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Abstract: When we are trying to shape a surface X by 3-axis milling, we
encounter a list of problems: First we have to decide if locally the milling tool Σ
is able to move along the surface such that its envelope during the motion is the
given surface. This is a question involving the curvatures of X and Σ. Second,
we want to avoid that while milling in one part of X, Σ intersects another,
already finished, part of the surface. This is a problem which involves global
shape properties of the surface and can be successfully attacked by considering
the general offset surface of X with respect to Σ. Third, in practice a cutting-
tool is not able to perform a 2-dimensional motion along a surface. It has to
trace out a finite number of piecewise smooth paths such that the resulting
surface does not differ from X too much. This question again involves, in the
limit case of very small error tolerance, only the curvatures of X and Σ. If we
allow larger scallop heights, the path finding also requires the study of local
and global properties.

Keywords: 3-axis milling, collision avoidance, general offsets, milling path,
global millability

Recently we have studied the problem of locally and globally collision-free
milling of sculptured surfaces [6, 14]. It turned out that if some conditions
on the curvature of the surfaces involved are fulfilled, we can show that locally,
and in certain cases also globally, no unwanted collisions of the cutting-tool with
the surface occur. The present paper is summing up our previous results and
also deals with the problem of determining tool paths such that the actually
shaped surface is within some error tolerance from the given surface X.

If we are given a surface X, we have to do the following:

1. Test whether or not a given cutter is able to mill the given surface locally.

2. Test whether or not a given cutter is able to mill the given surface globally.

3. Select an optimal cutter Σ from a given set of available cutting tools.

4. Find curves c1, . . . , cr such that the cutter Σ, while moving along these
curves, shapes a surface X which lies between X and its outer parallel
surface at distance ε.
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The next sections contain a description of phenomena which occur in this
context. We closely follow [6].

Local Properties of Smooth Surfaces

We are going to describe the background and the mathematical foundations of
the local millability test when restricted to smooth surfaces, which consist of
C2 patches with C1 join. Non-smooth surfaces will be considered in the next
section.

We denote the surface by X and the cutter by Σ. X is the boundary
of a solid, and we speak of the solid as of the interior of X and will call the
ambient space the exterior of X. The cutting-tool is a convex body of rotational
symmetry. The rotation of the cutter around its axis, however important for the
mechanical engineering aspect of the problem, can be completely neglected from
the geometric point of view. The actual cutter generates a surface of revolution
by its rotation. It is this surface which we consider in this paper. We restrict
ourselves to the case of convex cutters, that is, the line segment which joins any
two points of Σ is completely contained in Σ. We additionally assume strict
convexity which means that no line segments are part of the boundary. An
actual cutter which contains cylindrical or planar parts is easily approximated
by a strictly convex cutter. Because all our problems (collision, error tolerance)
can be formulated in terms of distance only, and do not need derivatives, this
is justified.

While milling the surface X, the surface Σ undergoes a translational motion
such that the resulting envelope is just the given surface X. This translation is
described by Σ 7→ Σ + g, where g denotes the vector of the translation. For all
p ∈ X there is exactly one point q in Σ such that the oriented normal vector in
p (pointing to the outside) equals the negative oriented normal vector (pointing
to the inside) of q. The translation vector is given by g(p) = q − p. The new
position Σ + g(p) is denoted by Σ(p).

p = q + g

q

X

Figure 1: Cutting-tool Σ touching the sur-
face X.

p=q iq

ip

Figure 2: Indicatrix iq contained in the
interior of ip.
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To examine the local behavior in a neighborhood of the touching point, we
choose a reference plane such that locally both surfaces are graphs of real-valued
functions f and s, respectively. Of course this does not mean that the surfaces
X and Σ must from the beginning be given as graphs of real-valued functions.
If the tangent plane is not orthogonal to the base plane, it is always possible to
re-parametrize both X and Σ locally such that they become graph surfaces.

Because the graphs of f and s touch each other, we have for all vectors v
equality of first directional derivatives:

s,v = f,v. (1)

We say that X is locally millable by Σ at p, if there is a neighborhood of p such
that in this neighborhood the translates of Σ which touch X there locally do
not interfere with the interior of X. It is easy to see [12, 14] that we have local
millability, if the difference of the Hesse matrices

Hs −Hf =

(
sxx − fxx sxy − fxy
sxy − fxy syy − fyy

)
(2)

is positive definite. In Equ. 2 the double subscripts denote second partial deriva-
tives.

There is an equivalent condition in terms of the oriented Euclidean curvature
indicatrices of X and Σ, which are preferable from the theoretical point of
view. This is because they do not depend on a local parametrization as a graph
surface. For the definition of the indicatrix, see any textbook of differential
geometry, for example [4]. It may be seen as the limit of the suitably scaled
intersection curve of a surface with a plane τ̄ parallel and close to a tangent
plane τ . In our case we use oriented indicatrices: We translate τ in direction of
the positively oriented normal vector of X and the negative normal vector of
Σ.

We define the interior of the indicatrix ip as the star-shaped (with respect
to the origin) domain, whose boundary is ip. It may be the whole plane.

The proof of the following is an exercise in differential geometry [4]:

Proposition: A surface is locally millable if and only if for all corresponding
points p ∈ X and q = q(p) ∈ Σ the indicatrix iq is contained in the interior of
the indicatrix ip (see Fig. 2).

Global Properties of Smooth Surfaces

We repeat a list of cases given in [6, 14]. In order to formulate global millability
conditions we make use of the following

Definition: The surface Γ which is traced out by an arbitrary fixed point of
Σ during the motion of Σ is called general offset surface [1, 2, 7, 6, 13, 14] of
X with respect to Σ.

Using elementary methods of geometric topology (degree of maps, homo-
topy, covering maps), it is possible to show [14] that the following is true:
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Proposition: Let X be a smooth surface consisting of C2 patches.

1. If X is locally millable, the parametrization of Γ is regular and orientation
preserving.

2. If the surface Γ has no self-intersections, then X is globally millable by
Σ.

3. Let X be such that it can be re-parametrized as the graph surface of a
compactly supported smooth function defined in the entire plane. If X is
locally millable, then also globally.

4. Let X be such that it can be re-parametrized as the graph surface of a
smooth function defined in the entire plane. If Σ possesses steeper tangent
planes than X (This is always the case if Σ has an equator circle), then
the local millability of X implies the global millability.

5. Let X be such that it can be seen as the graph surface over a piecewise
smoothly bounded planar domain D. If the ‘top view’ of Σ is a closed
symmetric convex domain S and the general outer parallel curve D+S is
free of self-intersections, then the local millability of X implies the global
millability.

6. If X is strictly star-shaped with respect to an interior point, then local
millability implies global millability.

In most applications we have one of the cases listed in the proposition, most
frequently perhaps case 4. In most cases S is a disk and the condition is easily
verified. (see Fig. 3).

Figure 3: Milling a surface with boundary.

Non-smooth Surfaces

If the surface is not smooth, but continuous and piecewise C2, we are still able
to give local and global millability conditions. The first possibility to overcome

4



the non-smoothness is to consider instead of X an outer parallel surface at
distance ε. This surface is G1 and the previous proposition applies. Because
collision tests involve distance information only, the limit ε→ 0 gives the exact
result.

Another method, which is better for computational purposes, is the follow-
ing: An edge e where X is not smooth, is either a ravine or a ridge. Ravines can
never be milled exactly by smooth cutters, so we leave them aside. For a ridge
this is possible. It is easy to derive the following criterion for local millability
in the neighborhood of a point p which is situated on an edge c: Write X and
Σ as graph surfaces. The ‘top view’ of the edge c is denoted by c′. It has a
parametrization c′ : t 7→ (c1(t), c2(t)). The edge itself has a parametrization of
the form c : t 7→ (c1(t), c2(t), c3(t)). Then Σ locally does not interfere with the
edge if the inequality

(ċ′)THs(q)ċ′ + grad(s(q)) · c̈′ > c̈3 (3)

holds for all points q which have the property that Σ can be translated such
that q is translated to p and Σ(p) touches X at p.

It can be shown [14] that here also the local millability implies the global
one, in all cases listed in the proposition above.

Test for Millability of a Smooth Surface

In this section we are going to describe how to test whether a given cutting-
tool is able to mill the surface X. The cutting-tool contains circles in parallel
(‘horizontal’) planes, which will be called parallel circles. The tangent planes
τp of the points q of such a circle c enclose the same angle

ψ = 6 (τq, a) (4)

with the axis a of the tool. The points of the surface X which will during
the manufacturing process be in contact with the points of the circle c, are
precisely the points on the isophotic line lψ which belongs to the angle ψ and
the direction of a [10]. The curve lψ is defined as the set of points p of X whose
tangent planes τp enclose the angle ψ with the axis a.

As discussed above, the condition for collision-free manufacturing of X can
be expressed in terms of the Euclidean curvature indicatrices ip and iq of cor-
responding points p ∈ Σ and q = q(p) ∈ X: The surface is locally (and hence,
globally) millable if and only if the indicatrix iq is contained in the interior of
ip.

The indicatrices of all points q of a parallel circle c are the same (up to
rotation of Σ), so we can speak of the indicatrix iq = ic of the points of c.
The connection between the various tangent planes of c is given by the cutter’s
rotation around the axis a. The connection between the various tangent planes
along the curve lψ is given by the condition that when moving along lψ, the
horizontal line in the tangent plane stays horizontal.

This now makes it possible to re-formulate the condition that for all points
p ∈ lψ the interior ip must contain ic: We identify all tangent planes along lψ
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and intersect the interiors of the indicatrices ip. This gives the region Iψ. Local
millability is now equivalent to ic ⊂ Iψ.

This is implemented easily if we exploit the fact that all Iψ are the inter-
section of domains which are star-shaped with respect to the same point.

Test for Millability of a Non-Smooth Surface

First we have to say something about the isophotic lines in the presence of
edges. For this purpose it is best to think of lψ as a set of surface elements
(p, τp), where a surface element is a pair (point, tangent plane). This makes
it possible to simplify the notation in cases where a point has more than one
tangent plane.

If p is situated on an edge e of X, there is a wedge Tp of admissible tangent
planes. There are up to two planes in Tp which enclose the angle ψ with the
axis a. Thus the isophotic line lψ can contain up to two surface elements (p, τp).
For each of them it is possible to define a substitute indicatrix of curvature ip,τ
(see [6]) such that the test for millability now runs in exactly the same way as
in the smooth case. For all angles ψ we have to test if ic is contained in Iψ,
where c is the parallel circle which belongs to the angle ψ, and Iψ is defined as
Iψ =

⋂
(p,τ)∈lψ int ip,τ

Cutter Paths

Figure 4: Surface produced by ac-
tual cutter (false proportions)

Figure 5: Surface X, cutter Σ, outer
parallel surface, and actually shaped
surface (dark grey).

Having shown that the milling-tool Σ is able to shape the surface during
a two-parameter motion, we have now the problem that in practice Σ cannot
trace out the entire surface in finite time, but only a finite number of piecewise
smooth curves.

There are many publications concerning these tools paths, see for example
[3, 5, 8, 9, 11, 15, 16]. What we want to do, is to show how to find the best
tool paths locally, and how to find new or to modify existing global tool path
schemes. We do this by specifying curves on the surface, which will be the locus
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of points where the cutter touches the surface X. The actual position of the
cutter is easily calculated from these curves.

We specify a small error tolerance ε and require that Σ is to move along
piecewise smooth curves, thereby shaping an approximate surface X which has
to be contained between X and its outer parallel surface at distance ε. (see
Fig. 5).

We will consider the geometry of the tool trajectories only, not the para-
metrization of the tool paths or the velocities of the tool. For example, the
difference between ‘isoparametric’ and ‘non-isoparametric’ tool paths is not a
geometric or shape property, it is a property of the parametrization.

Also, we do not study the possible limitations of actual CAM systems, such
as the unability of using curves other than straight lines or memory restrictions.
For instance, we do not think of discretizing our curves. These problems have
to be solved by those who wish to implement new or use existing software.

In a neighborhood of a point p ∈ X we can always write both X and Σ(p)
as graph surfaces:

X : z = f(x, y), Σ(p) : z = s(x, y). (5)

Also the outer parallel surface can be written as a graph surface locally. A good
approximation is

X : z ≈ f(x, y) + ε/ cosα(x, y), (6)

where α(x, y) is the angle which the tangent plane at p encloses with the z = 0
plane:

cosα(x, y) = 1/
√
f2
x + f2

y + 1. (7)

The ‘top view’ of the intersection curve of Σ(p) with the outer parallel sur-
face then is approximated by the top view of the intersection curve of the
difference graph (see Fig. 7) z = s(x, y) − f(x, y) =: d(x, y) with the surface
z = ε/ cosα(x, y). For small ε we can use the Taylor expansions of Σ and X to
avoid the surface-surface intersection: If we intersect the Taylor expansion of
d(x, y) with the plane z = ε/ cosα(0, 0) we get the region

i(p) : (x, y)(Hs −Hf )(x, y)T ≤ ε/ cosα(0, 0), (8)

which is the interior of an ellipse. This ellipse is the ‘top view’ of a certain
region I(p) on the surface X which is a first order approximation to the actual
intersection of the cutter and the outer parallel surface at distance ε.

Our aim is to use as few milling paths as possible to cover the entire surface.
Locally, this is done as follows: We start at the point p and move along a curve
c, thus defining the approximate machining strip⋃

p∈c
I(p) (9)

on the surface which is formed by the union of all regions I(p) for all p ∈
c. The meaning of the approximate machining strip is the following: For all
points inside the strip, the enveloping surface of the cutter moving along the
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path differs from the given surface X not more than the given value ε, up to
errors of second order. This means that inside the strip the surface is already
approximated well enough. We now want to determine the curve c such that
the machining strip has maximum width (see [8]).

It is not so easy to write down the actual width of the machining strip,
because the boundary of the sets I(p) may, in principle, touch their envelope,
i.e., the boundary of the machining strip, in up to four points. Even this does
not happen in practice, it indicates that the equation behind it is of order
four. Thus we are satisfied with a first order approximation: We measure
the dimensions of the ellipse I ′(p) in the tangent plane of p, whose top view
coincides with i(p). If the curve c is such that its tangents coincide with the
direction of the minor axis of I ′(p), then the approximate machining strip will
have maximum width (more precisely: our approximation of the width will
reach its maximum).

In the parameter plane, the directions of the major and minor axes are given
by the eigenvectors of the matrix G−1(Hs −Hf ), where

G =

(
1 + f2

x fxfy
fxfy 1 + f2

y

)
(10)

is the matrix of the first fundamental form of the surface z = f(x, y).
If to each point we add a tangent vector pointing in the direction of the minor

axis, then integrating this vector field gives a curve with maximum machining
strip width, which obviously is our first choice for the cutter path.

good

bad

Figure 6: Overlapping ma-
chining strips.

Figure 7: Cutter surface Σ (top), surface X,
negative difference surface (bottom)

Having chosen the first path, we choose the neighboring paths under the
following side-conditions: The machining strips defined by the paths shall cover
the entire surface, although the strips should not overlap each other too much
(Fig. 6). Also the direction of the strips should differ not too much from the
direction of the optimal path.
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Figure 8: Milling path schemes.

If it is no longer possible to adjoin a cutter path to an already calculated
sequence of cutter paths such that the width of the machining strip is satisfying,
we start again with a new cutter path found by integrating the vector field of
minor axes, and repeat the process. Thus eventually the whole surface will be
covered by different regions of ‘parallel’ cutter paths, one of which is optimal.

If we want to use a prescribed global scheme for the cutter paths, such as
shown in Fig. 8, we are still able to make use of our results: In every point
we can evaluate the necessary width of the machining strip and thus determine
the optimal distance of a tool path to its immediate neighbor (which may be
an earlier part of the same tool path), thus optimizing the given scheme. More
detailed investigations and the actual design of algorithms are a topic of future
research.
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