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Abstract: This paper investigates a number of relations between geometric ob-
jects in Euclidean R

3 from the viewpoint of tolerance zones and error prop-
agation. Our investigations are based on an certain inequality concerning the
linearization error useful for quadratic constraint problems. By collecting nu-
merical data and looking at limit cases we investigate the influence of the choice
of coordinate system on the tolerance analysis of a collection of quadratic con-
straint equations, which represent geometric problems in Euclidean space.

1 Introduction

Geometric constraint solving means the problems which arise when the location of
geometric objects is described via relations between them. Issues important in appli-
cations of this concept are solvability of constraint problems and their sensitivity to
errors [2]. Many methods have been proposed for geometric constraint solving: based
on dependency graphs, rule-based and numerical ones, and methods based on sym-
bolic computing. For the literature on these topics in the context of Computer-Aided
design, see [8]. This paper is concerned with the propagation of errors through implicit
constraints, based on the concept of tolerance zone [3, 4, 6, 7]. The present paper is a
sequel of [8], which describes a general analysis of the propagation of tolerance zones
through implicit constraints, with a focus on geometric constructions. A more detailed
version comprises part of the thesis [9].

We assume that a certain number of geometric objects is given imprecisely – each of
them is known to be contained in a certain tolerance zone. Other geometric objects are
located via constraints, and we want to give tolerance zones for them. This is done by
linearizing the system of constraints and estimating the linearization error. For each
configuration, this works only up to a certain maximum size of tolerance zones, de-
pendent on the particular instance of the constraint problem we wish to analyze, on the
number of objects and constraints involved, and on the behaviour of the constraints’
derivatives. Estimating the linearization error in the way presented here is most effi-
cient if the constraints are quadratic polynomials. Conveniently, it is hard to think of
geometric relations which are not expressible via quadratic polynomials. A short dis-
cussion of the relation of this work and tolerance zones in general to interval arithmetic
can be also found in the introductions to [7] and [8].
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2 Preliminaries

We consider two kinds of entities: the fixed variables x = (x1, . . . , xn), and the moving
variables y = (y1, . . . , ym) with xi, y j ∈ R. The constraints which are assume to hold
are collected in a C2 function F as follows:

F : U ×V →W : F(x,y) = (F1(x,y), . . . ,Fm(x,y)) (U = R
n,V = W = R

m), (1)

where each component Fi(x,y) represents a constraint. Solving the constraint problem
means finding y for given x such that F(x,y) = 0.

We shortly discuss solvability and uniqueness of a solution: Suppose that F(u,v) =
0. A local solution of the constraint problem which extends the solution (u,v) is a
function G : U →V , defined in a connected neighbourhood of u such that F(x,G(x)) =
0 for all x where G is defined. It follows from the inverse function theorem that such
a local solution exists if F,y(u,v) is nonsingular. If we are interested in only one y j, we
write y j = G j(x).

§ 2.1 Linear and Bilinear Mappings: Notation

For the convenience of the reader we repeat some facts concerning linear and bilinear
operators, their norms, and their relation to the Taylor expansion in § 2.1—§ 2.4.

We use the symbols U , V , W for linear spaces. L(U,W ) and B(U,V,W ) denote the
spaces of linear mappings from U to W and and bilinear mappings from U ×V to
W , respectively. We employ the notation “α · u” and “β [u,v]” to indicate that we ap-
ply α to u and β to the pair (u,v). “α(u)” is a linear mapping which depends on
u. For each β ∈ B(U,V,W ) there are associated mappings β φ ∈ L(U,L(V,W )), β ψ ∈
L(V,L(U,W )), with β [u,v] = β φ (u) · v = β ψ(v) ·u. Subscripts indicate coefficients of
vectors with respect to previously defined bases: α ∈ L(U,W ) and β ∈ B(U,V,W )
have the coordinate representations [α · u]r = ∑i αriui and β [u,v]r = ∑i, j βri juiv j, re-
spectively. The coordinate matrix of α contains the coefficients αri. It is elemen-
tary that the coordinate matrices of the linear mappings β φ (u) and β ψ(v) consist of
[β φ (u)]r j = ∑i uiβri j and [β ψ(v)]ri = ∑ j v jβri j, respectively.

§ 2.2 Taylor Expansion of the Constraints

Derivatives of the function F of (1) with respect to x and y at (u,v) are the lin-
ear mappings F,x(u,v) ∈ L(U,W ), F,y(u,v) ∈ L(V,W ) (U = R

n,V = W = R
m),

whose coefficients are given by the partial derivatives ∂Fr/∂xi and ∂Fr/∂yi, respec-
tively. Second derivatives of F are the bilinear mappings F,xx ∈ B(U,U,W ),F,xy ∈
B(U,V,W ),F,yy ∈ B(V,V,W ) (U = R

n,V =W = R
m), whose coefficients are the sec-

ond partial derivatives ∂ 2Fr/∂xi∂x j, ∂ 2Fr/∂xi∂y j, and ∂ 2Fr/∂yi∂y j (in that order).
Taylor’s theorem says that for any (u,v),(h,k) ∈ R

n ×R
m there is θ ∈ [0,1] with

F([ u
v ] + [ h

k ]) = F([ u
v ]) + F,x([

u
v ]) · h + F,y([

u
v ]) · k + 1

2 F,xx([
u
v ] + θ [ h

k ])[h,h] + F,xy([
u
v ] +

2



θ [ h
k ])[h,k] + 1

2 F,yy([
u
v ] + θ [ h

k ])[k,k]. Here we employed column vector notation “[ u
v ]”

for (u,v) ∈ R
n ×R

m.

§ 2.3 Computing Norms of Linear and Bilinear Mappings

We assume that α ∈ L(U,W ), β ∈ B(U,V,W ), and that the linear spaces U,V,W
are equipped with norms. We are going to use the Lp norms in p = 1,2,∞:
‖x‖p := (∑ |xi|p)1/p for 1 ≤ p < ∞ and ‖x‖∞ = maxi |xi|. In any case, ‖α‖L(U,W ) :=
sup‖u‖U≤1 ‖α ·u‖W , ‖β‖B(U,V,W ) := sup‖u‖U ,‖v‖V≤1 ‖β [u,v]‖W . For computing norms in
L(U,W ), see e.g. [1]. In general, if the unit sphere SU in U is a convex polyhedron
with vertices xi, then for any normed space X and linear mapping α : U → X , we
have ‖α‖L(U,X) = maxi ‖α · xi‖X . This applies to the 1-norm and the ∞-norm in U . As
to bilinear mappings, it is not difficult to show that ‖β‖B(U,V,W ) = ‖β φ‖L(U,L(V,W )) =
‖β ψ‖L(V,L(U,W )). This means that in case either SV or SU is a polyhedron, we are
able to compute ‖β‖B(U,V,W ). We write ‖β‖p,q,r in order to indicate that the spaces
U,V,W use the p-, q-, and r-norms, resp. A case not handled by the polyhedral ap-
proach is ‖β‖2,2,∞, which equals the maximum singular value of the dimW matrices
(βri j)

j=1,...,dimV
i=1,...,dimU . Further, there is the inequality ‖β‖2,2,2 ≤

√
dimW‖β‖2,2,∞. For more

details, see also [8].

§ 2.4 Norms of Derivatives

The three vector spaces U , V , W involved in the definition of F in (1) and its second
derivatives are assumed to be equipped with norms. V =W as a linear space, but V and
W may be different as normed linear spaces. We are going to consider only solutions
of the constraint problems where there are upper bounds of the following form

‖F,xx(u,v)‖ ≤ α, ‖F,xy(u,v)‖ ≤ β , ‖F,yy(u,v)‖ ≤ γ (α2 +β 2 + γ2 > 0). (2)

Upper bounds as required by (2) are particularly simple to give if F is a quadratic
function, because then F,xx, F,xy, and F,yy depend neither on x nor on y. Later we need
the following function:

∆(s, t) := (α s2 +2β st + γ t2)/2. (3)

3 Tolerance zones and implicit equations

This section sums up results of [8]. We first discuss local solutions of an implicit
equations and later apply a linearized local solution to tolerance zones. Theorem 1
below yields an upper bound for the error we make in this process, provided tolerance
zones are small enough. The range of validity of Theorem 1 is the subject of Sec. 5
below.
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§ 3.1 Local Solutions

Geometric tolerance analysis means that we are dealing with imprecisely defined ge-
ometric objects p1, p2, . . . , each of which is contained in its tolerance zone P1,P2, . . . .
Geometric objects q1,q2, . . . depend on the pi’s, and we want to find tolerance zones
Q1,Q2, . . . for the q1,q2, . . . such that whenever pi ∈ Pi for all i, we can be sure that
q j ∈ Q j for all j. We treat this problem by introducing coordinates for all geometric
entities involved, such that each pi is represented by a group of fixed variables, and
each qi is given by a group of moving variables:

x = (x1, . . . ,xr1
︸ ︷︷ ︸

p1

,xr1+1, . . . ,xr1+r2
︸ ︷︷ ︸

p2

, . . . ,xn), y = (y1, . . . ,ys1
︸ ︷︷ ︸

q1

, . . . ,ym). (4)

If pi ∈ Pi for all i, then the vector x, which actually constitutes coordinates for
p1, p2, . . . , is contained in the set P1 ×P2 × . . . ∈ R

r1 ×R
r2 × . . .. Suppose F(u,v) = 0

as above, such that x = u,y = v represents a particular solution of the constraint prob-
lem, then the local solution y = G(x) leads to a tolerance zone G(P1 ×P2 × . . .) for the
vector y. We define the functions G( j) as those coordinates of G, which belong to the
geometric object q j:

G(x) = (G1(x), . . . ,Gs1(x)
︸ ︷︷ ︸

q1 = G(1)(x)

,Gs1+1(x), . . . ,Gs1+s2(x)
︸ ︷︷ ︸

q2 = G(2)(x)

, . . . ,Gm(x)). (5)

Thus a tolerance zone of the geometric entity q j is given by G( j)(P1 ×P2 × . . .). It is
customary to consider only such tolerance zones Pi which have the topology of a ball.
For computations one usually chooses simple shapes, such as convex ones.

As an example, we consider the case n = 4, m = 2, and F1(x,y) = (x1 − y1)
2 +(x2 −

y2)
2 − 2900, F2(x,y)= (x3 − y1)

2 +(x4 − y2)
2 − 4100). A particular solution is (u, v)

= (0, 0, 60, 0, 20, 50). This constraint problem has the following interpretation: The
points p1 =(x1, x2), p2 =(x2, x4), q1 =(y1, y2) are constrained by the conditions ‖p1−
q1‖2 = 2900 and ‖p2 −q1‖2 = 4100. Fig. 1.a illustrates tolerance zones P1, P2, and the
tolerance zone Q1 = G(1)(P1 ×P2), where y = G(x) is a local solution of the equation
F(x,y) = 0 in a neighbourhood of x = u,y = v.

§ 3.2 Linearizing Constraints

We linearize the local solution y = G(x) in a neighbourhood of a particular solution
u,v with F(u,v) = 0:

Glin(u+h) = G(u)+G,x(u) ·h, where G,x(u) = −F,y(u,v)−1F,x(u,v) ∈ L(U,V ). (6)

The matrix G,x can be partitioned into column groups which correspond to the variables
contribute to a particular geometric entity pi, and into row groups which contribute to
a particular entity q j. Thus we get the following block matrix decomposition with
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P1 P2

Q1

P1 P2

q1 +G(1,1)
,x · (P1 − p1)

+G(2,1)
,x · (P2 − p2)

P1 P2

Q1 ⊆ Glin(P1 ×P2)

+C′′B 2

(a) (b) (c)

Figure 1: (a) Exact and (b) linearized tolerance zones. (c) Upper bound of linearization
error.

numbers ri and s j from (4), and a first order approximation for tolerance zones Q j:

G,x =




G(1,1)
,x G(2,1)

,x · · ·
}

s1

G(1,2)
,x G(2,2)

,x · · ·
}

s2...
... . . .

︸︷︷︸
r1

︸︷︷︸
r2


 =⇒

{
Q j ≈ G( j)

lin (P1 ×P2 × . . .)

= q j +∑i G(i, j)
,x · (Pi − pi).

(7)

This Minkowski sum of affinely transformed tolerance zones Pi is particularly simple
to compute if si ≤ 2 in (4). We continue the example above, which is illustrated by
Fig. 1: Here G,x =[ G(1,1)

,x | G(2,1)
,x ]= 1

30

[
10 25 20 −25
8 20 −8 10

]
. The resulting linearized tolerance

zone is shown in Fig. 1.b. Both G(1,1)
,x and G(2,1)

,x are singular, and G(i,1)
,x · (Pi − pi) is

a straight line segment. It follows that we approximate the tolerance zone Q1 by a
parallelogram.

§ 3.3 Estimating the Linearization Error

The linearization error is the difference between an exact local solution G and the
linearized one, Glin. Following [8], we use function ∆ defined in (3).

If F is linear, then the norms ‖F,xx‖, . . . are zero and linearization is exact. For our
purposes it is essential that ∆(s, t) is non-zero if s, t > 0. Therefore we require that
α2 +β 2 + γ2 > 0.

Theorem 1. Consider a solution (u,v) of the constraint problem F(x,y) = 0, and as-
sume that ∆(s, t) is defined according to (3). Further assume that there is a local
solution G with v = G(u) and the corresponding linearized solution Glin. Choose
C,C′,Cmax such that

Cmax =
‖G,x(u)‖

‖F,y(u,v)−1‖ ·∆(1,2‖G,x(u)‖) , C < Cmax, C′ = ‖G,x(u)‖C. (8)

A perturbation in u causes v to move with G(u + h) = v + k. The linearization of
this equation is Glin(u + h) = v + klin. The linearization error obeys the following
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inequalities:

‖h‖ ≤C =⇒ ‖k‖ < 2C′, ‖k− klin‖ ≤ ‖F,y(u,v)−1‖ ·∆(C,2C′) < C′. (9)

[8] gives examples which use Theorem 1 in order to give an upper bound for the
linearization error. Fig. 1 illustrates an offset of the linearized tolerance zone, where
the exact tolerance zone Q1 is known to be contained in.

Theorem 1 gives an answer to the question of maximal size of the tolerance zone of
the moving variables such that a tolerance zone of the corresponding moving variables
can be computed with linear analysis plus an estimate for the linearization error. Con-
versely, assume that the tolerance zone of the moving variables is prescribed as a ball
of radius C∗ with C∗ < C∗

max = ‖G,x‖Cmax (in the notation of Theorem 1). Then the
choice of

C =
1

2‖F−1
,y ‖∆(1,2‖G,x‖)

(√
‖G,x(u)‖2 +4C∗ · ‖F−1

,y ‖ ·∆(1,2‖G,x‖)−‖G,x‖
)

(10)

ensures that ‖h‖ ≤C implies ‖k‖ < C∗.

§ 3.4 Balancing the constraint equations

Obviously the local solutions do not change if we multiply some constraints by factors,
but the computation of Cmax is affected by it. A rule of thumb might be that all variables
should have values of the same order of magnitude. The same holds true for the choice
of coordinate system, especially the choice of unit length. Some of the coordinates
may reflect length, or length squared, or might have no dimension. The coordinate
vector of a plane, for instance, contains a unit vector together with a coordinate whose
geometric meaning is length. By choosing the unit length appropriately it is easy to
achieve any magnitude of that single coefficient. A general answer to the balancing
question appear to be difficult.

It is an aim of this paper to investigate several geometric constructions in Euclidean R
3

in order to gain insight in the behaviour of Cmax and the norms of derivatives needed
when changing the coordinate system.

4 Coordinates and relations

This section sums up elementary properties of points, lines and planes in Euclidean
space.

§ 4.1 Coordinates for geometric objects

A point (x1,x2,x3) ∈ R
3 naturally is given the coordinates x1,x2,x3. The plane

with equation 〈u,x〉 + u0 = 0 such that u = (u1,u2,u3) has given the coordinates
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(u0,u1,u2,u3). We normalize the equation such that u2
1 + u2

2 + u2
3 = 〈u,u〉 = 1. Ac-

tually such coordinates represent an oriented plane, i.e., a plane together with a side of
the plane where the normal vector u points to. A line parallel to the vector l = (l1, l2, l3)
with l2

1 + l2
2 + l2

3 = 1 is uniquely characterized by the moment vector l̄ = x× l, if x is a
point on the line, and the line is reconstructed as the solution set of the three equations
x× l = l̄, if vectors l and l̄ with 〈l, l̄〉= 0 are given [5]. Thus we coordinatize the set of
straight lines in R

3 by the six coordinates (l, l̄) = (l1, . . . , l6) with the side conditions
〈l, l〉 = 1 and 〈l, l̄〉 = 0. Actually any such coordinate vector means an oriented line,
and (−l,−l̄) means the same line, but equipped with the reverse orientation.

§ 4.2 Relations between geometric objects

We summarize relations between geometric objects in Table 1 and Table 2. We use
the symbols p,q for points, L = (l, l̄), G = (g, ḡ), H = (h, h̄) for lines, and U = (u0,u),
V = (v0,v) for planes. First comes a relation which involves points only: the distance
constraint. Next are relations between a point and a line. The incidence relation p ∈ L
either uses only two out of the three equations l̄ = p× l, or the condition that 〈l, l̄〉 = 0
has to be dropped. This is indicated by the canceling stroke in the right hand column.
We further consider the case that Q is the pedal point of P on L, which means that Q∈ L
and the line P∨Q is orthogonal to L. For the pedal point we give two formulas: One
in Table 1, and another one in Table 2, which introduces as a new variable the distance
of P’s pedal point Q from the origin’s pedal point l× l̄. The oriented distance of points
on a line, denoted by the symbol −→distL(P,Q), is negative, if the vector −→

PQ does not
point in the same direction as l. Next come relations between points and planes, which
are straightforward. Relations between lines include parallelity, distance of parallel
lines, and distance of skew lines G,H. The latter constraint can be made quadratic
by introducing both sine and cosine of the angle ^(G,H) as new variables. Relations
between a line and a plane are orthogonality (two cases), parallelity and incidence
(L ⊂ U). A relations between planes given here is parallelity. As the line given as
intersection of two planes has coordinates proportional to (u× v,u0v− v0u), also this
results in a quadratic relation. It it easy to add more relations to this table.

§ 4.3 Changing the coordinate system

It is an aim of this paper to study the influence of translation, rotation, and scaling of
the underlying coordinate system on the local tolerance analysis via Theorem 1. The
choice of a different unit length (i.e., a scaling of the coordinate system with a factor
s > 0), translation by t ∈ R

3, and rotation by a matrix A ∈ SO3 transform coordinates
according to

p −→ sp, (l, l̄) −→ (l,sl̄), (u0,u) −→ (su0,u). (11)
p −→ p+ t, (l, l̄) −→ (l, l̄ + t × l), (u0,u) −→ (u0 −〈u, t〉,u). (12)
x −→ Ax, (l, l̄) −→ (Al,Al̄) (u0,u) −→ (u0,Au). (13)
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geometric relation number and nature of
constraints involving more
than one geometric entity

number and nature of
constraints involving only
one geometric entity

dist(p,q) = d 1 ‖p−q‖2 = d 0
P ∈ L 2 two of l̄ = p× l 2 ‖l‖2=1,〈l, l̄〉=0
P ∈ L 3 l̄ = p× l 1 ‖l‖2=1,��

�
�〈l, l̄〉=0

Q = pedalL(P) 4 q× l = l̄,〈p−q, l〉 = 0 1 ‖l‖2=1,��
�
�〈l, l̄〉=0−→dist(P,U) = d 1 u0 + 〈u, p〉 = d 1 ‖u‖2=1

P ∈U 1 u0 + 〈u, p〉 = 0 1 ‖u‖2=1
^(G,H) = θ 1 〈g,h〉 = cosθ 4 ‖g‖2=1,‖h‖2=1,

〈g, ḡ〉=0,〈g, h̄〉=0
G ‖ H, 3 g = ±h, 3 ‖g‖2=1,��

�
�‖h‖2=1

〈g, ḡ〉=0,〈g, h̄〉=0
G∩H 6= {} 1 〈g, h̄〉+ 〈ḡ,h〉 = 0 4 ‖g‖2=1,‖h‖2=1

〈g, ḡ〉=0,〈g, h̄〉=0
L ⊂U 3 u× l̄ = u0l 3 ‖u‖2 = ‖l‖2=1,〈l, l̄〉=0
U ⊥ L 3 u = ±l 2 ‖u‖2=1,��

��‖l‖2=1,〈l, l̄〉=0
U ‖V 3 u = ±v 1 ‖u‖2=1,��

�
�‖v‖2=1

Table 1: Relations between points p,q, lines L = (l, l̄), G = (g, ḡ), H = (h, h̄), and
planes U = (u0,u), V = (v0,v). (cf. § 4.2).

geometric relation number and nature of
constraints involving more
than one geometric entity

number and nature of
constraints involving only
one geometric entity

Q = pedalL(P) 4 〈l, p〉 = λ , 2 ‖l‖2=1,〈l, l̄〉=0[
λ = 〈l, p〉

]
l × l̄ +λ l = q

Q = pedalU(P) 4 u0 + 〈q,u〉 = 0 1 ‖u‖2=1[
λ =

−→distU(P,Q)
]

p−q = λu,
G ‖ H, 4 g = ±h,‖ḡ∓ h̄‖2 = d2 3 ‖g‖2=1,��

�
�‖h‖2=1

dist(G,H) = d 〈g, ḡ〉=0,〈h, h̄〉=0
dist(G,H) = d 2 〈g,h〉 = λ2, 5 ‖g‖2=‖h‖2=λ 2

1 +λ 2
2 =1[

λ2 =cos (̂G,H)
]

〈g, h̄〉+ 〈ḡ,h〉 = dλ1 〈g, ḡ〉=0,〈g, h̄〉=0
L = U ∩V 6 λ (l, l̄) = (u× v,u0v− v0u) 1 ‖l‖2=1,

�
�

�
��〈l, l̄〉 = 0

Table 2: Relations becoming quadratic with new variables (cf. § 4.2).
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The value Cmax as computed by Theorem 1 or the formulas following it means the
maximum size of tolerance zone of the fixed variables “x” around a local solution
x = u,y = v of the constraint problem F(x,y) = 0. When changing the unit length so
that coordinates of points get multiplies by a factor s > 0, Cmax will usually change.

If the fixed variables consist only of points, then an optimal method for local tolerance
analysis would result in Cmax gets multiplied by s. If the different parts of x as described
by (4) have also other meanings, such a simple statement is no longer possible. For
lines and planes, for instance, not all of its coordinates are scaled. While it would be
nice if Cmax would get bigger if all coordinates are multiplied by s, we cannot expect
this to be the case.

As all three type of geometric entities considered in detail in this paper contain at least
one coordinate which is scaled with s, we do the following: We scale with s according
to (11), and have a look at Cmax/s, which in the case of points means the size of
tolerance zone with respect to the coordinate system before scaling.

5 Examples

In this section, we collect the most useful constraints in geometric constraint solving
problems and show the influence of translation, rotation, and scaling on the value of
Cmax computed via Theorem 1. In the remain content, we use 1-norm in the fixed
variable space and 2-norm in the moving variable space, and other norms are only
illustrated in the data of the tables. When investigating the influence of translations
and rotations we randomly select the translation vectors as t(τ) = (τ,τ,τ) and the
rotation about the x axis for demonstration.

§ 5.1 Pedal points

Consider the geometric relation q1 = pedalL(p1), where p1 = (x1,x2,x3) is a fixed
point, q1 = (y1,y2,y3) is a moving point, L = (x4, . . . ,x9) is a line. According to Tab-
le 2, we add a variable λ = y4. We get the following constraint problem F(x,y) = 0,
where

F(x,y) =




x4x1 + x5x2 + x6x3 − y4
x5x9 − x6x8 + y4x4 − y1
x6x7 − x4x9 + y4x5 − y2
x4x8 − x5x7 + y4x6 − y3


. (14)

Formally, we let L = p2. As a particular solution, we consider p1 = (100, 100, 100),
L = (−1, 1, 1, 0,−100, 100)/

√
3, q1 = (100, 200, 200)/3, and λ = y4 = 100

√
6/3.

Experimental data are shown in Table 3.

When scaling with a factor s > 0, F,y does not depend on s. So the bilinear mappings
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‖ · ‖U ‖ · ‖V ‖F−1
,y F,xx‖ ‖F−1

,y F,xy‖ ‖F−1
,y F,yy‖ ‖G,x‖ Cmax/s C′/s

∞ ∞ 7.46 1.00 0.00 31.73 4.72 149.8
∞ 1 24.39 3.00 0.00 76.86 1.62 124.8
∞ 2 12.63 1.73 0.00 43.82 2.77 121.5
1 ∞ 1.00 1.00 0.00 13.94 4.91 68.5
1 1 2.73 1.00 0.00 29.71 4.89 145.2
1 2 1.41 1.00 0.00 18.10 4.90 88.8
2 ∞ 1.15 1.00 0.00 17.45 4.92 85.8
2 1 4.62 2.00 0.00 43.87 2.47 108.2
2 2 2.31 2.00 0.00 25.07 2.47 62.0

Table 3: Experimental values for various norms and the values Cmax and C′ according
for the constraint problem of § 5.1, where s = 0.1.

‖ · ‖U ‖ · ‖V ‖F−1
,y F,xx‖ ‖F−1

,y F,xy‖ ‖F−1
,y F,yy‖ ‖G,x‖ Cmax/s C′/s

∞ ∞ 0.00 28.57 2.98 15.22 6.76 102.8
∞ 1 0.00 31.43 1.21 33.51 6.94 232.6
∞ 2 0.00 24.74 2.45 21.45 6.49 139.3
1 ∞ 0.00 7.14 2.98 7.07 17.70 125.2
1 1 0.00 8.47 1.21 8.39 26.84 225.1
1 2 0.00 7.16 2.44 7.11 20.42 145.2
2 ∞ 0.00 14.25 2.98 10.03 11.32 113.5
2 1 0.00 18.35 1.21 18.94 12.11 229.3
2 2 0.00 24.62 2.45 10.06 10.17 102.4

Table 4: Experimental values for various norms and the values Cmax and C′ according
for the constraint problem of § 5.2 (first variant), where s = 0.001.

‖ · ‖U ‖ · ‖V ‖F−1
,y F,xx‖ ‖F−1

,y F,xy‖ ‖F−1
,y F,yy‖ ‖G,x‖ Cmax/s C′/s

∞ ∞ 0.00 2.00 4.43 2.98 6.45 19.23
∞ 1 0.00 2.00 2.34 9.25 4.14 38.32
∞ 2 0.00 1.73 3.77 4.66 5.08 23.65
1 ∞ 0.00 1.00 4.43 1.39 13.74 19.04
1 1 0.00 1.00 2.34 2.34 15.11 35.40
1 2 0.00 1.00 3.77 1.50 14.73 22.08
2 ∞ 0.00 1.41 4.43 1.97 9.69 19.05
2 1 0.00 2.65 2.34 4.33 7.67 33.20
2 2 0.00 2.65 3.77 2.03 9.51 19.32

Table 5: Experimental values for various norms and the values Cmax and C′ according
for the constraint problem of § 5.2 (second variant), where s = 0.0051.
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(a) (b) (c)

Cmax Cmax ln(Cmax/s)

φ τ lns

Figure 2: (a) Diagram of the change of Cmax over the rotation angle φ in the constraint
problem of § 5.1 while rotating the coordinate system. (b) the same for translating the
coordinate system. (c) Logarithmic diagram of Cmax/s over a scaling factor s.

B1 := F−1
,y F,xx and B2 := F−1

,y F,xy are constant. F,yy is zero. G,x expands to



−x2
4 −x4x5 −x4x6 (−x4x1 − y4)s (−x4x2 − x9)s (−x4x3 + x8)s 0 x6 −x5

−x4x5 −x2
5 −x5x6 (−x5x1 + x9)s (−x5x2 − y4)s (−x5x3 − x7)s −x6 0 −x4

−x4x6 −x5x6 −x2
6 (−x6x1 − x8)s (−x6x2 + x7)s (−x6x3 − y4)s x5 −x4 0

−x4 −x5 −x6 −x1s −x2s −x3s 0 0 0




It is obvious that both M0 := lims→0 G,x and lims→∞(G,x/s) depend only on x. Thus we
get the following expressions for Cmax: Cmax = 2‖G,x‖/(‖B1‖+4‖B2‖‖G,x‖), and

lim
s→0

Cmax = 2‖M0‖/(‖B1‖+4‖M0‖‖B2‖), lim
s→∞

Cmax = 1/(2‖B2‖). (15)

It follows that the graph of η = ln(Cmax/s) over ξ = lns has asymptotes of the form
η = −ξ + lnC for both s → 0 and s → ∞, where lnC is the logarithm of either of
the two values in (15). Experimental data for the change of Cmax when changing the
coordinate system is also shown in Fig. 2.

The pedal point in a plane is much easier to analyze, because in that case F,xx = 0 and
F,yy = 0, so so, Cmax(u,v) = (2‖F−1

,y F,xy‖)−1 and in view of (11) does not depend on the
choice of unit length.

§ 5.2 The line spanned by two points

We consider two points p1 = (x1, x2, x3), p2 = (x4, x5, x6) as fixed variables, and the
coordinates of the line L =(l, l̄)= (y1, . . . , y6) spanned by them as moving variables.
Table 1 contains two different ways of expressing the condition that p1 ∈ L. Because
the four equations l̄ = pi × l plus 〈l, l̄〉 = 0 are not independent, each incidence condi-
tion can use only three of them. For reasons of symmetry, it is preferable that we drop
〈l, l̄〉 = 0, but we can do that only once – for the other incidence constraint, one of the
three equations of l̄ = pi × l has to go also. Thus we get the following six equations
for y1, . . . ,y6: y2

1 + y2
2 + y2

3 −1 = y3x2 − y2x3 − y4 = y1x3 − y3x1 − y5 = y2x1 − y1x2 − y6
= y3x5 − y2x6 − y4 = y1x6 − y3x4 − y5 = 0.

The particular solution for which we display experimental data in Table 4 and
Fig. 3,a–c is p1 = (40, 30, 70), p2 = (30, 40,−70), L =

√
22(−1/2, 1/2,−7,−245,

245, 35)/33.
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(a) (b) (c)

Cmax Cmax ln(Cmax/s)

φ τ lns

(d) (e) (f)

Cmax Cmax ln(Cmax/s)

φ τ lns

Figure 3: (a)–(c) analogous to Fig. 2, but for the constraint problem of § 5.2 (first
variant). (d)–(f): second variant.

It is elementary to compute the following derivatives:

F,y =




2y1 2y2 2y3 0 0 0
0 −x3 x2 −1 0 0

x3 0 −x1 0 −1 0
−x2 x1 0 0 0 −1

0 −x6 x5 −1 0 0
x6 0 −x4 0 −1 0


, F,x =




0 0 0 0 0 0
0 y3 −y2 0 0 0

−y3 0 y1 0 0 0
y2 −y1 0 0 0 0
0 0 0 0 y3 −y2
0 0 0 −y3 0 y1



,

Further, F,xx = 0, F1,xy = 0, Fr,yy = 0 for r = 2, . . . ,6, Fr,xy =
[

Kr 03×3
03×3 03×3

]
for r = 2,3,4,

Fr,xy =
[

03×3 03×3
Kr−3 03×3

]
for r = 5,6, and F1,yy =

[
2E3 03×3
03×3 03×3

]
, where we have used the abbrevi-

ations

K2 =

[
0 0 0
0 0 1
0 −1 0

]
, K3 =

[
0 0 −1
0 0 0
1 0 0

]
, K4 =

[
0 1 0
−1 0 0
0 0 0

]
.

When scaling the coordinates with a factor s, we get we get G,x(s) =
[ 1

s M3×6
N3×6

]
, with

certain matrices M3×6 and N3×6. The second derivatives have the following behaviour:
[F−1

,y F,xy(s)]r equals 1/s times a constant for r = 1,2,3, and is scale invariant for r =

4,5,6. So is [F−1
,y F,yy(s)]r for r = 1,2,3. [F−1

,y F,yy(s)]r equals a constant times s for
r = 4,5,6.

We consider the limits

B0 = lim
s→0

(sG,x(s)), C0 = lim
s→0

(sF−1
,y F,xy(s)), D0 = lim

s→0
(F−1

,y F,yy(s)), (16)

B∞ = lim
s→∞

(G,x(s)), C∞ = lim
s→∞

(F−1
,y F,xy(s)), D∞ = lim

s→∞
(F−1

,y F,yy(s)/s).

The formula of Theorem 1 now shows that and get

lim
s→0

Cmax(s)
s

=
1

2(‖C0‖+‖B0‖‖D0‖)
, lim

s→∞
(sCmax(s)) =

1
2‖B∞‖‖D∞‖

. (17)

The graph of η = ln(Cmax/s) over ξ = lns then has the similar asymptotes to that of
§ 5.3.

By introducing the oriented distance d =
−→distL(p1, p2) of the points p1 and p2, we get a

set of equations different from the previous one: ‖l‖2 = 1, l̄ = p1× l and p2 = p1 +dl.
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(a) (b) (c)

Cmax Cmax ln(Cmax/s)

φ τ lns

Figure 4: (a)–(c) analogous to Fig. 2, but for the constraint problem of § 5.3.
ln(Cmax/s)

lns

(ξ0,η0)

Figure 5: Detail of Fig. 4.c (asymptotes).

Experimental data are shown in Table 5 and Fig. 3,d–f. The limit case of scaling in
the constraint is similar to that of § 5.5 and we don’t want to study it in detail. We
notice the following facts: Introduction of an auxiliary variable did not diminish the
size of Cmax overmuch, and it did improve the behaviour with respect to translations.
However, it is apparently more important to choose the right scaling factor s than it
was with the first variant.

§ 5.3 The plane spanned by three points

Consider the three points p1 = (x1, x2, x3), p2 = (x4, x5, x6), p3 = (x7, x8, x9) as
fixed variables and the coordinates of the plane U = (u0,u) = (y1, . . . ,y4) as mov-
ing variables. The condition that p1, p2, p3 ∈ U is expressed by the three con-
straints 〈pi,u〉+ u0 = 0 together with the normalization ‖u‖2 = 1. Experimental data
for the particular solution p1 = (100, 0, 0), p2 = (0, 100, 0), p3 = (0, 0, 100). and
U = (−100,1,1,1)/

√
3 are shown in Table 6 and Fig. 4.

We demonstrate the influence of the choice of unit length via the following detailed
computations. Obviously, F,xx = 0, so Cmax = 1/[2(‖F−1

,y F,xy‖+‖G,x‖ ‖F−1
,y F,yy‖)]. We

have

F(x,y)=




y2
2 + y2

3 + y2
4 −1

y1 + y2x1 + y3x2 + y4x3
y1 + y2x4 + y3x5 + y4x6
y1 + y2x7 + y3x8 + y4x9


=⇒ F,y =




0 2y2 2y3 2y4
1 x1 x2 x3
1 x4 x5 x6
1 x7 x8 x9


,F,x =




01×3 01×3 01×3
M 01×3 01×3

01×3 M 01×3
01×3 01×3 M


,

where M = [y2,y3,y4]. As to the inverse of F,y, we let m = det(F,y) and define coeffi-
cients ni j by F−1

,y = (
ni j

m )i, j=1,...,4. We further use the abbreviation N = [03×1 E3].

When scaling with a factor s > 0, we get the following dependencies on s: Coordinates
(x1, . . . ,x9) change to (sx1, . . . ,sx9) and (y1, . . . ,y4) becomes (sy1,y2,y3,y4), according
to (11). We have F,xx = 0 for all s. With exponents α1 = 0,α2 = · · · = α4 = 1 we can
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‖ · ‖U ‖ · ‖V ‖F−1
,y F,xx‖ ‖F−1

,y F,xy‖ ‖F−1
,y F,yy‖ ‖G,x‖ Cmax/s C′/s

∞ ∞ 0.00 4.00 1.73 2.31 6.25 14.43
∞ 1 0.00 3.00 2.31 5.20 3.33 17.32
∞ 2 0.00 2.89 1.15 2.89 8.04 23.20
1 ∞ 0.00 0.67 1.73 0.38 37.50 14.43
1 1 0.00 1.67 2.31 0.96 12.86 12.37
1 2 0.00 0.89 1.15 0.51 34.02 17.32
2 ∞ 0.00 1.73 1.73 1.00 14.44 14.43
2 1 0.00 1.81 2.31 1.81 8.35 15.11
2 2 0.00 1.63 1.15 1.00 17.94 17.94

Table 6: Experimental values for various norms and the values Cmax and C′ according
for the constraint problem of § 5.3, where s = 0.01.

‖ · ‖U ‖ · ‖V ‖F−1
,y F,xx‖ ‖F−1

,y F,xy‖ ‖F−1
,y F,yy‖ ‖G,x‖ Cmax/s C′/s

∞ ∞ 5.66 0.00 5.66 3.27 26.4 86.4
∞ 1 20.01 0.00 2.43 7.53 26.4 198.7
∞ 2 8.53 0.00 4.17 3.70 31.2 115.5
1 ∞ 1.06 0.00 5.66 0.82 101.1 82.6
1 1 1.82 0.00 2.43 1.84 106.2 195.1
1 2 1.06 0.00 4.17 1.06 106.9 113.4
2 ∞ 1.06 0.00 5.66 1.41 61.1 86.4
2 1 7.44 0.00 2.43 3.21 59.7 191.7
2 2 2.81 0.00 4.17 1.41 78.1 110.5

Table 7: Experimental values for various norms and the values Cmax and C′ according
for the constraint problem of § 5.4, where s = 0.001.

‖ · ‖U ‖ · ‖V ‖F−1
,y F,xx‖ ‖F−1

,y F,xy‖ ‖F−1
,y F,yy‖ ‖G,x‖ Cmax/s C′/s

∞ ∞ 0.00 0.00 4.43 2.98 7.42 22.15
∞ 1 0.00 0.00 1.85 8.04 6.58 52.86
∞ 2 0.00 0.00 2.85 4.53 7.58 34.38
1 ∞ 0.00 0.00 4.43 1.39 15.97 22.15
1 1 0.00 0.00 1.85 1.56 33.82 52.86
1 2 0.00 0.00 2.85 1.39 24.70 34.38
2 ∞ 0.00 0.00 4.43 1.97 11.27 22.15
2 1 0.00 0.00 1.85 3.64 14.53 52.86
2 2 0.00 0.00 2.85 1.97 17.44 34.38

Table 8: Experimental values for various norms and the values Cmax and C′ according
for the constraint problem of § 5.5 (s = 0.0051).
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write the dependence of G,x and the component matrices of F−1
,y F,xy(s) and F−1

,y F,yy(s)
in the form

G,x(s) =
1

sm




sn12M sn13M sn14M
n22M n23M n24M
n32M n33M n34M
n42M n43M n44M


,

[F−1
,y F,xy(s)]r =

1
sαr m

[
nr2N
nr3N
nr4N

]

[F−1
,y F,yy(s)]r =

2snr1
sαr m

diag(0,1,1,1).

With the limits from (16), we can compute the limit behaviour of Cmax(s)/s with (17).
The graph of η = ln(Cmax/s) over ξ = lns has exactly the same behaviour as the re-
spective graph in § 5.2 (first variant), as is also illustrated by Fig. 4.

§ 5.4 Intersection of two planes

We consider the intersection line L = (l, l̄) = (y1, . . . , y6) of two planes U = (u0,u) =
(x1, . . . , x4) and V = (v0,v) = (x5, . . . , x8), where the planes are fixed and the line is
moving. The constraints F(x,y) = 0 are defined by the relation L = U ∩V according
to Table 2. By introducing the auxiliary variable λ = y7, we get

F(x,y)=




y2
1 + y2

2 + y2
3 −1

x3x8 − x4x7 − y1y7
x4x6 − x2x8 − y2y7
x2x7 − x3x6 − y3y7
x1x6 − x2x5 − y4y7
x1x7 − x3x5 − y5y7
x1x8 − x4x5 − y6y7




⇒ F−1
,y =

−1
2y7




−y1y7 2(1− y2
1) −2y1y2 −2y1y3 0 0 0

−y2y7 −2y1y2 2(1− y2
2) −2y2y3 0 0 0

−y3y7 −2y1y3 −2y2y3 2(1− y2
3) 0 0 0

−y4y7 −2y1y4 −2y2y4 −2y3y4 2 0 0
−y5y7 −2y1y5 −2y2y5 −2y3y5 0 2 0
−y6y7 −2y1y6 −2y2y6 −2y3y6 0 0 2

y2
7 2y1y7 2y2y7 2y3y7 0 0 0



,

G,x =




0 R1y1 x8 +R2y1 −x7 +R3y1 0 R4y1 −x4 +R5y1 x3 +R6y1
0 −x8 +R1y2 R2y2 R3y2 0 x4 +R4y2 R5y2 −x2 +R6y2
0 x7 +R1y3 −x6 +R2y3 R3y3 0 −x3 +R4y3 x2 +R5y3 iR6y3
x6 −x5 +R1y4 R2y4 R3y4 −x2 x1 +R4y4 R5y4 R6y4
x7 R1y5 −x5 +R2y5 R3y5 −x3 R4y5 x1 +R5y5 R6y5
x8 R1y6 R2y6 −x5 +R3y6 −x4 R4y6 R5y6 x1 +R6y6
0 −R1y7 −R2y7 −R3y7 0 −R4y7 −R5y7 −R6y7



.

where R1 = x8y2 − x7y3, R2 = x6y3 − x8y1, R3 = x7y1 − x6y2, R4 = x3y3 − x4y2,
R5 = x4y1 − x2y3, R6 = x2y2 − x3y1. Second derivatives have the form [F−1

,y F,xx]r =
1
y7
·
[

04×4 −Sr

Sr 04×4

]
for r = 1, . . . ,7, where

S1 =




0 0 0 0
0 0 −y1y3 y1y2
0 y1y3 0 1− y2

1
0 −y1y2 y2

1 −1 0


, S2 =




0 0 0 0
0 0 −y2y3 y1(y2

2 −1)
0 y2y3 0 −y1y2
0 y1(1− y2

2) y1y2 0


,

S3 =




0 0 0 0
0 0 1− y2

3 y1y2y3
0 y2

3 −1 0 −y1y3
0 −y1y2y3 y1y3 0


, S4 =




0 1 0 0
−1 0 −y3y4 y2y4
0 y3y4 0 −y1y4
0 −y2y4 y1y4 0


,

S5 =




0 0 1 0
0 0 −y3y5 y2y5
−1 y3y5 0 −y1y5
0 −y2y5 y1y5 0


,S6 =




0 0 0 1
0 0 −y3y6 y2y6
0 y3y6 0 −y1y6
−1 −y2y6 y1y6 0


,S7 =y7




0 0 0 0
0 0 y3 −y2
0 −y3 0 y1
0 y2 −y1 0


.
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(a) (b) (c)

Cmax Cmax ln(Cmax/s)

φ τ lns

Figure 6: (a)–(c) analogous to Fig. 2, but for the constraint problem of § 5.4.

F,xy is zero. F−1
,y F,yy has the form [F−1

,y F,yy]r =
[

diag(yry7,yry7,yry7,0,0,0) Nr

NT
r 0

]
/y7 for r =

1, . . . ,6 and [F−1
,y F,yy]7 =

[
diag(−y7,−y7,−y7,0,0,0) N7

NT
7 0

]
, where the column vectors Ni are

defined by

[N1, . . . ,N7] =




1− y2
1 −y1y2 −y1y3 −y1y4 −y1y5 −y1y6 y1

−y1y2 1− y2
2 −y2y3 −y2y4 −y2y5 −y2y6 y2

−y1y3 −y2y3 1− y2
3 −y3y4 −y3y5 −y3y6 y3

03×3 E3×3 03×1




When scaling with a factor s, (x1,x5,y4,y5,y6) are replaced by s(x1,x5,y4,y5,y6). The
other variables are scale-independent. We consider the limit cases s → 0 and s → ∞.
In a way analogous to previous constraint problems, we consider the limits

B0 = lims→0 G,x(s), C0 = lims→0 F−1
,y F,xx(s), D0 = lims→0 F−1

,y F,yy(s),

B∞ = lims→∞(G,x(s)/s), C∞ = lims→∞(F−1
,y F,xx(s)/s), D∞ = lims→∞(F−1

,y F,yy(s)/s).

The formula for Cmax from Theorem 1 shows that

lim
s→0

Cmax(s) =
2‖B0‖

‖C0‖+4‖B0‖2‖D0‖
, lim

s→∞
(s2Cmax(s)) =

1
2‖B∞‖‖D∞‖

.

Thus the graph of η = ln(Cmax/s) over ξ = lns has the asymptotes η =−ξ + ln(2
‖B0‖)− ln(‖C0‖+ 4‖B0‖2‖D0‖) as ξ →−∞, and and η =−3ξ − ln(2‖B∞‖ ‖D∞‖) as
ξ →∞. They intersect at ξ = lns0, where s2

0 =(‖C0‖+ 4 ‖B0‖2 ‖D0‖)/ (4 ‖B0‖ ‖B∞‖
‖D∞‖). Experimental data for the particular solution U = (100,−1,−1,−1)/

√
3,

V = (100,−1,−1, 1)/
√

3, L = (−1, 1, 0, 0, 0, 100)/
√

2, and λ = 2
√

2/3 are shown
in Table 7 and Fig. 6.

§ 5.5 Two points determine a unit vector

This is a constraint problem not contained in the tables above. We have the fixed
variables p1 = (x1, x2, x3), p2 = (x4, x5, x6) and the moving variables q1 = (y1,y2,y3)∈
R

3, y4 ∈R with the constraints ‖q1‖2 = 1, p1− p2 = y4q1 (y4 is the distance of p1 from
p2).

The particular solution p1 =(40, 30, 70), p2 =(30, 40,−70), q1 =(p2 − p1)/ y4, y4 =
‖p2 − p1‖ is illustrated in Table 8 and Fig. 7.

We have F,xx = 0 and F,xy = 0, so we get Cmax(s) = 1/(2‖G,x(s)‖‖F−1
,y F,yy(s)‖). An
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Cmax Cmax ln(Cmax/s)
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Figure 7: (a)–(c) analogous to Fig. 2, but for the constraint problem of § 5.5.

elementary computation shows that

G,x(s) =
1

sy4

[
G̃(s)
g̃(s)

]
, where g̃(s) =[ sy4y1 sy4y2 sy4y3 − sy4y1 − sy4y2 − sy4y3 ], (18)

G̃(s) =

[
1− y2

1 −y2y1 −y1y3 y2
1 −1 y2y1 y1y3

−y2y1 1− y2
2 −y3y2 y2y1 y2

2 −1 y3y2
−y1y3 −y3y2 1− y2

3 y1y3 y3y2 y2
3 −1

]
.

We define M̃(v1,v2,v3,v4) =

[ v1 v2
v1 v3

v1 v4
v2 v3 v4

]
and get F−1

,y F,yy(s) = 1
sy4

Bs, where Bs ∈B(R4,

R
4, R4) has the following coordinates:

[Bs]1 = M̃(sy4y1,1− y2
1,−y2y1,−y1y3), [Bs]2 = M̃(sy4y2,−y2y1,1− y2

2,−y3y2),

[Bs]3 = M̃(sy4y3,−y1y3,−y3y2,1− y2
3), [Bs]4 = M̃(−s2y2

4y3,sy4y1,sy4y2,sy4y3).

Limits for s → 0 and s → ∞ are the following:

L0 := lim
s→0

sG,x(s) =
1
y4

[
G̃(s)
01×6

]
, L∞ := lim

s→∞
G,x(s) =

[
O3×6

y1 y2 y3 − y1 − y2 − y3

]
. (19)

Further, lims→0 sF−1
,y F,yy(s) = 1

y4
B0, where B0 has the following coordinates:

[B0]1 = M̃(0,1− y2
1,−y2y1,−y1y3), [B0]2 = M̃(0,−y2y1,1− y2

2,−y3y2),

[B0]3 = M̃(0,−y1y3,−y3y2,1− y2
3), [B0]4 = 04×4.

The limit lims→∞
1
s F−1

,y F,yy(s) is denoted by B∞ and expands to

[B∞]r = 04×4 for r = 1,2,3; [B∞]4 = diag(−y4,−y4,−y4,0).

Thus
lim
s→0

(
1
s2Cmax(s)) =

1
2‖L0‖‖B0‖

, lim
s→∞

(sCmax(s)) =
1

2‖L∞‖‖B∞‖
. (20)

The graph of η = ln(Cmax(s)/s) over ξ = lns has the asymptotes

η = ξ − ln(2‖L0‖‖B0‖) (ξ →−∞),

η = −2ξ − ln(2‖L∞‖‖B∞‖) (ξ → ∞).

They intersect in the point

(ξ0,η0) =
1
3
(

ln ‖L0‖‖B0‖
‖L∞‖‖B∞‖

,− ln(8‖L0‖2‖B0‖2‖L∞‖‖B∞‖)
)
. (21)

We have ξ0 = lns0, where s3
0 = ‖L0‖‖B0‖/ (‖L∞‖‖B∞‖). This is illustrated in Fig. 8.
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Figure 8: Detail of Fig. 7.c (asymptotes).
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