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Fig. 1. Design with developables in freeform architectWeepropose a simple approach to isometric mappings between quad meshes, which immediately leads

to a way to model developable surfaces. For this example we started from a segmentation into panels of part of a freeform concrete shell by Zaha Hadid
Architects, builtin 2014 in Baku. We approximated it by a quad mesh which is piecewise discrete-developable in the sense of our framework. A erwards this
mesh undergoes an isometric deformation which respects the panelization. Our approach to discrete-developable surfaces is very flexible in the sense that the
edges of meshes do not have to be aligned with rulings or otherwise special curves on developables, and can be aligned with boundaries and features instead.

We discretize isometric mappings between surfaces as correspondencesACM Reference Format:
between checkerboard patterns derived from quad meshes. This method Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut

captures the degrees of freedom inherent in smooth isometries and enables
a natural de nition of discrete developable surfaces. This de nition, which

is remarkably simple, leads to a class of discrete developables which is much
more exible in applications than previous concepts of discrete developables.
In this paper, we employ optimization to e ciently compute isometric map-
pings, conformal mappings and isometric bending of surfaces. We perform
geometric modeling of developables, including cutting, gluing and folding.
The discrete mappings presented here have applications in both theory
and practice: We propose a theory of curvatures derived from a discrete
Gauss map as well as a construction of watertight CAD models consisting
of developable spline surfaces.
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1 INTRODUCTION

The geometric modeling of developable surfaces is a topic attracting
attention since many years. One reason for that is the great prac-
tical importance of developables, which represent shapes made by
bending at pieces of inextensible sheet material into space. Ma-
terials which fall into this category include paper and su ciently
thin plates [Audoly and Pomeau 2009]. New algorithms and compu-
tational representations of developables continue to emerge. This
steady progress is a sign that the problem of modeling developables
still has no complete and satisfactory solution. The mathematical
theory of developables is far from simple, which probably accounts
for a part of the computational di culties which occur. The ap-
proach to developables presented in this paper is via a systematic
theory of isometric mappings. It is based on correspondences be-
tween quad meshes, with no speci c restrictions on the meshes
themselves.

1.1 Overview and Contributions

We propose to manage discrete surfaces and their mappings not
directly, via properties of the vertices, edges and faces, but via prop-
erties of a checkerboard pattern inscribed in the original mesh.
That pattern is created by inserting midpoints of edges the edge
midpoints belonging to a face will always form a parallelogram,
regardless of the shape of the original face.
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Fig. 2. A checkerboard paern. The
black parallelograms are inscribed in
the original faces. Physical models such
as this can be moved around on devel-
opable reference surfaces, which is evi-
dence for our claim that checkerboard
pa erns are a good discretization.

Two combinatorially equivalent quad meshes, and their derived
checkerboard patterns are now used to discretize the concept of

realm, a ruled surface can be represented in a sequence of quadri-
laterals, with developability expressed by planarity of quads. This
principle proposed by [Sauer 1970] is the basis of [Liu e28I06]
and [Solomon et al. 2012].

A disadvantage of these methods is that the decomposition of
a developable into its ruled pieces can be arbitrarily complicated
combinatorially [do Carmo 1976, p. 195]. The rulings are no stable
function of the location on a developable surface: This dependence
may be non-smooth [Hartman and Nirenberg 1959, p. 916f], and the
ruling pattern can change in unpredictable ways during deformation
e.g. when passing through a at state, the ruling patterns before and

mapping between surfaces (Sec. 2). First-order properties of map-after the at position are unrelated. With ruling based-methods it is

pings are de ned in terms of the checkerboard pattern, e.g. for an
isometric mapping we require that corresponding parallelograms
are congruent.

The setup we use for mappings between surfaces can also be

employed to de ne a discrete version of the Gauss mapping, from
which curvatures are derived (Sec. 2.2).

more di cult to model situations where the ruling pattern changes
much, and such methods are naturally biased towards solutions
where big changes do not occur.

Alternative computational models are discrete two-dimensional
surfaces characterizing developability in a local manner. This can be
done e.g. by requiring a triangle mesh to be intrinsically at, having

The constraints we use to express the isometric property leave angle sum 2 in each vertex. Itis however not straightforward to
just the right number of degrees of freedom that we expect from the Model, in addition to developability, also the bending behaviour
smooth case. This is why we are able to use our discrete-isometric Of developables, since the developability constraints can easily be
mappings directly for geometric modeling. In particular we are able ~ Stronger than we expect from the smooth situation. Recent examples
to de ne discrete developables as surfaces isometric to a quadran- Of discrete developables are the orthogonal-geodesic nets proposed

gulation of a planar domain (Sec. 3).

We demonstrate the capabilities of our discrete-developable sur-
faces by means of geometric modeling tasks, the most important
one being watertight developable CAD models. We approach this
hitherto unsolved problem by combining our discrete-isometric
mappings with subdivision (Sec. 4) .

Section 5 contains more results, including approximating a given

surface with a developable one, and how to increase the developabil-

ity of a given surface. We also show how to compute developables
de ned by gluing boundaries, and by folding along curves.

1.2 Previous Work

There is a large amount of literature on developable surfaces, and
even more about the topic of mappings between surfaces, which
includes mesh parametrization. Related work in discrete and numer-
ical di erential geometry is discussed later, in ¥2.2.2.

Previous work on developable surfaCesnputational treatments
of developables can be divided into two groups. One kind of meth-

ods is based on the fact that developables are, essentially, one-
dimensional objects. Each developable consists of pieces of ruled

surfaces with enjoy the property that the tangent plane along a
ruling is constant. In geometric modeling, a big advantage can be
gained by reducing the dimensionality of the problem from two to
one. Rose et al. [2007] use this principle in solving the problem of
nding all developables de ned by a given boundary. The dual ap-
proach by [Bodduluri and Ravani 1993] and follow-up publications
like [Pottmann and Wallner 1999] treats developables as curves in
dual space. Ruled surfaces as dediea) B-spline surfaces, with
developability imposed as an extra nonlinear side condition have
been proposed early, and form the basis of the work by [Jiang et al
2019; Tang et a016] (for a history of this approach we refer to the
extensive bibliographies contained in these papers). In the discrete

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.

by Rabinovich et al. [2018a; 2018b; 2019], and the developable tri-
angle meshes of Stein et al. [2018] where a local “hinge' condition
ensures existence of rulings.

Approximation with developables has been done on various levels,
starting with [Mitani and Suzuki 2004]. Stein et al. [2018] use their
de nition of discrete developability to modify surfaces such that
the Gauss curvature becomes concentrated on curves, achieving a
piecewise-developable approximation. A di erent approach exploits
the essentially one-dimensional nature of developables. While the
Gauss image (normal vector image) of an arbitrary surface covers
an area of the unit sphere, the Gauss image of a developable or
piecewise-developable surface has zero area [do Carmo 1976, p.
167] and thus, assuming smoothness, is a curve on the unit sphere.
Approximating an arbitrary surface by a few developable patches
is therefore at least as di cult as approximating a 2D domain by
a few 1-dimensional arcs. Recently, Gavriil et al. [2018] employed
this viewpoint to realize architectural freeform shapes by individual
developable panels.

Previous work on checkerboard pattefigs paper has been mo-
tivated by recent work on discrete surfaces exhibiting two classes of
‘white' and “black’ faces arranged in a checkerboard pattern. Peng
et al. [2019] discuss patterns with “black rectangles’, their degrees of
freedom and their computation. Our paper operates with checker-
board patterns with “black parallelograms' generated by subdivision
from an arbitrary quad mesh. A special case, namely patterns with
“black squares' turns out to be related to [Rabinovich et al. 2018a].

Previous work on mappings between surfaéading correspon-
dences and mappings between geometric shapes is one of the most
signi cant and diverse problems in geometry processing, cf. e.g.
the recent contributions [Chern et aR018; Ezuz et a2019]. In our
own work we focus onisometriomappings. They have been stud-
ied in detail, often from the viewpoint that true isometries cannot
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%(Vl v3) =
=Mmi2 MmM23
=Mmo1 M30

1vo v2)
=M3p M23

=Mo1 Mi2 Fig. 4. A conformal mapping between quad meshésand M2 HereM?is
flat, which makes the mapping fronM°to M a conformal parametrization.

Fig. 3. For any face with verticag , the midpointsmj; .+ of edges obey In fact this parametrization is as isometric as possible.

the equations above, implying that those midpoints form a parallelogram. A
correspondence between facegv 1vovs andv v v v Jinduces an a ine
mapping between inscribed midpoint parallelograms. The correspondence is
conformal resp. isometric, if that a ine map is a similarity resp. a congruence.

Varignon's theoreni-or any quadrilateral face dfl, the edges of

the inscribed “black’ face obey the equations shown by Fig. 3. They
say that these edges are parallel to the diagonals of the original face,
implying the inscribed face is a parallelogram. This fact, holds even
be achieved. As a consequence, as-rigid-as-possible mappings respgf the original face is not planar, and is sometimes calléarignon's
near-isometric mappings have been investigated, see e.g. [Claici theorem

et al 2017; Liu et al2009; Pietroni et aR010; Sorkine and Alexa . .

2007]. Our idea to model isometry via keeping the shape of small 2-1 ~Conformal maps and isometric maps

elements is not entirely new, see e.g. constrained shape exploration Peng et al. [2019] propose to discretize a mapping between surfaces
as set up by Bouaziz et al. [2012]. Peng et al. [2019] already proposeas the correspondence between combinatorially equivalent meshes

to de ne isometric and conformal mappings by local isometries and
local similarities of checkerboard patterns, but considered restricted
shapes of patterns only.

Relevant work on isometric mappings has been done by Chern et
al. [2018]. Based on a discrete theory of spin structures, they treat
isometric mappings, particularly immersions. Recently, Sassen et al.
[2020] investigated the exions of triangle meshes with rigid faces
via the manifold of realizations of xed edge lengths but variable
dihedral angles. They formulate the corresponding integrability
conditions and solve both exact and approximate reconstruction of
meshes, which includes computing isometric mappings. The main
points in which our work di ers from these two recent contributions
is the di erent focus (ours is geometric modeling, cutting and gluing,
applications in paneling) and the simplicity of our approach.

Conformal mappings are not a focus of the present paper, and we
only refer to the bibliography in [Peng et al. 2019].

M andM©@ They consider only such meshes where induced checker-
board patterns exhibit black rectangles, and they propose that the
mapping is isometric (resp., conformal), if corresponding black faces
are related by a congruence (resp. similarity) transformation. We are
going to demonstrate that the very same de nition is sensible also
in the general case, without any restriction to the shape of faces.
Consider corresponding facds= vovivavz and f 0= vy Q9

of the given mesheM andM?, see Figure 3. The inscribed parallel-
ograms are congruent, if and only if their edge lengths and angles
coincide, i.e., if and only if

csqo(f) = kvo vak® kvd vikZ=0;
csq1(f) =kvi vak? kv viki=0
Gisg2(f) = o vzvi vai v vii=o ()

0 . -
hvg vyvi vil =
In an analogous way we state conditions expressing a similarity
transformation: The equations

2 MAPS BETWEEN SURFACES AS CORRESPONDENCES cconto(f) = fkvo vok? kv vk =0

BETWEEN CHECKERBOARD PATTERNS
In the same way a meshl is a discrete surface, a pdid, MO of

combinatorially equivalent meshes can be seen as a discrete version

of a mappingbetween surfaces. This viewpoint has been highly

ceont1(f) = fhkvi vak? kv

Ceonf2(f) = fhvo vavi vai =0 (2
say that edge lengths of the inscribed parallelogram are multiplied

vk =0;

0 0,0 0
hvg vyvi V3

. : . : 1=2
successful e.g. in the study of discrete conformal mappings as cor- With the factor ()=, but angles stay the same. Both)and (2)
respondences between special meshes (namely, circle patterns, sedlirectly refer to the control mesi.

[Stephenson 2005]). In the same tradition, Peng et al. [2019] suggest

the following setup. A control mesM = (V; E; F) is associated with
acheckerboard patte(Np; Ep; Fp) derived fromM.

Every edgerw 2 E de nes a vertexmyy, = 3(v +w), which

is the midpoint of that edge, see Fig. 3.

Every vertexv 2V de nes a new ‘white' face with vertices
myw Wherevw is an edge incident wittv.

Every facef 2 F de nes a new “black’ face with vertices
Myw , Wherevw is an edge contained ifi.

Vertex face inclusion translates to adjacency of white and
black faces in the checkerboard pattern.

2.2 Curvatures for quad meshes

Checkerboard patterns as introduced above are well suited to intro-
duce curvatures, because the “black' faces are planar see (Fig. 3) and
have well-de ned normal vectors. The classical de nition of curva-
tures via the Gauss map is nicely compatible with our de nition of
discrete mappings between discrete surfaces. We here describe our
construction and its relation to other de nitions of curvatures.

2.2.1 Definition of curvatures per fagée main idea is to de ne
a normal vectom; for each vertex; of the control meshM, and
consider o set mesheM with verticesv; + nj. We require that
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Fig. 5. A mestM (le ) with vertices v;, normal vectors; (Gauss image
(M), atright) and an o setM  with verticesv; + n ;. The distance of
corresponding "black' parallelograms inscribedg M is .

in the checkerboard patterns derived from meshdsM , corre-
sponding “black' parallelograms lie in parallel planes at distance
from each other. Figure 5 illustrates this situation. By linearity, it is
su cient to require this property only for = 1.

2=0 (3)

wherens is a unit normal vector of the inscribed parallelogram,

Cnormj (f) = Mj + njr1;ngi

The principal directions must be orthogonal to each other, which
happens if and only if the shape operator is symmetric, i.e,

Csym(f) =Mz nyvz voi hvg vynz noi =0

©)

We add this condition as a constraint in our computations. It acts as
a regularizer and contributes to eliminating the ambiguity which is
still left after conditions(3)are imposed. The results are numerically
convincing, see Fig. 6.

2.2.2 Comparison with other quad mesh-based curvature theories.
Curvatures of polyhedral surfaces were introduced by [Bobenko
et al. 2010; Pottmann et a007]. They consider a polyhedral mesh
M endowed with polyhedral o setdM at distance such that
corresponding face$, f of M;M lie in parallel planes. Mean
curvatureH (f ) and Gauss curvaturk (f ) of the facef are derived
from Steiner's formula,

aredf )=aredf)(1 2H (f)+ 2K(f)): (6)

The very same relation applies to our curvatures and the areas of
“black' parallelograms. This can be easily seen fr@ because the
area of the parallelogram inscribed in the faggv1vovs is exactly
%[vz vo;v3 V1]. The major di erence between our setup and that

consistently pointing to one side of the mesh. Indices are taken ©Of Bobenko etal. [2010] is that in our case, the relati@)applies

modulo 4. Actuallychorm3(f ) is redundant (because if 3 vertices of

a parallelogram lie in a certain plane, also the 4th vertex does).
Note that the normal vectors; are notunit vectors, and they

are also not uniquely de ned by3) alone. In practice, they are

to only one half of the faces. If it applies to all faces, it represents a

rather strong condition on the meshes involved for quad meshes

this essentially requires that edges follow principal curvature lines.
A further development is the theory of curvatures fedge-con-

computed via optimization, see Sec. 2.3.1. They constitute the ver- Straint netsby Ho mann et al. [2017]. They operate with unit nor-

tices of the Gauss image(M). By construction, the checkerboard
pattern derived from (M) has “black' parallelograms tangentially

mal vectors of vertices. From the computational viewpoint, their
constraints on normal vectors are more involved than ours. While

circumscribed to the unit sphere. The Gauss map within each paral- the work of Ho mann et al. [2017] is capable of unifying several
lelogram de nes a shape operator, mapping edges of a parallelogram previous constructions, a thorough theoretical investigation of our

inscribed toM to the corresponding edges of a parallelogram in-
scribed in (M). The usual sign convention (the shape operator is

de nition of curvatures is a topic of future research.

the negative derivative of the Gauss map) implies that the discrete 2-3 Computation of mappings via optimization

shape operator in the fack reads

Vo voT7!
vy Vv1 7!

(n2 no);
(N3 ny):

Both parallelograms inscribed ifi = vovivovz and in (f) =
non1nznz haven; as a normal vector. It therefore makes sense to
view s as a mapping of the two-dimensional subspag€ into
itself. Then both Gauss curvatut€ and mean curvaturéd (in the
pointwise sense) are naturally de ned via determinant and trace of
 , just like in the smooth theory:

[n3 nyn2 ngl.

K(f)=0|et(5r)=[v3 Viva Vol 4
Hot &) _ [n3 npve vol+[va vinz ngl
)=—== 2vs vivz Vo '

Here we used the notatiorg] b] = det(a; b; ns ) for the determinant

of vectors in the subspaag ? . Further, it is natural to consider the
shape operator's eigenvalueg(f); 2(f) as the principal curva-
tures, with eigenvectors indicating principal directions. Eigenvalues
are computed e.g. as the roots of the equatich 2Hx + K = 0.

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.

In geometric modeling with mappings, a basic task is to make them
isometric or conformal, changing them as little as possible (this
includes the task of making surfaces developable, changing them as
little as possible in the process). Obviously it is important that this
can be done quickly. Since the conditions we impose on mappings
are not su cient to guarantee smoothness, we perform all compu-
tational tasks via optimization and employ suitable regularizers.

2.3.1 Setup of variables and mapping-related constraimtscom-
putations in this paper involve two quad mesh&t = (V; E; F) and

Fig. 6. Comparing the value of Gauss curvature computed with our method
(le' ) with the jet t method of [Cazals and Pouget 2003] (center). The
di erences, visualized via color di erence (right) are barely visible.
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MO= (v2E® FY which are combinatorially equivalent. The natural
correspondence between vertices encodes a mapping. The variables
of our computation, including the coordinates of vertices, are stored

in a vectorX 2 RN . Constraints originally formulated as equations
are expressed via minimization of energies. The isometry constraint
of Equ. (1) is expressed BysdEiso(X) !  min, where

X 2
Cisqj ()5

f2F  j=1
andwisg is a positive weight. Similarly, to compute a conformal
mapping between meshed; M%we convert Equ(2)into the opti-
mization problemwggniEcont(X) +w E (X) ! min, where
X X 3 ) X 5
Econf = f2F jzlcconf;j(f) , E = f2F( D

M

Fig. 7. An isometric mapping be-
tween meshes and MP Since
MPOis contained in a planeM is

a discrete developable.

Biso=
2.3.3 Regularizing meshes and mappihigs.discrete-isometric
relation between meshes does not prevent zigzagging of mesh poly-
lines, and regularization is necessary to achieve a fair solution. A
natural fairness functional is found by penalizing irregular spacing
of vertices on mesh polylines. In our optimization, we add the term
Wrair: M Esair: v t0 the other energies already in use, with

X

The energyE penalizes deviation of conformal factors from 1. It is
used for regularization and (if is big enough) to make a conformal
map as isometric as possible.

In handle-based editing there are verticeswhich have to be
close to xed positionsa; and pairs of vertices; andv; which are
forced to lie on top of each other (this is necessary for gluing). Similar
conditions can be imposed on the mektP. These requirements are

Efair;M = ViVjVg successiveVj 2\/1 + Vg kz:
vertices inM
Similarly we consideWsyjr: MoEsair:mo. These regularizers can be
employed whenever the mesh they refer to is not xed anyway
during optimization. A prototypical algorithm where hard and soft
constraints are combined is shown below. The weight of the reg-
ularizing fairness term is small to begin with, but we are making

handled by )e(nergles of the forr;(w provision to lower it further in case the fairness term is too domi-
Epos= .. kvi & 2+ kv Vj K+ (o) nant and prevents achieving isometry. For di erent examples in this
2 (5)29 paper the energy used for optimization is di erent, and it might not
where(: : ©) stands for analogous contributions from the mestf. A beMO%that is the variable butM or even bothM andM?. In those

suitable multiplewpodposis to be combined with the other energies, — cases Algorithm 1 has to undergo obvious modi cations.
as required by the task at hand.

A special case of mappings discussed here is whéPds the
Gauss image dfl. We express condition&3) and (5)in the form
WnormEnorm + WsymEsym ! min, with

X X 3 X

Algorithm 1: Compute a mest %isometric toM

Data: MeshM, initial value for MY, side conditions encoded iBpos
Fix energy threshold&min, Eisqmin;

Enorm = Cor j_OCnormj (f )2; Esym= CoF Csym(f )2: Initialitze weights by lettingwiso = 1,Wpos= 1,Wiajr: m0 = 0:1;
= repea
2.3.2 So constraints and approximatidte magnitude of weights repeat

SubjectMto optimization by minimizing
E = WisoEiso + Wrair; M 0Efair: M0 + Wpod=pos
until E  Emin or number of iterations exceeds maximum
WiairM0  Wigjr; M 0=10;
until Eiso  Eisgmin;
return M°

employed for the di erent energies can be used to inform the opti-
mization algorithm of the importance of individual constraints. We
speak of soft constraints if weights are small. Typical examples are
constraints where we already know they cannot be ful lled, like the
requirement ¢ = 1 in conformal mappings which was mentioned
above. Another instance of soft constraints are the ones used to
express proximity of a mesM to a reference shape.

Such a condition is implemented by computing the closest point
projectionv, 2  of a representative samplf; g of vertices.
We subsequently represent the tangent plane ofn that point
by a linear equation (x) = 0. Then proximity is expressed by
Wprox 1Eprox 1 +;/<Vpro>< 2Eprox2 ! min, with

Regularizing mappings between meskéswant to be able to
deal with meshes, MCthat are not particularly fair in terms of
these energies, even if the natural correspondence betvwdend
M9 approximates a smooth mapping between surfaces. If, Sbig

X xed during optimization, then regularizingv®will have a detri-

- oy k2 — PPRYV2 mental e ect on the quality of the mapping. In that case it is better
Fprox1 20 Wi VK Bprox2 20 107 to regularize themappinginstead of the mesh.
The footpointsv; and tangent planes are recomputed in each round In order to achieve this, we recall the following properties of
of our iterative optimization procedure. Using onBgprox 1 amounts a smooth mapping between surfaces, © For corresponding
to a version of the well known ICP algorithm and is suitable only if  curvesc(t) andc9(t) = (c(t)) corresponding tangent vectocc=dt,
the distance from is still big. Close to , the shape of is much dcP=dt at a certain time instant are related by the linearization (the

better represented by its tangent plane than by a single point, and di erential) d , which is a linear mapping between corresponding
Wprox1 ! 0 greatly speeds up convergence. This matter is discussed tangent planes of , 0 Forisometrianappings, even more is true:
in detail by [Wang et al. 2006]. d is an isometric linear mapping which maps also the tangential

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.
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Fig. 8. Degrees of freedom in computing developghlean input surface is subdivided into 46 individual patches and yields a wireframe future computations

are based on. (b) Each 4-sided boundary is filled by a developable. One can see that in the negatively curved regions, this is not possible with a regular
surface. (c) The same, but with boundaries movable and smoothness across boundaries as a so constraint. The resulting surface is not entirely piecewise
developable, since smoothness interferes with the developability constraint. (d) The same, with no smoothness across boundaries. Here the individual patches

are developable. The inset images show the Gaussian curvature (green is zero; bounding box size equals 11).

components ofi2c=dt?, d?c%dt? onto each other [do Carmo 1976,
p. 239]. This property is equivalent to requiring

@)

for all tangent vectors~. For a discrete analogue of this property,
surfaces , Oare represented by meshas, MO Vectorse, d ()
are replaced by corresponding edge vectays vj andv,? vjo.
Second derivatives of curves are replaced by 2nd di erences of
mesh poI);(/Iines. This yields the energy
Emap = (hvi  2j+vyivp vji h vio 2\/J-O+ VI?;VIO vjq )2:
ViVjVi successive
verticesVvjv| 2 E
Emap! min expresses the discrete version @f). If, say,M is xed
andMPis variable, a contributiorwmapEmap to the total energy
will regularize the mapping and in turn, regularize the shapehf
(without regularizing the polylines contained iv9).

he; %éci =h (v); %;cq

Example Figure 4 illustrates a conformal mapping of a given

mesh to a planar meshi® Here variables are the;y coordinates

of vertices ofM%as well as conformal factors; for each face of
the mesh, using the terminology of Eq(2). Thez coordinates of
vertices ofMYare set to zero. The computation bPis performed by
minimizing WeontEconf + W E - + Weajr: MoEgair: mo. Here the energy

E makes this conformal mapping as isometric as possible (in the
*2 sense).

3 DISCRETE DEVELOPABLE SURFACES

We de ne a discrete developable surface as a quad nivsihich
is isometric, in the sense of Eq(L), to the quadrangulation of a
planar domainM® We do not impose further constraints on either
M or M@

This de nition is illustrated by Figure 7. It leads to meshes which
exhibit the known characteristics of smooth developables. In this

Fig.9. The Gaussimage(M) .
of a meshM is curve-like if N
and only if M itself is piece- 4
wise developable. M M)

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.

section we discuss the computation of discrete developables, the
extraction of basic geometric properties such as rulings, and how
our de nition relates to other approaches to discrete developables.

3.1 Computing developables

By de nition, a meshM is developable, if there is an isometric mesh
MOwhich is contained in a plane. In di erent computational tasks
eitherM or MOmay be xed, or both may be variable. Each task is
solved by minimizing a suitable linear combination of the energies
de ned in Sec. 2.3. The weights of individual contributions to the
total energy are summarized in the table in Fig. 22.

In Fig. 7, the unfoldingv®is given, andM is found by a handle-
based isometric bending. The shapewfs the result of minimizing
an energy of the fornwisdEiso + Wpo&Epos+ Wair: M Efair:m » USING a
suitably modi ed Algorithm 1.

An analogous setup is used to compute the isometric deforma-
tion MQof a partly developable surfadd in Fig. 10. HereM rst
undergoes a handle-based deformation, which yields a reference
shape . We now nd a discrete surfac#%isometric toM which
approximates , by minimizing an energy of the formviscEiso +
Wprox 1Eprox 1 + Wprox 2Eprox 2 + Wrair; MEfair; o ! - min.

An unfolding M%of a developable surfadd (see Fig. 12) is com-
puted in an analogous way, using the energyso Eiso + Wigjr: M0
E¢air: mo. Examples where both meshbs MOundergo simultaneous
optimization are shown throughout the paper, e.g. in Fig. 8.

Degrees of freedom and solvability of the optimization problem.
Figure 8 illustrates the fact that imposing developability signi cantly
reduces the number of degrees of freedom:

In Fig. 8b, curvilinear quads are to be lled by developables. This
is possible e.qg. if such a quad lies on the boundary of its convex hull,
but not always. Singularities develop, and our approach to discrete
isometries is no longer guaranteed to accurately model isometries of
smooth surfaces. Similarly we must expect the computation of Gauss
curvature to break down in singularities. In any case such unsolvable
cases are identi ed by pockets of nonzero Gauss curvature.

In Fig. 8c, a wireframe, which is itself variable, is lled by
developable patches, with smoothness across boundaries enforced.



isometric
deform.

Fig. 10. Handle-based isometric editing. We show a deformed staté a tin-can
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shaped surfac®! (the deformation model is that oRhinoceros@nd is not

relevant for our result). We use the isometric constraint to simulate a surfa8close to and isometric toM . SinceM is piecewise developable, soNs>.

This requirement is not compatible with developability, which can
be clearly seen by means of nonzero values of Gaussian curvature.
Figure 8d illustrates a solvable problem: a wireframe, itself
subject to optimization, is to be lled by a piecewise-developable

surface.

3.2 Verifying developability

In order to verify developability of the surfaces we have computet
we rstly observe if they are isometric to the planar domains usec
in their computation. In addition we evaluate the Gauss curvatur
(which should be zero) and check if the surface contains rulings.

Estimating normals and curvaturéEhe Gauss image of a dis-
crete surfaceM consists of its normal vectors, and can be computed
by several methods. We could e.g. simply take the normal vectors
ng of “black’ parallelograms. An alternative is to compute vertex
normal vectora; according to Sec. 2.2, by minimizing the energy
WnormEnorm + WsymEsym + WiairErair | min. In any case, developa-
bility of M is characterized by the fact that the Gauss image is
one-dimensional, see Fig. 9.

For computing curvatures, many more or less equivalent meth-
ods are available, for which we refer back to Y2.2.1 and Fig. 6. We
visualize Gauss curvature information in Figures 8 and 13.

Visualizing Rulingsln each edge midpoint, where two “black’
parallelograms meet, we can compute a ruling by intersecting the
planes of the two parallelograms. This procedure discretizes the
computation of rulings of smooth developables via intersection of
two in nitesimally close tangent planes.

Another approach to rulings is based on an alternative criterion
for developability. Gauss curvature, by its very de nition as determi-
nant of the shape operata; vanishes if and only i§ has a zero eigen-
value. We consider the conjugacy relatidw; s(r)i = ts(v);+i = 0

Fig. 11. Developables possess right
circular osculating coneshich in the
generic case tangentially pass from
one side of the developable to the
other (analogous to curves' osculat-
ing circles). Existence follows from the
fact that along a ruling, the principal
radius of curvature is a linear function.
We verify this by experiment.

Fig. 12. A surfac®l
retains developability
when mapped to a sur-
face My via an aine
transformation. Here
we illustrate the fact
that no such simple
correspondence exists
between the respective
unfoldingsMJ, M9.

0

My

isometry

isometry

P 7
ane mapping
15
§ 1:

M3z
5
1

between tangent vectons, + and compute a vectar conjugate to a
given vectorr viat = s(#)” . Then we have the following equiva-
lence: The surface is developable in the point under consideration
0 sis rank-de cient () r = s(+)? always lies in the zero
eigenspace o, regardless of.

That zero eigenspace of the shape operator, indicating the princi-
pal direction corresponding to zero curvature, is the ruling. We use
this fact to visualize rulings in Figure 13, where in the bottom row
surfaces are near-developable. Vecterscely align along rulings.

Visualizing Osculating ConeSmooth developables posses oscu-
lating cones of revolution, which are in second order contact with
the surface along an entire ruling. Their existence corresponds to
the fact that along a ruling, the principal radius of curvature (the
inverse of the nonzero principal curvature) is a linear function of
arc length. We were able to experimentally verify this, see Fig. 11.

3.3 Relation to other definitions of discrete developables

The relation of our de nition of developables to therthogonal geo-
desic netproposed by Rabinovich et al. [2018a] is as follows. Our
de nition considers developables as a discrete version of a paramet-
ric surface which happens to be developable, but without any restric-
tion on the nature of the parametrization. A discrete orthogonal-
geodesic net, on the other hand, discretizes a special parametrization

both parameter lines are geodesics and orthogonal to each other.
Such a parametrization does not have to be of constant speed (i.e.,
the faces do not need to approximate squares) but we can achieve
this property by re-parametrizing each parameter separately.

If within our framework, we obtain a mesh whose derived checker-
board pattern has “black’ faces which are squares of the same size,
then all face diagonals in the mesh are orthogonal and have the same
length. A quad mesh consisting of diagonals of the original mesh

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.
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control meshM subdivided mestg* (M) limit surfaceM * ruling directions onM 1 bicubic interpolant ofM
input
-0.04 0 0.04
\;\ / (Y
result of ’ 4/
optimization L

Fig. 13.Developable spline surfacAsmeshM aer k rounds of subdivision becomes a finer mesk (M). Herek = 3, and Sk (M) is already a good
approximation of the limit surfaceM ! . By using an appropriate subdivision scheme we achieve this is a bi-cubic B-spline surface. By optimizirg such

that Sk (M) is discrete-developable we maké! a near-developable spline surface. We here show the situation before and a er optimization. The color
coding illustrates Gauss curvature (white is zero; bounding box size equals 10). We also show a Inteltgolantdefined byM, which exhibits particularly

bad curvature behaviour, despitél already being discrete-developable. The column labelled ruling directions shows tangents conjugate to parameters lines

which, in case of developability, arrange themselves along rulings.

therefore discretizes an orthogonal Chebyshev net, which is known which approximates the nal B-spline surfadd?® with su cient
to be geodesic and to occur precisely in developable surfaces. In this numerical accuracy, but is still small enough to be subjected to
way a special checkerboard pattern discretizes the same smooth optimization, in order to achieve developability.

object as a discrete orthogonal-geodesic net.

However from the perspective of applications presented in this  aAlgorithm 2: Modeling with a developable spline surfasé!

paper, it does not make sense to restrict ourselves to this special
case, since the freedom of choosing the parametrization is a great
advantage in practical modeling tasks. For example, we can align
boundaries and features with edges (or with diagonals). Another in-
stance where the greater freedom of our de nition becomes evident
is when we transform a developable by an a ne transformation (see
Fig. 12) or by o setting. Such a transformation would not be possible
with orthogonal-geodesic nets without a global remeshing. Also
the watertight CAD models presented the next section illustrate the
exibility of our de nition.

4 DEVELOPABLE SPLINE SURFACES AND WATERTIGHT

CAD MODELS

It is not straightforward to express developable surfaces in the
framework of B-splines implemented in most CAD systems. It can
be done by segmenting developables into planar and ruled patches.
However this decomposition might be much more complex than
the rst visual appearance of the developable suggests. From the
viewpoint of modeling, it would be highly preferable not having to
worry about it, and being able to use spline surfaces whose control
points are not aligned with rulings. This problem has been described
as unsolved recently by [Rabinovich et.&018a]. Our solution,
which represents a passage from discrete di erential geometry to
computer-aided geometric design, is a main contribution of the
present paper. We show how to perform modeling with watertight
spline surfaces which are developable to an extent su cient for
applications.

The idea is is illustrated by Fig. 13 and Alg. 2. We take a control
meshM and derive a B-spline surfadd® from it. An alternative
way to produce this spline surface is to construct it as limit surface
of a certain stationary subdivision rul8. The idea is now to use a
small numbek of rounds of subdivision to create a ne mesSf (M)

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.

Data: Initial control meshM, subdivision levek (e.gk = 2)
Macro Sk (meshv)
\ k rounds of subdivision applied to each rectangular patchvbf
Initialize 2D meshM © combinatorially equivalent t&sk (M);
Set up energyEiso expressing isometry o8k (M) and M
Set up energie&;;;. sk ) aNdEg .y o;
while user is imposing constraints on design surdace
Express user's constraints as enerﬁyos(sk M));
Use a version of Alg. 1 on variablés; M°to minimize

WisoEiso + WposEpos+ Wiair: sk M) Efair: sk(M) + Weairm oEfair; MO
end

return the bicubic spline surfasé! whose control meshi;

The subdivision scheme we employ is an extension of the well
known Catmull-Clark scheme which in its combinatorially regular
case converges to bicubic spline surfaces [Peters and Reif 2008]. We
decompose the given mesh into quadrilateral patches bounded by
mesh polylines (the example of Fig. 13 has only one such patch). For
each patch we have 4 boundary polylines. The vertitgg)=1.::::m
of such a boundary polyline are the control points of a cubic B-spline
curve (with uniform interior knots) interpolating the endpointp;
andpw . This curve is alternatively produced as the limit curve of a
stationary subdivision rule whose stencil is derived from Boehm's
knot insertion formula for B-splines [Prautzsch et.&002]: For

16
8

-
wWE,00

2
8
12

, (8)

2

new_
P 16

NooE A

ijpj; where jj
j=1
cf. [Shen et al2014, Fig. 6]. In the interior of the polyline, this is the
usual cubic Lane-Riesenfeld subdivision rule. By applying it rst to
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()
MO

Fig. 14. Le : A near-developable spline surface, its parameter lines and
rulings. Right: Coarse control mest (only edges shown), its subdivision
S3(M), and the unfoldingM®of S3(M).

N;S?(N) =: M

M; Mopt Mopt; SZ(Mopt); Mépt

Fig. 15. A watertight CAD modeA meshM is optimized such that a subdi-
vided meshs2(M) becomes a discrete developable. We here show the control
meshM and its optimized versiorMgp; as well as the near-developable
B-spline surfacev (}pt. Actually,M has been created by subdivision in the
first place from a very coarse medK (top le ) which however does not
have su iciently many degrees of freedom to be used directly.

the rows and subsequently to the columns of kh N rectangular
control point arrangement, we creat@M 3) (2N 3) control
points in the next level of recursion. Apart from the 4 boundary
rows, this amounts to Catmull-Clark subdivision.

The collection of bicubic surface patches produced in this way is
watertight, because neighbouring patches share a boundary which is
interpolated on both sides. The resulting composite surface however
is smooth across patch boundaries only if this property is enforced
by optimization.

The geometric modeling procedure is summarized by Algorithm 2.
The user modi es the control mesM until satis ed with the B-
spline surfacéM derived from it, while in the background a re ned
meshS¢ (M), which closely approximated!® , is optimized to be
discrete-developable. For that purpose an auxiliary at medf
which is isometric toS¢ (M), has to be computed, cf. Fig. 14.

Figures 13, 15 show examples. Figure 13 in particular illustrates
the fact that the control mesiV does not have to be fair fo< (M)
to be a fair discrete-developable surface.

Remark.The surfaces produced by this method are developable
only up to a certain amount of numerical inaccuracy. If exact de-
velopability is required, the surface computed in this way could be
decomposed into its at parts and ruled parts, and subsequently

be approximated by exact developables using e.g. the methods of

[Tang et al. 2016].

Remark:Such a subdivision method would not work for the
discrete-orthogonal nets of [Rabinovich et 2018a], since there are
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no spline surfaces with orthogonal-geodesic parameter lines except
for cylinders (see the appendix).

5 RESULTS

Cutting and gluing.When computing a developabld from its
unfolding M® we might force pairs of vertices to lie on top of each
other. Adding such constraints to our optimization procedure simu-
lates gluing, if the selected vertex pairs de ne an arclength-preserv-
ing correspondence between boundariesMi?. Since our method
does not require that edges follow special curves on developables,
we can align edges with boundaries and features. It might even
be desirable to represent features not by the edges of a mesh, but
by diagonalof faces, since the isometry conditiqft) operates on
diagonals rather than on edges. Examples are shown by Figures 18
and 16.

Cone pointsBy appropriately gluing planar domains one achieves
surfaces which are developable except in individual singularities,
where the intrinsic metric behaves like that of a non- at cone. Fig.
17 exhibits a cone point with angle sum less than 360 degrees, and
another cone point with negative Gaussian curvature concentrated
in that point, i.e., with an angle sum greater than 360 degrees. We
include this example to show the exibility of our approach.

D-forms and non-convex generalizatiofise shapes obtained by
gluing together two planar domains with the same perimeter have
been of interest since thephericorwas proposed [Phillips 1999]
and the nameD-formfor such shapes was coined by [Wills 2006].
The domains in question can blegons or can be smooth; classically
convexity is assumed. It is well known that a unique convex surface
isometric to the glued domains exists, if that union is intrinsically
convex. This means that in corresponding points, the sum of cur-
vatures is nonnegative (if we use the convention that curvatures
of convex curves are always nonnegative). See [Bobenko and Iz-
mestiev 2008] for an algorithmic solution in the discrete case. Here
we are interested in the non-convex case and the shape of D-forms
obtained by gluing domains which violate the curvature condition.
Figure 19 gives some examples.

Fig. 16. The features of
this cut and glue exam-
ple are not aligned with

edges of the mesh, but
with diagonals. In this

way lengths are preserved
more accurately.

Fig. 17. Geometric singularities (cone points) can be achieved by appropriate
gluing of planar domains.
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Fig. 18.Cutting and GluingThis example of computing a developable from its unfolding involves the gluing shut of holes. From le , we show the unfolding, the
developable, its mesh representation, and a photo of a paper model. Here all boundaries, including holes, are aligned with edges of the mesh. The combinatorial
singularities in the meshes which inevitably occur are not noticeable in the final rendering.

Fig. 19.D-Forms and their generalizatiorihe two convex planar domains in (a) with the same perimeter can be glued together along their respective
boundaries to form a unique convex surface. If the domains are not convex, a unique convex surface only exists if in corresponding boundary points, curvatures

, Yobey the condition + © 0. This s not the case in (b) and (c), where one can observe the emerging singularities on non-convex piecewise-developable
surfaces. Subfigure (d) shows a further kind of gluing domains along boundary components. In all cases we show, from top to bo om, the unfolding, the
(generalized) D-form, and a photo of a paper model.

Approximation with developabléSor any given non-developable We simultaneously optimize alM; and MjO such that the
surface, we may ask for a developable or piecewise-developable correspondence betweevj; and MObecomes isometric and
surface approximating it. This is a di cult problem and one can gluing is respectedvlj must be in proximity with

approach it from various angles, see e.g. [Mitani and Suzuki 2004].

Here we consider only a sub-problem: We assume that a reference Examples are shown by Fig. 21. The same procedure can be ap-
shape has been Segmented into patchesl and we wish to approxi- plled to increase the deVelOpability of a surface, if we set aside the
mate the individual patches by developables. The simplest case is duestion of segmentation. We should mention that the problem of
approximating one reference shape by a single developable. From Making a surface developable has also been studied by [Stein et al
there, it is only a small step to simultaneously approximate a seg- 2018], where a mesh is driven towards piecewise-developability by
mented reference shape by a union of patches glued together along clustering Gauss curvature along feature lines. This method is more
their boundaries. Creating the segmentation is beyond the scope of igid than our approach, since edges are aligned with rulings and
this paper. To approximate a reference shapave do the following: feature lines.

_ o ) DeformationsFigure 26 shows various stages in a deformation
We represent by a meshM. M is subdivided into patches  sequence, computed analogous to Fig 10. It is important to appreciate

M; which correspond to the patches on the fact that developables occur naturally as the shapes of thin sheets
We conformally and near-isometrically map each patdh of inextensible material. For this reason, developables and their
to a planar meSfMjO, storing the patch connectivity ingluing  deformations can be used to compute believable geometric shapes
data for the unfoldingsl\/ljo. without any simulation of the actual physics involved, see e.g. Fig. 21.

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.
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(d)

Fig. 20.Paneling freeform designs in architectiifere a detail of the NHHQ skyscraper project by Zaha Hadid Architects (a) is being approximated by a

piecewise-developable (b). For the surface in subfigure (c), more smoothness across patch boundaries has been required. That piecewise-developable surface is

realized as a piecewise single-curved architectural freeform skin in (d).

This observation extends to materials which do stretch, like metals,
but which nevertheless assume developable shapes when they revert
to a state of minimal tension. Figure 10 shows a deformed can. It
apparently does not resume its original cylindrical shape because
in several places the limits of elasticity have been exceeded and
deformation remains permanent. No such property was present in
the computation.

Paneling architectural freeform shap&speci ¢ and important
special case of the approximation problem is the paneling of archi-
tectural freeform shapes. Eigensatz et al. [2010] considered surface
segmentation into di erent kinds of panels, such that by using
simple panels, and panels manufacturable from the same mold, the

overall costis reduced. Since developable panels are much less costly

than double-curved ones, a combination of their segmentation with
our approximation technique deserves investigation. A similar ap-
proach is pursued by Gavriil et al. [2018] who perform segmentation
by an analysis of the Gauss image. Once segmentation is performed

either automatically or by the user we can use our methods to
approximate the given design shape by a piecewise-developable
surface. Figure 20 shows a result.

6 DISCUSSION

Veri cation of resultsWe regard reconstructing the well known
geometric properties of developables as the main tools in verifying
the validity of our results. These include the visualization of rulings

Fig. V] jF] #varlwiso Wprox1 Wajr| L-Err. A-Err/#it T
Wpos  Wprox2 |[%]  [%] [s]
1 15k 15k 81k 1 1 .001.001 /129 .038 |20 53.2
4 1.1k 1.1k 3K 0142 7.8 |20 04
6 29k 29k 87K .0ln/a nla 5 10.5
7 19k 18k 6k1 1 .14.093 .18 |10 1.2
8b 50k 47k 250k1 1 .1/.38 .54 |20 124.p
8c 48k 47k 250k 1 A11.8 1.1 |10 41238
8d 50k 47k 250k1 1 .14.035 .26 |10 65.8
10 4.1k 4.1k 12k1 1 .001.001 J138 .48 |10 2
12 1.7k 1.6k 5k1 A0.11 .27 |10 1.
13 36 25 4k1 .01.12 21 |10 0.9
15 150 64 11kl 1 .01.026 .038|10 2.9
16 14k 14k 43k1 1 .1{.065 .087|10 13.4
18 8.4k 8.2k 25k1 1 .4.081 .17 |10 7.7
19a 2.5k 2.4k 7kl 1 .1/.0042 .005710 2.5
19b 11k 11k 33k1 1 11,15 .23 |10 9.
19c 2.5k 24k 7kl 1 .1{.054 .031|20 5.2
19d 2.9k 2.8k 9k1 1 .1/.023 .007220 7.4
20b 28k 26k 160k1 1 .01 .01 .L041 .088|10 42.9
20cd 28k 26k 160k1 1 .01 .01 .L058 .13 |10 432
25 15k 1.4k 4k1 1 .11.012 02120 4.2
26 20k 18k 98k 1 1 .001.001 {121 .055|20 67.8

For Figs. 13, 15, botiV j and jFj refer to the control mesiM.
Data for one sub gure. All sub gures have similar data
InFig. 4Weont = L, W = 0:1 In Fig. 6Wnorm = Wsym = 1.

Fig. 22. Overview of the size of optimization problems solved for the exam-

(see Figures 13, 14, left) and even osculating cones (see Fig. 11). WSIes in the paper. We also give the weights of energies used for optimization

also check the values of Gauss curvature (Figures 8 and 13) and
we give statistics of length distortion in the table of Fig. 22. The

@ (b) ©

Fig. 21. Two developables and a near-devel-
opable surface approximating the same refer-
ence shape (d). The di erent e ects have been
achieved by using di erent weights in optimiza-
tion, downweighting the approximation property
(a), fairness (b), and developability (c).

()

and the computation time in seconds. The isometric property of mappings
is verified by the relative_2 error of edgelengths, defined dd.© Lk=kLKk,
whereL; LOrefer to the vector of edgelengths of meshis M% andk  k

is the Euclidean norm. We also show the relative error in the area of faces,
which for nonplanar quads is computed via a subdivision into triangles.

obtained results are useful for practical applications, e.g. paneling

freeform architectural designs (Fig. 20) and engineering applica-
tions (Fig. 15). For several developables in this paper, especially cut
and glue examples and D-forms, we veri ed the obtained shapes

experimentally by building paper models, see Figures 18, 19, 25.

Limitations. The rigid nature of developables is still noticeable in
all applications, which is a limitation not of the method, but of the
subject matter. We found that our method can produce developable
surfaces and also (if they exist) isometric mappings to a satisfac-
tory extent. We also computeonformaland as-rigid-as-possible
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@ (b) (©) (d) (e)

Fig. 23.Properties of ruling-based methods for computing develogdbtesve highlight how a ruling-based method for computing developables behaves
when forced to perform a task it was not designed to do, namely filling the boundary of the quadrilateral surface patch (a) with a developable surface. The
solution (b), computed with our method, has rulings intersecting the boundary at nonzero angles (c). Stein et al. [2018] model discrete developables whose

rulings are aligned with the edges of the underlying mesh. Their method cannot recreate the solution. It instead produces surfaces with creases whose location

is mesh-dependent (d,e).

Fig. 24.The behaviour of orthogonal-geodesic Hetg developablel!; N (with unfold-
ingsM®resp.N 9 interpolate the same boundary cun@ M is an orthogonal-geodesic
net according to [Rabinovich et ak018a], simulating a rectangular piece of paper
pressed ont@. N is computed with our method withN 9still variable, simulating paper

of any shape interpolating. The relative length errors (cf. Fig. 22) are .015 and .0003 for

M resp.N

MO N©

mappings, e.g. to initialize an isometric mapping. We found that
only a moderate e ort was required to reproduce the kind of results
achieved by [Liu et al2009] in such cases where near-isometric
mappings exist. While our method can treat conformal mappings of
more challenging shapes like the well known Max Planck's head
mesh, imposing the condition of near-isometry will cause overfold-
ings, if we do not add additional energies to prevent them. Since we
do not consider conformal mapping a contribution of this paper, we
did not pursue this subject further.

Implementation DetailsThe target functionals according to Y2.3
are optimized by a Levenberg-Marquardt method according to [Mad-
sen et al2004, Y3.2]. The damping parameter was set t&18s a
stopping criterion we used a small value of the energy. The initial
values for optimization are often obvious like in deformation tasks
and in approximation problems. As a general rule an initial solution
can be a surface which ts the problem without the side-condition
of being isometric to the reference mesh. Our implementation in
C++ uses the data structures GfpenMesfBotsch et al 2002] and
the Taucs library for sparse linear solvers [Toledo 2003].

Detailed statistics are provided by the table in Fig. 22. These com-
putation times refer to an Intel Xeon E5-2687W 3.0GHz processor
without parallel processing or other acceleration techniques. Fig. 22
also shows the weights of the individual energies which make up
the target functional. We conducted numerical experiments to check
the sensitivity of our method w.r.t. the choice of weights. We gener-
ally observed robustness w.r.t. the choicengéo, Wpos E.g. in Fig.

Fig. 25.Curved Fold8y Cu ing holes of zero width and gluing we create
developables with curved folds. The folded shape is enforced by using the
energyEposto move points to prescribed positions.
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, consistent with the fact that orthogonal-geodesic nets have fewer degrees
of freedom than our developable surfaces.

7 no perceptible change in the results is observed if those weights
range in the interval [01; 10]. Our method is more sensitive w.r.t.
the choice ofwgyjr, which is a fact accounted for by Algorithm 1.

Comparison with Previous Workigure 24 illustrates how a dis-
crete orthogonal-geodesic ndll according to [Rabinovich et al
2018a] interpolates a given boundary, and how such an interpola-
tion problem is solved by a quad meshwhich is developable in
our sense. The edges of the latter do not have to follow a network
of geodesics, but for the former, the rectangular combinatorics of
M already xes its unfoldingM®to be rectangular. As expectel,
enjoys better developability, when measured via the relative length
error. In fact, the mestM does not look like paper but like some
fabric which allows a small amount of stretching. We can recreate
such a result with our method by constraining the development
NOto be rectangular in that caseN would look just likeM, with
the same length error. Developables according to [Stein e2618]
enjoy even fewer degrees of freedom, as detailed in Fig. 23.

Future Researcfthere are some obvious directions of future re-
search. One is the segmentation problem when approximating ar-
bitrary surfaces with piecewise-developable surface. The rst step
would be to investigate how previous work on segmentation can be
combined with our approximation procedures. Other directions of
future research include incorporating more properties of materials,
thereby extending the class of mappings under consideration. Fur-
ther, it would be interesting to develop a theory of curvatures based
on the Gauss map introduced in this paper, in particular because
there is already a relation to [Bobenko et al. 2010].
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Fig. 26.Isometric deformatio®@nce a piecewise-developable surface is found, handle-based editing can be used to simulate isometric bending.
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