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Abstract: This paper investigates a number of relations between geometric ob-
jects in Euclidean R from the viewpoint of tolerance zones and error prop-
agation. Our investigations are based on an certain inequality concerning the
linearization error useful for quadratic constraint problems. By collecting nu-
merical data and looking at limit cases we investigate the influence of the choice
of coordinate system on the tolerance analysis of a collection of quadratic con-
straint equations, which represent geometric problems in Euclidean space.

1 Introduction

Geometric constraint solving means the problems which arise when the location of
geometric objects is described via relations between them. Issues important in appli-
cations of this concept are solvability of constraint problems and their sensitivity to
errors [2]. Many methods have been proposed for geometric constraint solving: based
on dependency graphs, rule-based and numerical ones, and methods based on sym-
bolic computing. For the literature on these topics in the context of Computer-Aided
design, see [8]. This paper is concerned with the propagation of errors through implicit
constraints, based on the concept of tolerance zone [3, 4, 6, 7]. The present paper is a
sequel of [8], which describes a general analysis of the propagation of tolerance zones
through implicit constraints, with a focus on geometric constructions. A more detailed
version comprises part of the thesis [9].

We assume that a certain number of geometric objects is given imprecisely — each of
them is known to be contained in a certain tolerance zone. Other geometric objects are
located via constraints, and we want to give tolerance zones for them. This is done by
linearizing the system of constraints and estimating the linearization error. For each
configuration, this works only up to a certain maximum size of tolerance zones, de-
pendent on the particular instance of the constraint problem we wish to analyze, on the
number of objects and constraints involved, and on the behaviour of the constraints’
derivatives. Estimating the linearization error in the way presented here is most effi-
cient if the constraints are quadratic polynomials. Conveniently, it is hard to think of
geometric relations which are not expressible via quadratic polynomials. A short dis-
cussion of the relation of this work and tolerance zones in general to interval arithmetic
can be also found in the introductions to [7] and [8].



2 Preliminaries

We consider two kinds of entities: the fixed variables X = (Xj, ..., Xn), and the moving
variables Y = (Y1,...,Ym) with X;,yj € R. The constraints which are assume to hold
are collected in a C? function F as follows:

F:UxV—=W:Fxy)=(F(XY), . Fnxy) U=RLV=W=R"), ()

where each component F(X,Y) represents a constraint. Solving the constraint problem
means finding y for given X such that F(x,y) = 0.

We shortly discuss solvability and uniqueness of a solution: Suppose that F(u,v) =
0. A local solution of the constraint problem which extends the solution (u,V) is a
function G : U — V, defined in a connected neighbourhood of u such that F(x,G(x)) =
0 for all X where G is defined. It follows from the inverse function theorem that such
a local solution exists if Fy(u,V) is nonsingular. If we are interested in only one y;, we
write Yj = Gj(x).

§2.1 Linear and Bilinear Mappings. Notation

For the convenience of the reader we repeat some facts concerning linear and bilinear
operators, their norms, and their relation to the Taylor expansion in §2.1—§2.4,

We use the symbols U, V, W for linear spaces. L(U,W) and B(U,V,W) denote the
spaces of linear mappings from U to W and and bilinear mappings from U xV to
W, respectively. We employ the notation “a -u” and “[u,V]” to indicate that we ap-
ply o to u and B to the pair (u,v). “o(u)” is a linear mapping which depends on
u. For each B € B(U,V,W) there are associated mappings 8% € L(U,L(V,W)), BY¥ ¢
L(V,L(U,W)), with B[u,v] = B?(u)-v = BY¥(Vv) - u. Subscripts indicate coefficients of
vectors with respect to previously defined bases: a € L(U,W) and 3 € B(U,V,W)
have the coordinate representations [o - U]y = ¥; oiUj and B[u,V]y = ¥ j Brijuivj, re-
spectively. The coordinate matrix of a contains the coefficients ayj. It is elemen-
tary that the coordinate matrices of the linear mappings B?(u) and B%(v) consist of

[BY(W)]rj =Y UiBij and [BY(V)]ri = 3 j VjBrij, respectively.

§2.2 Taylor Expansion of the Constraints

Derivatives of the function F of (1) with respect to X and y at (u,v) are the lin-
ear mappings Fy(u,v) € L(U,W), Fy(u,v) € L(V,W) (U =R"V =W =R"),
whose coefficients are given by the partial derivatives dF; /dx; and dF; /dy;, respec-
tively. Second derivatives of F are the bilinear mappings Fy € B(U,U,W),Fyy €
B(U,V,W),Fy € B(V,V,W) (U=R"V =W =R™), whose coefficients are the sec-
ond partial derivatives 62Fr/6xidxj, 9°F; /0% dyj, and 02Fr/07yi(9yj (in that order).
Taylor’s theorem says that for any (u,v),(h,k) € R" x R™ there is 8 € [0,1] with
P+ L) = FOD + Rl [GD -h+ Ry([3D) -k B[]+ LRI A + By (3] +



G[E])[h,k] + Ry (V] + G[E])[k,k]. Here we employed column vector notation “[|)]”
for (u,v) e R" x R™

§2.3 Computing Normsof Linear and Bilinear Mappings

We assume that a € L(U,W), B € B(U,V,W), and that the linear spaces U,V,W
are equipped with norms. We are going to use the LP norms in p = 1,2, 00:
[1X[lp := (F|Xi|P)!/P for 1 < p < o and |[X||e = max; |Xi|. In any case, ||a|| uw) =
supyyp <1 10Ul [1Blewvaw) == SUPjujy iy <1 18U V]llw. For computing norms in
L(U,W), see e.g. [1]. In general, if the unit sphere Sy in U is a convex polyhedron
with vertices Xj, then for any normed space X and linear mapping a : U — X, we
have ||| u x) = max; ||a - Xi[|x. This applies to the 1-norm and the co-norm in U. As
to bilinear mappings, it is not difficult to show that ||B{|guvw) = IB?llLu.Lvw)) =
HB('UHL(V?L(U?W)). This means that in case either Sy or Sy is a polyhedron, we are
able to compute ||B|guvw). We write [|B|[pgqr in order to indicate that the spaces
U,V,W use the p-, -, and r-norms, resp. A case not handled by the polyhedral ap-
proach is ||B||22,, which equals the maximum singular value of the dimW matrices
(Bri J)Ellilrf&/ . Further, there is the inequality ||||222 < v dimW || 3]]2,2,c. For more
details, see also [8].

§2.4 Normsof Derivatives

The three vector spaces U, V, W involved in the definition of F in (1) and its second
derivatives are assumed to be equipped with norms. V =W as a linear space, butV and
W may be different as normed linear spaces. We are going to consider only solutions
of the constraint problems where there are upper bounds of the following form

IFa(uv) <a, Ry <B, [Fyuv)i<y (a®+B*+y*>0). ()

Upper bounds as required by (2) are particularly simple to give if F is a quadratic
function, because then Fyy, Fxy, and Fyy depend neither on X nor on y. Later we need
the following function:

A(s,t) := (as* +2PBst+yt?) /2. (3)

3 Tolerance zones and implicit equations

This section sums up results of [8]. We first discuss local solutions of an implicit
equations and later apply a linearized local solution to tolerance zones. Theorem 1
below yields an upper bound for the error we make in this process, provided tolerance
zones are small enough. The range of validity of Theorem 1 is the subject of Sec. 5
below.



§3.1 Local Solutions

Geometric tolerance analysis means that we are dealing with imprecisely defined ge-
ometric objects Py, P2, ..., each of which is contained in its tolerance zone P, P,,....
Geometric objects (;,0p,... depend on the p;’s, and we want to find tolerance zones
Q1,Qz,... for the q1,0s,... such that whenever p; € B for all i, we can be sure that
q; € Q;j for all j. We treat this problem by introducing coordinates for all geometric
entities involved, such that each p; is represented by a group of fixed variables, and
each ¢ is given by a group of moving variables:

X= (X17"-7Xr1)xrl+la"‘7Xr1+f2)"‘7xn)7 y: (yla"‘vysla"'vym)- (4)
—_— ————

P1 P2 a1
If pi € B for all i, then the vector X, which actually constitutes coordinates for
P1,P2,---, is contained in the set Py x P, x ... € R" x R" x .... Suppose F(u,v) =0
as above, such that X = U,y = vV represents a particular solution of the constraint prob-
lem, then the local solution y = G(x) leads to a tolerance zone G(P; x P, x ...) for the
vector y. We define the functions G as those coordinates of G, which belong to the
geometric object j:

G(x) = (Gi(X),...,Gs (X),Gs +1(X), ..., Gg +5,(X), ..., Cm(X)). 5)

ar =GV (x) o =G (x)

Thus a tolerance zone of the geometric entity qj is given by G(Py x Py x...). Ttis
customary to consider only such tolerance zones P, which have the topology of a ball.
For computations one usually chooses simple shapes, such as convex ones.

As an example, we consider the case N =4, m = 2, and Fy(X,y) = (X; —Y1)? + (X, —
¥2)? — 2900, F>(X,Y) = (X3 — Y1)* + (X4 — y2)* — 4100). A particular solution is (u, V)
=(0,0,60,0,20,50). This constraint problem has the following interpretation: The
points p; = (X1, X2), P2 = (X2, X4), 41 = (Y1, Y2) are constrained by the conditions ||p; —
q1||> =2900 and || p2 — q1]|> = 4100. Fig. 1.a illustrates tolerance zones Py, P,, and the
tolerance zone Q; = G(l)(Pl x P»), where y = G(X) is a local solution of the equation
F(x,y) = 0 in a neighbourhood of X = u,y = V.

§3.2 Linearizing Constraints

We linearize the local solution y = G(X) in a neighbourhood of a particular solution
u,v with F(u,v) = 0:

Giin(u+h) = G(u) +Gx(u) -h, where Gx(u) = —Fy(u,v) 'Fx(u,v) € L(U,V). (6)

The matrix Gy can be partitioned into column groups which correspond to the variables
contribute to a particular geometric entity p;j, and into row groups which contribute to
a particular entity ¢j. Thus we get the following block matrix decomposition with



q+G%" (P —p1)
+G%" - (P~ p)

) // Q1 C Gjn(P x P)
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Figure 1: (a) Exact and (b) linearized tolerance zones. (c) Upper bound of linearization
error.

numbers i and Sj from (4), and a first order approximation for tolerance zones Qj:

G 6Pl s Qi ~GW (P xP,x...)

Gx = (12) <22 - . (7
Gt G s g+ 568 (A )
<

r r

This Minkowski sum of affinely transformed tolerance zones P, is particularly simple
to compute if §; < 2 in (4). We continue the example above, which is illustrated by

Fig. 1: Here Gx =[ g{""V | g2V |= %[ lg %g _Zg 7%8} The resulting linearized tolerance

zone is shown in Fig. 1.b. Both G&l"l) and G_&z’l) are singular, and G_&i’l) (B —pi) is
a straight line segment. It follows that we approximate the tolerance zone Q; by a
parallelogram.

§3.3 EstimatingtheLinearization Error

The linearization error is the difference between an exact local solution G and the
linearized one, Gy;,. Following [8], we use function A defined in (3).

If F is linear, then the norms ||Fx||,... are zero and linearization is exact. For our
purposes it is essential that A(S,t) is non-zero if s,t > 0. Therefore we require that
a?+p>+y>>0.

Theorem 1. Consider a solution (u,v) of the constraint problem F(x,y) = 0, and as-
sume that A(s,t) is defined according to (3). Further assume that there is a local
solution G with v = G(u) and the corresponding linearized solution Gy;,. Choose
C,C’,Cax Such that

[Gx(u)

e , C<Cmx, C'=[Gxu)C. @
1Fy(u,v) =1~ A(1,2]|Gx(u)[]) 1Gx(u)l (8)

A perturbation in u causes v to move with G(u+h) = v +k. The linearization of
this equation is Gyi,(u+h) = v+kj,. The linearization error obeys the following



inequalities:

Il <C = [KI<2C", [k—kinl < [Fy(uv)~'[|-AC,2C") <C. (9

[8] gives examples which use Theorem 1 in order to give an upper bound for the
linearization error. Fig. 1 illustrates an offset of the linearized tolerance zone, where
the exact tolerance zone Q; is known to be contained in.

Theorem 1 gives an answer to the question of maximal size of the tolerance zone of
the moving variables such that a tolerance zone of the corresponding moving variables
can be computed with linear analysis plus an estimate for the linearization error. Con-
versely, assume that the tolerance zone of the moving variables is prescribed as a ball
of radius C* with C* < C. . = ||Gx||Cmax (in the notation of Theorem 1). Then the
choice of

1
C=——
2[Ry 1A (1,2/1Gxl)

(VB2 +4C - Ky 1 -A(1,2]Gxl) ~ Gxl) - (10)

ensures that ||h|| < C implies ||k|| < C*.

§3.4 Balancing the constraint equations

Obviously the local solutions do not change if we multiply some constraints by factors,
but the computation of C,, is affected by it. A rule of thumb might be that all variables
should have values of the same order of magnitude. The same holds true for the choice
of coordinate system, especially the choice of unit length. Some of the coordinates
may reflect length, or length squared, or might have no dimension. The coordinate
vector of a plane, for instance, contains a unit vector together with a coordinate whose
geometric meaning is length. By choosing the unit length appropriately it is easy to
achieve any magnitude of that single coefficient. A general answer to the balancing
question appear to be difficult.

It is an aim of this paper to investigate several geometric constructions in Euclidean R3
in order to gain insight in the behaviour of Cy,,x and the norms of derivatives needed
when changing the coordinate system.

4 Coordinates and relations

This section sums up elementary properties of points, lines and planes in Euclidean
space.

§4.1 Coordinatesfor geometric objects

A point (X{,X2,X3) € R? naturally is given the coordinates X;,Xp,X3. The plane
with equation (U,X) 4+ Up = 0 such that u = (uj,Up,us) has given the coordinates



(Ug,Us,Uz,U3). We normalize the equation such that u? +u3 +u3 = (u,u) = 1. Ac-
tually such coordinates represent an oriented plane, i.e., a plane together with a side of
the plane where the normal vector U points to. A line parallel to the vector | = (I, 12, 13)
with |12 + Ig +12 = 1 is uniquely characterized by the moment vector [ = x x |, if X is a
point on the line, and the line is reconstructed as the solution set of the three equations

x x | =1, if vectors | and I with (I,I) = 0 are given [5]. Thus we coordinatize the set of
straight lines in R3 by the six coordinates (I,1) = (ly,...,ls) with the side conditions
(I,1) = 1 and (I,1) = 0. Actually any such coordinate vector means an oriented line,
and (—I, —I) means the same line, but equipped with the reverse orientation.

§4.2 Relations between geometric objects

We summarize relations between geometric objects in Table 1 and Table 2. We use
the symbols p, q for points, L = (1), G = (g,d), H = (h, h) for lines, and U = (U, u),
V = (Vvo,V) for planes. First comes a relation which involves points only: the distance
constraint. Next are relations between a point and a line. The incidence relation p € L
either uses only two out of the three equations I = p x I, or the condition that (I,1) = 0
has to be dropped. This is indicated by the canceling stroke in the right hand column.
We further consider the case that Q is the pedal point of P on L, which means that Q € L
and the line PV Q is orthogonal to L. For the pedal point we give two formulas: One
in Table 1, and another one in Table 2, which introduces as a new variable the distance
of P’s pedal point Q from the origin’s pedal point | x I. The oriented distance of points
on a line, denoted by the symbol (EEL(P, Q), is negative, if the vector P_Q> does not
point in the same direction as |. Next come relations between points and planes, which
are straightforward. Relations between lines include parallelity, distance of parallel
lines, and distance of skew lines G,H. The latter constraint can be made quadratic
by introducing both sine and cosine of the angle <((G,H) as new variables. Relations
between a line and a plane are orthogonality (two cases), parallelity and incidence
(L CU). A relations between planes given here is parallelity. As the line given as
intersection of two planes has coordinates proportional to (U X V,UgV — Vou), also this
results in a quadratic relation. It it easy to add more relations to this table.

§4.3 Changing the coordinate system

It is an aim of this paper to study the influence of translation, rotation, and scaling of
the underlying coordinate system on the local tolerance analysis via Theorem 1. The
choice of a different unit length (i.e., a scaling of the coordinate system with a factor
s > 0), translation by t € R?, and rotation by a matrix A € SO; transform coordinates
according to

p — sp, (1,1) — (1,sI), (Up,u) — (Sug, U). (11)
p— p+t, (L) — (I, T+t x1), (Up,u) — (up — (u,t),u). (12)
X — AX, (1,1) — (AL AI) (Up,u) — (ug,Au). (13)



geometric relation

number and nature of
constraints involving more
than one geometric entity

number and nature of
constraints involving only
one geometric entity

dist(p,q) =d Ll p—qll*= 0
PelL 2 | twoof I =pxl 2| INI*=1,{1,1)=0
Pel 3| T=pxl 1| 1*=1,4,h=0
Q = pedal, (P) 4laxl=I(p—ql)= L NP=1.4.F=0
dist(P,U) =d 1 |{up+(u,py=d 1| |ull>=1
PcU 1| ug+(u,p)=0 1| [u?=1
<(G,H)=6 1] (g,h) = cos 6 4| llgli*=1,[h|?=1,
(9,9)=0,(g9,h)=0

GlH, 3|9==h, 3 |yg||2:1W

) (9.9)=0, (g,h)=0
GNH # {} 11 (g,h)+(g,h) =0 41 lglI*= 1thl2 1

) {9.9)=0,(g.n)=0
Lcu 3| uxl=upl 3 ||u\|2—\| ||2 LI, ) =0
UlL 3 u==l 2 | [Ju]]?=1, =T, (1,[)=0
VHIRY; 3ju==+v 1| ||ull?>=1,luP=T
Table 1: Relations between points p,q, lines L = (I,1), G = (g,d), H = (h,h), and

planes U

= (Uo,U), V=

(Vo,V). (cf. §4.2).

geometric relation

number and nature of
constraints involving more
than one geometric entity

number and nature of
constraints involving only
one geometric entity

Q = pedal, (P)

(A =(,p)]
Q = pedal, (P)
Gl H,

dist(G,H) =d
dist(G,H) =d
[A2=cos<(G,H)]
L=UnVv

4 <|,p>:/\,
IxT+Al=q

4 up+(q,u)=0
pP—qg=Au,

4 |g==h,[lgFh|*=d?

7

g,h) = As,
g.h)

(g,h) =dA,
(I,1) = (u x v,upv — vpu)

7

>AA

2 | 1P=1,(1,1)=0

1| [JullP=1

3 llgl*= 1W;4
(9,9)=0, (h,h)=0

5 ||§1H2_||h|!2 =A{+A7=1
<g,g>:0, <g_7 h>:O

L NP=1,{b=0

Table 2: Relations becoming quadratic with new variables (cf. §4.2).




The value Cp,.x as computed by Theorem 1 or the formulas following it means the
maximum size of tolerance zone of the fixed variables “X” around a local solution
X = U,y = V of the constraint problem F(x,y) = 0. When changing the unit length so
that coordinates of points get multiplies by a factor s > 0, Cyax Will usually change.

If the fixed variables consist only of points, then an optimal method for local tolerance
analysis would result in Cp,,x gets multiplied by S. If the different parts of X as described
by (4) have also other meanings, such a simple statement is no longer possible. For
lines and planes, for instance, not all of its coordinates are scaled. While it would be
nice if Cp,x would get bigger if all coordinates are multiplied by S, we cannot expect
this to be the case.

As all three type of geometric entities considered in detail in this paper contain at least
one coordinate which is scaled with S, we do the following: We scale with S according
to (11), and have a look at Cp,y/S, which in the case of points means the size of
tolerance zone with respect to the coordinate system before scaling.

5 Examples

In this section, we collect the most useful constraints in geometric constraint solving
problems and show the influence of translation, rotation, and scaling on the value of
Cmax computed via Theorem 1. In the remain content, we use 1-norm in the fixed
variable space and 2-norm in the moving variable space, and other norms are only
illustrated in the data of the tables. When investigating the influence of translations
and rotations we randomly select the translation vectors as t(T) = (7,7,T) and the
rotation about the X axis for demonstration.

§5.1 Pedal points

Consider the geometric relation q; = pedal| (p;), where p; = (X1,X2,X3) is a fixed
point, q; = (Y1,Y2,Y3) is @ moving point, L = (X4,...,X9) is a line. According to Tab-
le 2, we add a variable A =y4. We get the following constraint problem F(X,y) = 0,
where

X4 X1 + XsX2 + X6 X3 — Ya

F(ij): X5X9 — XeXg + YaX4 — VY1 ) (14)

XeX7 — XaX9 +YaXs — Yo

X4 Xg — X5X7 + YaXe — Y3
Formally, we let L = p,. As a particular solution, we consider p; = (100, 100, 100),
L =(-1,1,1,0,-100,100)/+/3, q; = (100,200,200)/3, and A =y, = 100v/6/3.
Experimental data are shown in Table 3.

When scaling with a factor s > 0, Fy does not depend on s. So the bilinear mappings



F-llu 11 | IRy "Rl IRy "ol IRy "Ryl Gl Cumax/s  C'/s
o o 7.46 1.00 000 3173 472 1498
oo 1 24.39 3.00 000 7686 162 12438
S 2 12.63 1.73 000 4382 277 1215
1 o 1.00 1.00 000 1394 491 685
1 1 273 1.00 000 2971 489 1452
1 2 141 1.00 000 1810 490 888
2 0 115 1.00 000 1745 492 858
2 1 4.62 2.00 000 4387 247 1082
2 2 231 2.00 000 2507 247 620

Table 3: Experimental values for various norms and the values C,,,x and C’ according
for the constraint problem of § 5.1, where s = 0.1.

I-llo -l [ IRy "Rl IRy "Ryl IRy 'Ryl IGxll Cinax/s  C'/s
oo o 0.00 28.57 208 1522 676 1028
o 1 0.00 31.43 121 3351 694 2326
S 2 0.00 24.74 245 2145 649 1393
1 o 0.00 7.14 208 707 1770 1252
1 1 0.00 8.47 121 839 2684 2251
1 2 0.00 7.16 244 701 2042 1452
2 o 0.00 1425 208 1003 1132 1135
2 1 0.00 18.35 121 1894 1211 2293
2 2 0.00 24.62 245 1006 1017 1024

Table 4: Experimental values for various norms and the values C,,.x and C’ according
for the constraint problem of § 5.2 (first variant), where s = 0.001.

I-llo -l [ IRy "Rl IRy 'Ryl IRy 'Ryl IGxll Crmax/s  C'/s
o oo 0.00 2.00 443 298 645 1923
o 1 0.00 2.00 234 925 414 3832
o 2 0.00 1.73 377 466 508  23.65
1 o 0.00 1.00 443 139 1374 19.04
1 1 0.00 1.00 234 234 1511 3540
I 2 0.00 1.00 377 150 1473 2208
2 o 0.00 1.41 443 197 969 19.05
2 1 0.00 2,65 234 433 767 3320
2 2 0.00 2,65 377 203 951 1932

Table 5: Experimental values for various norms and the values C,,,x and C” according
for the constraint problem of § 5.2 (second variant), where s = 0.0051.
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Figure 2: (a) Diagram of the change of Cy;,x over the rotation angle ¢ in the constraint
problem of § 5.1 while rotating the coordinate system. (b) the same for translating the
coordinate system. (c) Logarithmic diagram of Cy,.x /S over a scaling factor S.

B := F,y_lF,xx and B, := F,y_lEXy are constant. Fyy is zero. Gx expands to

—X; XaXs  —XaXe  (—XaXi—Y4)S (=X —X9)S (—XaXz+Xg)S 0 X —Xs

—XaXs X XX (—XsXi+X9)S  (—XsXo—Ya)S (—XsX3—X7)S —Xo O —X
—XgXe  —XsXe  —Xe  (—XeX1 —Xg)S (—XeXo+X7)S (—XeXs—Ya)S Xs —X4 O
—X4 —Xs —Xg —X1S —%S —X3S 0 0 0

It is obvious that both M := lims . Gx and lims .. (Gx/S) depend only on X. Thus we
get the following expressions for Cpax: Cmax = 2||Gx||/(||B1|| +4|/B2||||Gx]|), and

lim Crnax = 2[[Mol[/([[B1[| +4[[Mol[|[B2[]), lim Cruax = 1/(2[[B2[).  (15)
s—0 S—00

It follows that the graph of N = In(Cp.x/S) over & = Ins has asymptotes of the form
n = —& +1InC for both s — 0 and S — oo, where InC is the logarithm of either of
the two values in (15). Experimental data for the change of Cp,,x when changing the
coordinate system is also shown in Fig. 2.

The pedal point in a plane is much easier to analyze, because in that case Fy = 0 and
Fyy =0, 50 50, Cipax (U, V) = (2] Ey_l Fyyl|) ™! and in view of (11) does not depend on the
choice of unit length.

§5.2 Theline spanned by two points

We consider two points p; = (X, X2,X3), P2 = (X4, Xs, X6) as fixed variables, and the
coordinates of the line L= (I, 1) = (y1,...,Ys) spanned by them as moving variables.
Table 1 contains two different ways of expressing the condition that p; € L. Because
the four equations I = pj x | plus (I,I) = 0 are not independent, each incidence condi-
tion can use only three of them. For reasons of symmetry, it is preferable that we drop
(1,I) = 0, but we can do that only once — for the other incidence constraint, one of the
three equations of [ = pj x | has to go also. Thus we get the following six equations
foryi,....Ye: Y1 +Y3+Y3 — 1 =YaXo —Y2X3 — Ya =Y1X3 — Y3X1 — Y5 = Y2X1 — Y1X2 — e
=Y3Xs —Y2Xe — Y4 =Y1X6 —Y3X4 — Y5 =0.

The particular solution for which we display experimental data in Table 4 and
Fig. 3,a—c is p; = (40, 30,70), p> = (30,40, —70), L = v22(—1/2,1/2,—7,—245,
245,35)/33.
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|| Crnax / Crmax ) In(Crmax /S)

—, A .

L Cn Y ® © nCa/s)

/Wv; 0 N Ins
(d) (e) ® \

Figure 3: (a)-(c) analogous to Fig. 2, but for the constraint problem of §5.2 (first
variant). (d)—(f): second variant.

It is elementary to compute the following derivatives:

271 2% 2y3 0 0 0 0O 0 0 00 O
0-% X -1 0 0 0 y3=y2 00 O
x5 0-x 0-1 0 Y3 0y 000
Fvy: —X‘ X 00 0-=1 ) F,X: Y2 —VYi 0 00 0 5
0% 0 0 0 0y3—y
0 —Xg X5 -1 0 O 0 0 0— 0
X 0-x 0-1 0 Y3 Y1

Further, Fx= 0, Fipy = 0, Fiyy =0 for 1 =2,...,6, Fry =| ¢ % [forr =2,3.4,

03x3 033
Frixy Z{ %iz giii }fOf r=>35,6,and Fyyy :[ 023EX33 gziz }, where we have used the abbrevi-
ations
000 00-—1 010
Kzzlo 0 1], ngloo 0 ], K4:[—100].
0—-10 100 000

1
When scaling the coordinates with a factor s, we get we get Gy(S) :[ 5'\’33”’ }, with

3x6
certain matrices M3y and N3¢. The second derivatives have the following behaviour:
[Ey_l Fxy(S)]r equals 1/s times a constant for r = 1,2,3, and is scale invariant for r =
4,5,6. So is [F, 'Fy(s)]r for r =1,2,3. [F; 'Fy(s)]; equals a constant times s for
r=4,5,6.

‘We consider the limits

L T 1 T —1
By =1lim(sGx(s)),  Co=lm(sF; 'F(s), Do =lim(Fy'Fy(s), (16)

B = lim(Gx(s),  Cw=1im(Fy 'Fy(s),  De=lim(Fy 'Fy(s)/s).

The formula of Theorem 1 now shows that and get

. Crax(9) 1 . 1
lim = , 1lim (SCpax (8)) = ==
s=0 S 2([IColl +11Bol[|[Doll) " s ™ 2||Bo ||| Doo |

an

The graph of N =1In(Cpax/S) over &€ =Ins then has the similar asymptotes to that of
§5.3.

By introducing the oriented distance d = (Eﬂ_(p 1, P2) of the points p; and p,, we get a
set of equations different from the previous one: ||I|?> =1, = p; x| and p; = p; +dlI.

12



Cmax A Cmax ln(Cmax / S)

_ T \\L lns>

() (b) (©

Figure 4: (a)—(c) analogous to Fig. 2, but for the constraint problem of § 5.3.
q (EO» I’)()) Aln(cmax/s)

= Ins

\
\
\
\
\
.
.
\
\
\
\
\
\

Figure 5: Detail of Fig. 4.c (asymptotes).

Experimental data are shown in Table 5 and Fig. 3,d—f. The limit case of scaling in
the constraint is similar to that of §5.5 and we don’t want to study it in detail. We
notice the following facts: Introduction of an auxiliary variable did not diminish the
size of Cpax overmuch, and it did improve the behaviour with respect to translations.
However, it is apparently more important to choose the right scaling factor s than it
was with the first variant.

§5.3 Theplane spanned by three points

Consider the three points p; = (X1,X2,X3), P2 = (X4,Xs,X6), P3 = (X7,X8,X9) as
fixed variables and the coordinates of the plane U = (up,u) = (yi,...,Y4) as mov-
ing variables. The condition that pi,ps,p3 € U is expressed by the three con-
straints (pj,u) 4+ Uy = O together with the normalization ||u||> = 1. Experimental data
for the particular solution p; = (100,0,0), p, = (0, 100,0), p3 = (0,0,100). and
U = (-100,1,1,1)/+/3 are shown in Table 6 and Fig. 4.

We demonstrate the influence of the choice of unit length via the following detailed
computations. Obviously, Fyx = 0, $0 Cipax = 1/[2(HEY*IEXy|| + |G« HFy*IFWH)] We
have

Y3+Y3+yi—1 02y, 2y3 2y, 01x3 013 O3
1 X X X M 01430
F(x.y)=|Y1t¥2Xityso+yas | o g 1 X X e 1x3 O1x3
() Y1+ Y2 X4 + Y3Xs 4 YaXe Y7L xa x5 % |77 | O1xs M 03 |

Y1 +Y2X7 +Y3X8 + YaXo L X X3 X9 01x301x3 M

where M = [y2,Y3,Y4]. As to the inverse of Fy, we let m = det(Fy) and define coeffi-

cients njj by Ey_l = (nLn,{)i’j:L.“,A‘,. We further use the abbreviation N = [03.; Ej3].

When scaling with a factor s > 0, we get the following dependencies on S: Coordinates
(X1,...,X9) change to (sXj,...,5X9) and (Yi,...,Y4) becomes (Sy1,Y2,Y3,Y4), according
to (11). We have Fyy = 0 for all s. With exponents oy = 0,0, =--- = 04 = 1 we can

13



F-llu 11 | IRy "Rl IRy "ol IRy "Ryl Gl Cumax/s  C'/s
o o 0.00 4.00 173 231 625 1443
oo 1 0.00 3.00 231 520 333 1732
o 2 0.00 2.89 115 289 804 2320
1 o 0.00 0.67 173 038 3750 1443
1 1 0.00 1.67 231 096 1286 1237
1 2 0.00 0.89 115 051 3402 17.32
2 0 0.00 173 173 100 1444 1443
2 1 0.00 1.81 231 181 835 1511
2 2 0.00 1.63 115 100 1794 17.94

Table 6: Experimental values for various norms and the values C,,,x and C’ according
for the constraint problem of § 5.3, where s = 0.01.

I-llo -l [ IRy "Rl IRy "Ryl IRy 'Ryl IGxll Cinax/s  C'/s
oo o 5.66 0.00 566 327 264 864
o 1 20,01 0.00 243 753 264 1987
S 2 8.53 0.00 417 370 312 1155
1 o 1.06 0.00 566 082 1011 826
1 1 1.82 0.00 243 184 1062 1951
1 2 1.06 0.00 417 106 1069 1134
2 o 1.06 0.00 566 141 61 864
2 1 7.44 0.00 243 321 597 1917
2 2 281 0.00 417 141 781 1105

Table 7: Experimental values for various norms and the values C,,.x and C’ according
for the constraint problem of § 5.4, where s = 0.001.

I-llo -l [ IRy "Rl IRy 'Ryl IRy 'Ryl IGxll Crmax/s  C'/s
o o 0.00 0.00 443 298 742 2215
o 1 0.00 0.00 185 804 658 5286
o 2 0.00 0.00 285 453 758 3438
1 o 0.00 0.00 443 139 1597 2215
1 1 0.00 0.00 185 156 3382 5286
I 2 0.00 0.00 285 139 2470 3438
2 o 0.00 0.00 443 197 1127 2215
2 1 0.00 0.00 185 364 1453 5286
2 2 0.00 0.00 285 197 1744 3438

Table 8: Experimental values for various norms and the values C,,,x and C” according
for the constraint problem of §5.5 (s =0.0051).
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write the dependence of Gx and the component matrices of Fy ' Fyy(s) and Fy ' Fyy(s)
in the form

naN
snpM snizM snisM Fle S — L N
Gx(s) = i MmoM n;zM MM [’y xy( )lr sdrm :er
’ sm| MM ;M nygM |’ | 28N '
npM ngM ngyM [F.,yi Fy(8)]r = Sarmdlag(o,l,l,l)-

With the limits from (16), we can compute the limit behaviour of Cpax (S) /S with (17).
The graph of N =1n(Cpax/S) over £ =Ins has exactly the same behaviour as the re-
spective graph in § 5.2 (first variant), as is also illustrated by Fig. 4.

§5.4 Intersection of two planes

We consider the intersection line L = (I,1) = (yi,...,Ys) of two planes U = (up,u) =
(X1,...,%4) and V = (Vo,V) = (Xs,...,Xs), where the planes are fixed and the line is
moving. The constraints F (X,y) = 0 are defined by the relation L =U NV according
to Table 2. By introducing the auxiliary variable A =y, we get

Vi+ys+y3—1 C=yiyr 2(1=¥)) —2y1y2  —2y1y3 0007
X3Xg —XaX7 — Y1¥7 —Yay7 —2y1y2 2(1—y3) —2y,y3 000
X4Xg — XoXg — Y27 L =1 —2y1ys  —2yays 2(1-y3) 000

FOGCY) =[x =X —yayr | = By = oot —yayr =2y —2yoya —2y3ys 200 |,

X1 X6 — XoXs — YaY7 y7 =Ysy7 —2y1¥s  —2yays —2y3ys 020
X1X7 — X3X5 — Ys5Y7 —Yo¥71 —2Y1¥%6 —2¥2¥6 —2¥y3¥e 00 2
X1Xg — X4X5 — Y6 Y7 L V2 2ty 2y7 2ysy; 000
[0 Ry X +Ryr —x7+Ry; 0 Riyi X4+ Rsy1 X3+Reyr ]

0 —Xx+Riy, Ry Rsy» 0 Xx4+Ryy2 Rsy,  —X+Rey2

0 x+Ry; —X%+Rys Rsys 0 —x3+Ryy; x+Rsys  iRgY3

Gx=|x% —Xs+Riya Roys Rsya  —X X1 +Ryys Rsyq ReYa4

X Riys —X+Rys Riys X3 Ruys X1+ RsYs ReYs

Xg Ry Rys —X5+Rsys—x Ru¥s RsYe X1 + RgYs
L0 —Riys —Ruy7 -Ryy; 0 —Ruyy —Rsy7 —Rgy;

where Ry = Xgy2 — X7y3, Ro = XeY3 — Xs¥1, R3 = X7¥1 — X6Y2, Ra = X3y3 — X4¥2,
Rs = X4Y1 — X2Y3, Rg = X2¥2 — X3y1. Second derivatives have the form [Ey*IExx]r =

1 _|:04><4 _S‘ ]forr: 17__.77, Where

Y11 & Ogxs
00 0 0 0 0 0 0
S =|0 0 s vy | g O 0 —yysvilB-)
0 yiys 0 1-yf | 0 yays 0 —yiy» |
0-yiy2 yi—1 0 0yi(1-y3) viy2 0
o 0 0 0 o 1 0 0
Sy=|0 0 I=Vivimys | g |-l 0 -y oy
0 -1 0 -y | 0 ysys 0 —Viys
0 —yiyays yiys 0 0 —Yaya Yiva 0

0 0 1 0 0 0 0 1 0 0 0
_| 0 0 -—y3¥5 YaY¥s _| 0 0 -¥3% ¥a2¥6 —y |0 0 y3 =¥
S S S;=
ST ysys 00 s | 1= 0
0 —wys yiys O -1 =YY Y1¥¢ O 0

N 10 wsYe 0 —vive
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Cmax Cmax In (Cmax / S)
M 0 /\T\ . \\ n S>
(a) (b) ‘ (©)
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Figure 6: (a)—(c) analogous to Fig. 2, but for the constraint problem of § 5.4.

ny is zero. F 'Fyy has the form [F [dlag Yevr, yry7,yry7,0 0,0) Ne }/y forr =
.6 and [Fy 'Fyl; = diag(=y7, ,{17’ —¥7.0.0 )'\(ﬂ where the column vectors Nj are
defined by
L=Y7 =Y1¥2 =Y1¥3 =Y1¥4 =Y1¥5 —Y1¥e Vi
N Ny = | Y12 1293 Y5 —¥oYs —¥aYs —¥a¥s Yo
Y ~Y1Y3 =Y2ys 1 = Y3 —YaV4 —Y3¥5 —Y3Y6 Y3
033 Esx3 03x1

When scaling with a factor s, (X1, Xs,VY4,Ys,Ye) are replaced by S(X1,Xs,Y4,Ys,Ys). The
other variables are scale-independent. We consider the limit cases S — 0 and S — co.
In a way analogous to previous constraint problems, we consider the limits

By = lims o Gx(S), Co =lims_o Fy ' F(s), Do = lims o Fy ' Fyy(s),
Buo = lims x(Gx(5)/5), Coo = lims x(F; 'Fic(5)/5),  Dev = lims oy ' i (5),/9).

The formula for C,;,x from Theorem 1 shows that

. 1im (S%Conax(8)) = =
IColl +4[[Bo[*[|Do|” 5= 7" 2[|Be ||| Do

lim Cpax (S) =
s—0

Thus the graph of N =In(Cpax/S) over & =Ins has the asymptotes N =—¢ +1n(2
1Boll) — In([Coll +4]|Bo| 2[[Doll) as & — —o, and and 0 = 3¢ — In(2||Bue |Das]) s
& — oo. They intersect at & = Insg, where s3 = (||Co|| +4 [|Bo||* [|Dol|)/ (4 [|Bo]| ||Be]|
|IDw||). Experimental data for the particular solution U = (100, —1, —1,—1)/+/3,
V = (100,—1,-1,1)/v/3, L = (—1,1,0,0,0,100)/v/2, and A = 21/2/3 are shown
in Table 7 and Fig. 6.

§5.5 Two pointsdetermine a unit vector

This is a constraint problem not contained in the tables above. We have the fixed
variables p; = (X1, X2, X3), P2 = (X4, Xs, X¢) and the moving variables q; = (Y1,Y2,Y3) €
R3, y4 € R with the constraints ||q]|> = 1, p1 — P2 = Y401 (Y4 is the distance of p; from
P2).

The particular solution p; = (40, 30,70), p, = (30,40, —70), g1 = (P2 — P1)/ Y4, Y4 =
|p2 — p1|| is illustrated in Table 8 and Fig. 7.

We have Fy = 0 and Fyy = 0, so we get Ciax(S) = 1/(2HG7X(S)||||F7y*1F7yy(S)||). An
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Cmax A Cmax ln(Cmax / S)

_ T /\ lns>
(a) (b) (c) \‘

Figure 7: (a)—(c) analogous to Fig. 2, but for the constraint problem of § 5.5.

elementary computation shows that

11 .
Gx(s) = —[g((:)) }7 where §(S) = syay1 Syay> Syays —ayi —Syaya —svays s (18)

sy
_ I-y2 =y =yiys Yi—1  wy YiYs
GBS)=| -yvayi 1-¥ -—yvsy»  voyi ¥i-1 vy
“vivs -y 1-¥3  wiys ysy  y3—1
_ Vi \Z
We define M(vy,V2,V3,Vs) :[ Vi v gﬁ}and get Fy_1 Fyy(s) = iBS’ where Bs € B(R?,
Vo V3 Vg ’

R*, R*) has the following coordinates:

Bei = M(syay1, 1 —Y3, —Yay1, —Y1Y3), [Bsl2 = M(syaya,—YaY1,1—Y3,—Vay2),

s|2
[BgJ3 = M(Syay3, —V1Y3, —Y3Y2, 1 —¥3), [Bsla = M(—S%y3y3,SYay1,SYay2,5Y4Y3).

Limits for s — 0 and S — oo are the following:

. Irag ) 0
Lo :=1limsGx(s) = —[ﬂ]j Lo := 1lim Gy(s) = 3%6 :| 19
° Sl—’ng X() Y4L 016 Sgrolo X() YiY2 Y3 Y1 —Y2 —¥3 (19)

Further, limg oS F7y*1 Fyy(s) = yi4§o, where B has the following coordinates:

Bl
Bols = M(0,—y1y3,—Y3y2,1 —¥3), [Bola = O4xa.

The limit limg e lSFJ1 Fyy(s) is denoted by B., and expands to

[Ew]r = Oygxq forr=1,2,3; [Ewh = diag(—y4, —VYa4, —y4,0).

Thus | | |
2B &) = el 78 CmS) = e

The graph of N = In(Cpax(S)/S) over & = Ins has the asymptotes

n =& —1In(2[|Lol||[Bol)) (§ = —),

N =—2§ —In(2||Lx|[|B|[) (§ — ).
They intersect in the point

1. |ILolllIBoll = =
(&.10) = 5 (0 g~ MEILP Bl Il [Bal). @D

We have & = Insg, where s3 = ||Lol|[|Bol|/ (||L||[|Beol|)- This is illustrated in Fig. 8.
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— InsS

Figure 8: Detail of Fig. 7.c (asymptotes).
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