. We want to rewrite

∑
r,s Arsv

r
i vs

i in the form∑
r,s

(
arsv

r
i (vs

i − 2vs+1
i + vs+2

i ) + brs(vr
i − 2vr+1

i + vr+2
i )vs

i

)
(13)

with as yet unknown coefficients ars and brs. This is converted into a state-
ment on the generating functions A(x, y) = Arsx

rys, a(x, y) = arsx
rys,

and b(x, y) = brsx
rys: We want to write A(x, y) in the form (1− y)2a(x,

y) + (1− x)2b(x, y). By Lemma 3, this is possible if and only if A(1, 1) =
Ax(1, 1) = Ay(1, 1) = Axy(1, 1) = 0. It is now an elementary if somewhat
tedious task to evaluate these values and derivatives: The second order
Taylor polynomial of Fl alone is easily seen to have the generating func-
tion Ã(x, y) = (

∑
al−Nrx

r)(
∑

al−Nsy
s) −

∑
al−Nrx

ryr, and it is clear
that Ã(1, 1) = Ãx(1, 1) = Ãy(1, 1) = 0, when we observe that the affine
invariance of the scheme S implies

∑
i ai−Nj = 1 for all j. Therefore also

A has this property.
A short computation shows that the condition Ax,y(1, 1) = 0 is equiva-

lent to (11). As S was assumed to have derived schemes up to oder three,
the symbol a(z) has a factor of the form (1 + z + · · · zN−1), i.e., a(ζk) =
a′(ζk) = a′′(ζk) = 0 for a primitive Nth root ζ and k = 1, . . . , N − 1.
We therefore can use Lemma 2 to conclude that the conditions of Lemma
3 are fulfilled, and we can indeed write the second order Taylor polyno-
mial of Fl in the form (13). The inequality (10) of Lemma 1 now implies
that sup ‖Fl‖ = ‖∆Sp−∆Tp‖ ≤ C(d(p)d(∆p)+d(p)3) up to higher order
terms (which again are of magnitude d(p)3). So we have shown the desired
proximity condition.

§4. Results

In the previous section we have collected all inequalities which are neces-
sary to show a theorem on smoothness of nonlinear subdivision schemes
which in its scope and generality is analogous to Theorems 5 and 6 of [15].

Theorem. Let G be a matrix group, and S a convergent linear curve
subdivision scheme with finite mask and dilation factor N ≥ 2. Define a
nonlinear log-exponential analogue T of S either by (4), or by (6). Then,
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1. For any sequence (pi)i∈Z, where successive points are close enough,
the scheme T produces continuous limit curves.

2. If the second derived scheme S∗∗ exists, and for some nonzero integer
k, ‖S∗k‖ < Nk/2, ‖S∗∗k‖ < Nk, then all continuous limit curves
produced by the scheme T are continuously differentiable.

3. If the third iterated derived scheme S∗∗∗ exists and for some nonzero
integer k, ‖S∗k‖ < Nk/3, ‖S∗k‖ ‖S∗∗k‖ < Nk, ‖S∗∗∗k‖ < Nk, then all
continuous limit curves produced by T enjoy C2 smoothness.

The statement of the theorem remains true if ‘matrix group’ is replaced
by ‘finite-dimensional Lie group’.

Proof: The proof of this theorem is completely analogous to the proof
of Theorems 5 and 6 in [15]. In that paper, we establish that proximity
inequalities hold in exactly the same way as in our Lemma 4. Theorem 5 of
[15] shows the result for matrix Lie groups and therefore also for embedded
local matrix groups. In order to show the theorem for a general Lie group
G, we use the following argument. The result is local, and the construction
of the log-exponential analogue is invariant by left multiplication. Thus
it suffices to show the theorem for a small neighbourhood of the identity.
By Ado’s theorem, the Lie algebra g of G is isomorphic to a Lie algebra g′

of n × n matrices and G is locally around the identity isomorphic to the
local matrix group “exp(g′)”. We see that the theorem applies to G also.
Theorem 6 of [15] uses a different argument.

Note that the sequence (pi)i∈Z of input data no longer has to be
bounded (in contrast to previous lemmas). This is because only finitely
many data points can influence a certain compact interval of the limit
curve, so we may w.l.o.g. assume boundedness of input data.

Example 2. The Deslauriers-Dubuc scheme “S” with parameter D = 2
[2] has the symbol a(z) = (3z4 − 18z3 + 38z2 − 18z + 3)(1 + z)6/(256z5)
and dilation factor N = 2. Its log-exp analogue T is used in [11] for
the construction of nonlinear wavelet transforms. T ’s limit curves are C2,
because our theorem applies to S for k = 2: ‖S∗2‖ ≈ 1.487 < 2k/3 ≈ 1.587,
‖S∗2‖ ‖S∗∗2‖ ≈ 3.917 < 2k = 4, and ‖S∗∗∗2‖ ≈ 2.844 < 2k = 4.
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Multiscale representations for manifold-valued data, Multiscale Mod.
Sim. 4 (2005), 1201–1232.

12. Wallner J., Smoothness analysis of subdivision schemes by proximity,
Constr. Approx. 24 (2006), 289–318.

13. Wallner J., and N. Dyn, Convergence and C1 analysis of subdivision
schemes on manifolds by proximity, CAGD 22 (2005), 593–622.

14. Wallner J., and H. Pottmann, Intrinsic subdivision with smooth limits
for graphics and animation, ACM Trans. Graph. 25/2 (2006), 356–374.

15. Wallner J., E. Nava Yazdani, and P. Grohs, Smoothness properties of
Lie group subdivision schemes, Multiscale Mod. Sim. 6 (2007), 493–505.

16. Xie G., and T. P.-Y. Yu, Smoothness analysis of nonlinear subdivision
schemes of homogeneous and affine invariant type, Constr. Approx. 22
(2005), 219–254.

17. Xie G., and T. P.-Y. Yu, Smoothness equivalence properties of mani-
fold-valued data subdivision schemes based on the projection approach,
SIAM J. Numer. Anal. 45/3 (2007), 1200–1225.

Philipp Grohs and Johannes Wallner
Institute of Geometry, TU Graz
Kopernikusgasse 24, A-8010 Graz, Austria
{pgrohs,j.wallner}@tugraz.at


