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Fig. 1. Design with developables in freeform architecture. We propose a simple approach to isometric mappings between quad meshes, which immediately leads

to a way to model developable surfaces. For this example we started from a segmentation into panels of part of a freeform concrete shell by Zaha Hadid

Architects, built in 2014 in Baku. We approximated it by a quad mesh which is piecewise discrete-developable in the sense of our framework. Afterwards this

mesh undergoes an isometric deformation which respects the panelization. Our approach to discrete-developable surfaces is very flexible in the sense that the

edges of meshes do not have to be aligned with rulings or otherwise special curves on developables, and can be aligned with boundaries and features instead.

We discretize isometric mappings between surfaces as correspondences

between checkerboard patterns derived from quad meshes. This method

captures the degrees of freedom inherent in smooth isometries and enables

a natural definition of discrete developable surfaces. This definition, which

is remarkably simple, leads to a class of discrete developables which is much

more flexible in applications than previous concepts of discrete developables.

In this paper, we employ optimization to efficiently compute isometric map-

pings, conformal mappings and isometric bending of surfaces. We perform

geometric modeling of developables, including cutting, gluing and folding.

The discrete mappings presented here have applications in both theory

and practice: We propose a theory of curvatures derived from a discrete

Gauss map as well as a construction of watertight CAD models consisting

of developable spline surfaces.
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1 INTRODUCTION

The geometric modeling of developable surfaces is a topic attracting

attention since many years. One reason for that is the great prac-

tical importance of developables, which represent shapes made by

bending flat pieces of inextensible sheet material into space. Ma-

terials which fall into this category include paper and sufficiently

thin plates [Audoly and Pomeau 2009]. New algorithms and compu-

tational representations of developables continue to emerge. This

steady progress is a sign that the problem of modeling developables

still has no complete and satisfactory solution. The mathematical

theory of developables is far from simple, which probably accounts

for a part of the computational difficulties which occur. The ap-

proach to developables presented in this paper is via a systematic

theory of isometric mappings. It is based on correspondences be-

tween quad meshes, with no specific restrictions on the meshes

themselves.

1.1 Overview and Contributions

We propose to manage discrete surfaces and their mappings not

directly, via properties of the vertices, edges and faces, but via prop-

erties of a checkerboard pattern inscribed in the original mesh.

That pattern is created by inserting midpoints of edges ś the edge

midpoints belonging to a face will always form a parallelogram,

regardless of the shape of the original face.
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Fig. 2. A checkerboard pattern. The

black parallelograms are inscribed in

the original faces. Physical models such

as this can be moved around on devel-

opable reference surfaces, which is evi-

dence for our claim that checkerboard

patterns are a good discretization.

Two combinatorially equivalent quad meshes, and their derived

checkerboard patterns are now used to discretize the concept of

mapping between surfaces (Sec. 2). First-order properties of map-

pings are defined in terms of the checkerboard pattern, e.g. for an

isometric mapping we require that corresponding parallelograms

are congruent.

The setup we use for mappings between surfaces can also be

employed to define a discrete version of the Gauss mapping, from

which curvatures are derived (Sec. 2.2).

The constraints we use to express the isometric property leave

just the right number of degrees of freedom that we expect from the

smooth case. This is why we are able to use our discrete-isometric

mappings directly for geometric modeling. In particular we are able

to define discrete developables as surfaces isometric to a quadran-

gulation of a planar domain (Sec. 3).

We demonstrate the capabilities of our discrete-developable sur-

faces by means of geometric modeling tasks, the most important

one being watertight developable CAD models. We approach this

hitherto unsolved problem by combining our discrete-isometric

mappings with subdivision (Sec. 4) .

Section 5 contains more results, including approximating a given

surface with a developable one, and how to increase the developabil-

ity of a given surface. We also show how to compute developables

defined by gluing boundaries, and by folding along curves.

1.2 Previous Work

There is a large amount of literature on developable surfaces, and

even more about the topic of mappings between surfaces, which

includes mesh parametrization. Related work in discrete and numer-

ical differential geometry is discussed later, in ğ2.2.2.

Previous work on developable surfaces. Computational treatments

of developables can be divided into two groups. One kind of meth-

ods is based on the fact that developables are, essentially, one-

dimensional objects. Each developable consists of pieces of ruled

surfaces with enjoy the property that the tangent plane along a

ruling is constant. In geometric modeling, a big advantage can be

gained by reducing the dimensionality of the problem from two to

one. Rose et al. [2007] use this principle in solving the problem of

finding all developables defined by a given boundary. The dual ap-

proach by [Bodduluri and Ravani 1993] and follow-up publications

like [Pottmann and Wallner 1999] treats developables as curves in

dual space. Ruled surfaces as degree (1,n) B-spline surfaces, with

developability imposed as an extra nonlinear side condition have

been proposed early, and form the basis of the work by [Jiang et al.

2019; Tang et al. 2016] (for a history of this approach we refer to the

extensive bibliographies contained in these papers). In the discrete

realm, a ruled surface can be represented in a sequence of quadri-

laterals, with developability expressed by planarity of quads. This

principle proposed by [Sauer 1970] is the basis of [Liu et al. 2006]

and [Solomon et al. 2012].

A disadvantage of these methods is that the decomposition of

a developable into its ruled pieces can be arbitrarily complicated

combinatorially [do Carmo 1976, p. 195]. The rulings are no stable

function of the location on a developable surface: This dependence

may be non-smooth [Hartman and Nirenberg 1959, p. 916f], and the

ruling pattern can change in unpredictable ways during deformation

ś e.g. when passing through a flat state, the ruling patterns before and

after the flat position are unrelated. With ruling based-methods it is

more difficult to model situations where the ruling pattern changes

much, and such methods are naturally biased towards solutions

where big changes do not occur.

Alternative computational models are discrete two-dimensional

surfaces characterizing developability in a local manner. This can be

done e.g. by requiring a triangle mesh to be intrinsically flat, having

angle sum 2π in each vertex. It is however not straightforward to

model, in addition to developability, also the bending behaviour

of developables, since the developability constraints can easily be

stronger than we expect from the smooth situation. Recent examples

of discrete developables are the orthogonal-geodesic nets proposed

by Rabinovich et al. [2018a; 2018b; 2019], and the developable tri-

angle meshes of Stein et al. [2018] where a local ‘hinge’ condition

ensures existence of rulings.

Approximationwith developables has been done on various levels,

starting with [Mitani and Suzuki 2004]. Stein et al. [2018] use their

definition of discrete developability to modify surfaces such that

the Gauss curvature becomes concentrated on curves, achieving a

piecewise-developable approximation. A different approach exploits

the essentially one-dimensional nature of developables. While the

Gauss image (normal vector image) of an arbitrary surface covers

an area of the unit sphere, the Gauss image of a developable or

piecewise-developable surface has zero area [do Carmo 1976, p.

167] and thus, assuming smoothness, is a curve on the unit sphere.

Approximating an arbitrary surface by a few developable patches

is therefore at least as difficult as approximating a 2D domain by

a few 1-dimensional arcs. Recently, Gavriil et al. [2018] employed

this viewpoint to realize architectural freeform shapes by individual

developable panels.

Previous work on checkerboard patterns. This paper has been mo-

tivated by recent work on discrete surfaces exhibiting two classes of

‘white’ and ‘black’ faces arranged in a checkerboard pattern. Peng

et al. [2019] discuss patterns with ‘black rectangles’, their degrees of

freedom and their computation. Our paper operates with checker-

board patterns with ‘black parallelograms’ generated by subdivision

from an arbitrary quad mesh. A special case, namely patterns with

‘black squares’ turns out to be related to [Rabinovich et al. 2018a].

Previous work on mappings between surfaces. Finding correspon-

dences and mappings between geometric shapes is one of the most

significant and diverse problems in geometry processing, cf. e.g.

the recent contributions [Chern et al. 2018; Ezuz et al. 2019]. In our

own work we focus on isometric mappings. They have been stud-

ied in detail, often from the viewpoint that true isometries cannot
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Fig. 3. For any face with vertices vj , the midpointsmj, j+1 of edges obey

the equations above, implying that those midpoints form a parallelogram. A

correspondence between faces v0v1v2v3 and v
′
0v
′
1v
′
2v
′
3 induces an affine

mapping between inscribed midpoint parallelograms. The correspondence is

conformal resp. isometric, if that affinemap is a similarity resp. a congruence.

be achieved. As a consequence, as-rigid-as-possible mappings resp.

near-isometric mappings have been investigated, see e.g. [Claici

et al. 2017; Liu et al. 2009; Pietroni et al. 2010; Sorkine and Alexa

2007]. Our idea to model isometry via keeping the shape of small

elements is not entirely new, see e.g. constrained shape exploration

as set up by Bouaziz et al. [2012]. Peng et al. [2019] already propose

to define isometric and conformal mappings by local isometries and

local similarities of checkerboard patterns, but considered restricted

shapes of patterns only.

Relevant work on isometric mappings has been done by Chern et

al. [2018]. Based on a discrete theory of spin structures, they treat

isometric mappings, particularly immersions. Recently, Sassen et al.

[2020] investigated the flexions of triangle meshes with rigid faces

via the manifold of realizations of fixed edge lengths but variable

dihedral angles. They formulate the corresponding integrability

conditions and solve both exact and approximate reconstruction of

meshes, which includes computing isometric mappings. The main

points in which our work differs from these two recent contributions

is the different focus (ours is geometric modeling, cutting and gluing,

applications in paneling) and the simplicity of our approach.

Conformal mappings are not a focus of the present paper, and we

only refer to the bibliography in [Peng et al. 2019].

2 MAPS BETWEEN SURFACES AS CORRESPONDENCES
BETWEEN CHECKERBOARD PATTERNS

In the same way a mesh M is a discrete surface, a pair M , M ′ of

combinatorially equivalent meshes can be seen as a discrete version

of a mapping between surfaces. This viewpoint has been highly

successful e.g. in the study of discrete conformal mappings as cor-

respondences between special meshes (namely, circle patterns, see

[Stephenson 2005]). In the same tradition, Peng et al. [2019] suggest

the following setup. A control meshM = (V ,E, F ) is associated with

a checkerboard pattern (VP ,EP , FP ) derived fromM .

• Every edge vw ∈ E defines a vertexmvw =
1
2 (v +w ), which

is the midpoint of that edge, see Fig. 3.

• Every vertex v ∈ V defines a new ‘white’ face with vertices

mvw where vw is an edge incident with v .

• Every face f ∈ F defines a new ‘black’ face with vertices

mvw , where vw is an edge contained in f .

• Vertexśface inclusion translates to adjacency of white and

black faces in the checkerboard pattern.

Fig. 4. A conformal mapping between quad meshes M and M ′. Here M ′ is

flat, which makes the mapping from M ′ to M a conformal parametrization.

In fact this parametrization is as isometric as possible.

Varignon’s theorem. For any quadrilateral face of M , the edges of

the inscribed ‘black’ face obey the equations shown by Fig. 3. They

say that these edges are parallel to the diagonals of the original face,

implying the inscribed face is a parallelogram. This fact, holds even

if the original face is not planar, and is sometimes called Varignon’s

theorem.

2.1 Conformal maps and isometric maps

Peng et al. [2019] propose to discretize a mapping between surfaces

as the correspondence between combinatorially equivalent meshes

M andM ′. They consider only such meshes where induced checker-

board patterns exhibit black rectangles, and they propose that the

mapping is isometric (resp., conformal), if corresponding black faces

are related by a congruence (resp. similarity) transformation. We are

going to demonstrate that the very same definition is sensible also

in the general case, without any restriction to the shape of faces.

Consider corresponding faces f = v0v1v2v3 and f
′
= v ′0v

′
1v
′
2v
′
3

of the given meshesM andM ′, see Figure 3. The inscribed parallel-

ograms are congruent, if and only if their edge lengths and angles

coincide, i.e., if and only if

ciso,0 ( f ) = ∥v0 −v2∥
2 − ∥v ′0 −v

′
2∥

2
= 0,

ciso,1 ( f ) = ∥v1 −v3∥
2 − ∥v ′1 −v

′
3∥

2
= 0,

ciso,2 ( f ) = ⟨v0 −v2,v1 −v3⟩ − ⟨v
′
0 −v

′
2,v
′
1 −v

′
3⟩ = 0. (1)

In an analogous way we state conditions expressing a similarity

transformation: The equations

cconf ,0 ( f ) = λf ∥v0 −v2∥
2 − ∥v ′0 −v

′
2∥

2
= 0,

cconf ,1 ( f ) = λf ∥v1 −v3∥
2 − ∥v ′1 −v

′
3∥

2
= 0,

cconf ,2 ( f ) = λf ⟨v0 −v2,v1 −v3⟩ − ⟨v
′
0 −v

′
2,v
′
1 −v

′
3⟩ = 0 (2)

say that edge lengths of the inscribed parallelogram are multiplied

with the factor (λf )
1/2, but angles stay the same. Both (1) and (2)

directly refer to the control meshM .

2.2 Curvatures for quad meshes

Checkerboard patterns as introduced above are well suited to intro-

duce curvatures, because the ‘black’ faces are planar see (Fig. 3) and

have well-defined normal vectors. The classical definition of curva-

tures via the Gauss map is nicely compatible with our definition of

discrete mappings between discrete surfaces. We here describe our

construction and its relation to other definitions of curvatures.

2.2.1 Definition of curvatures per face. The main idea is to define

a normal vector ni for each vertex vi of the control mesh M , and

consider offset meshesMδ with vertices vi + δni . We require that
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M,Mδ
σ (M )

vi

vj

ni
nj←−−−−−−−−−−→

Gauss map

Fig. 5. A mesh M (left) with vertices vi , normal vectors ni (Gauss image

σ (M ), at right) and an offset Mδ with vertices vi + δni . The distance of

corresponding ‘black’ parallelograms inscribed to M, Mδ is δ .

in the checkerboard patterns derived from meshes M,Mδ , corre-

sponding ‘black’ parallelograms lie in parallel planes at distance δ

from each other. Figure 5 illustrates this situation. By linearity, it is

sufficient to require this property only for δ = 1.

For the face f = v0v1v2v3 with normal vectors n0, . . . ,n3, our

distance requirement translates to the four conditions

cnorm, j ( f ) = ⟨nj + nj+1,nf ⟩ − 2 = 0, (j = 0, . . . , 3) (3)

where nf is a unit normal vector of the inscribed parallelogram,

consistently pointing to one side of the mesh. Indices are taken

modulo 4. Actually cnorm,3 ( f ) is redundant (because if 3 vertices of

a parallelogram lie in a certain plane, also the 4th vertex does).

Note that the normal vectors ni are not unit vectors, and they

are also not uniquely defined by (3) alone. In practice, they are

computed via optimization, see Sec. 2.3.1. They constitute the ver-

tices of the Gauss image σ (M ). By construction, the checkerboard

pattern derived from σ (M ) has ‘black’ parallelograms tangentially

circumscribed to the unit sphere. The Gauss map within each paral-

lelogram defines a shape operator, mapping edges of a parallelogram

inscribed to M to the corresponding edges of a parallelogram in-

scribed in σ (M ). The usual sign convention (the shape operator is

the negative derivative of the Gauss map) implies that the discrete

shape operator in the face f reads

sf :
{

v2 −v0 7−→ −(n2 − n0),

v3 −v1 7−→ −(n3 − n1).

Both parallelograms inscribed in f = v0v1v2v3 and in σ ( f ) =

n0n1n2n3 have nf as a normal vector. It therefore makes sense to

view sf as a mapping of the two-dimensional subspace nf
⊥ into

itself. Then both Gauss curvature K and mean curvature H (in the

pointwise sense) are naturally defined via determinant and trace of

sf , just like in the smooth theory:

K ( f ) = det(sf ) =
[n3 − n1,n2 − n0]

[v3 −v1,v2 −v0]
, (4)

H ( f ) =
tr (sf )

2
= −

[n3 − n1,v2 −v0] + [v3 −v1,n2 − n0]

2[v3 −v1,v2 −v0]
.

Here we used the notation [a,b] = det(a,b,nf ) for the determinant

of vectors in the subspace nf
⊥. Further, it is natural to consider the

shape operator’s eigenvalues κ1 ( f ),κ2 ( f ) as the principal curva-

tures, with eigenvectors indicating principal directions. Eigenvalues

are computed e.g. as the roots of the equation x2 − 2Hx + K = 0.

The principal directions must be orthogonal to each other, which

happens if and only if the shape operator is symmetric, i.e,

csym ( f ) = ⟨n3 − n1,v2 −v0⟩ − ⟨v3 −v1,n2 − n0⟩ = 0. (5)

We add this condition as a constraint in our computations. It acts as

a regularizer and contributes to eliminating the ambiguity which is

still left after conditions (3) are imposed. The results are numerically

convincing, see Fig. 6.

2.2.2 Comparison with other quad mesh-based curvature theories.

Curvatures of polyhedral surfaces were introduced by [Bobenko

et al. 2010; Pottmann et al. 2007]. They consider a polyhedral mesh

M endowed with polyhedral offsets Mδ at distance δ such that

corresponding faces f , f δ of M,Mδ lie in parallel planes. Mean

curvature H ( f ) and Gauss curvature K ( f ) of the face f are derived

from Steiner’s formula,

area( f δ ) = area( f ) (1 − 2δH ( f ) + δ2K ( f )). (6)

The very same relation applies to our curvatures and the areas of

‘black’ parallelograms. This can be easily seen from (4), because the

area of the parallelogram inscribed in the face v0v1v2v3 is exactly
1
4 [v2−v0,v3−v1]. The major difference between our setup and that

of Bobenko et al. [2010] is that in our case, the relation (6) applies

to only one half of the faces. If it applies to all faces, it represents a

rather strong condition on the meshes involved Ð for quad meshes

this essentially requires that edges follow principal curvature lines.

A further development is the theory of curvatures for edge-con-

straint nets by Hoffmann et al. [2017]. They operate with unit nor-

mal vectors of vertices. From the computational viewpoint, their

constraints on normal vectors are more involved than ours. While

the work of Hoffmann et al. [2017] is capable of unifying several

previous constructions, a thorough theoretical investigation of our

definition of curvatures is a topic of future research.

2.3 Computation of mappings via optimization

In geometric modeling with mappings, a basic task is to make them

isometric or conformal, changing them as little as possible (this

includes the task of making surfaces developable, changing them as

little as possible in the process). Obviously it is important that this

can be done quickly. Since the conditions we impose on mappings

are not sufficient to guarantee smoothness, we perform all compu-

tational tasks via optimization and employ suitable regularizers.

2.3.1 Setup of variables and mapping-related constraints. The com-

putations in this paper involve two quad meshesM = (V ,E, F ) and

-100 0 100

Fig. 6. Comparing the value of Gauss curvature computed with our method

(left) with the jet fit method of [Cazals and Pouget 2003] (center). The

differences, visualized via color difference (right) are barely visible.
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M ′ = (V ′,E ′, F ′) which are combinatorially equivalent. The natural

correspondence between vertices encodes a mapping. The variables

of our computation, including the coordinates of vertices, are stored

in a vector X ∈ RN . Constraints originally formulated as equations

are expressed via minimization of energies. The isometry constraint

of Equ. (1) is expressed bywisoEiso (X ) → min, where

Eiso =
∑

f ∈F

∑3

j=1
ciso, j ( f )

2,

and wiso is a positive weight. Similarly, to compute a conformal

mapping between meshesM,M ′ we convert Equ. (2) into the opti-

mization problemwconf Econf (X ) +wλEλ (X ) → min, where

Econf =
∑

f ∈F

∑3

j=1
cconf , j ( f )

2, Eλ =
∑

f ∈F
(λf − 1)

2.

The energy Eλ penalizes deviation of conformal factors from 1. It is

used for regularization and (ifwλ is big enough) to make a conformal

map as isometric as possible.

In handle-based editing there are vertices vi which have to be

close to fixed positions ai and pairs of vertices vi and vj which are

forced to lie on top of each other (this is necessary for gluing). Similar

conditions can be imposed on the meshM ′. These requirements are

handled by energies of the form

Epos =
∑

i ∈I
∥vi − ai ∥

2
+

∑

(i, j )∈J
∥vi −vj ∥

2
+ (. . .),

where (. . .) stands for analogous contributions from the meshM ′. A

suitable multiplewposEpos is to be combined with the other energies,

as required by the task at hand.

A special case of mappings discussed here is where M ′ is the

Gauss image of M . We express conditions (3) and (5) in the form

wnormEnorm +wsymEsym → min, with

Enorm =
∑

f ∈F

∑3

j=0
cnorm, j ( f )

2, Esym =
∑

f ∈F
csym ( f )2.

2.3.2 Soft constraints and approximation. Themagnitude ofweights

employed for the different energies can be used to inform the opti-

mization algorithm of the importance of individual constraints. We

speak of soft constraints if weights are small. Typical examples are

constraints where we already know they cannot be fulfilled, like the

requirement λf = 1 in conformal mappings which was mentioned

above. Another instance of soft constraints are the ones used to

express proximity of a meshM to a reference shape Φ.

Such a condition is implemented by computing the closest point

projection v∗i ∈ Φ of a representative sample {vi }i ∈I of vertices.

We subsequently represent the tangent plane of Φ in that point

by a linear equation τi (x ) = 0. Then proximity is expressed by

wprox,1Eprox,1 +wprox,2Eprox,2 → min, with

Eprox,1 =
∑

i ∈I
∥vi −v

∗
i ∥

2, Eprox,2 =
∑

i ∈I
τi (vi )

2.

The footpointsv∗i and tangent planes are recomputed in each round

of our iterative optimization procedure. Using only Eprox,1 amounts

to a version of the well known ICP algorithm and is suitable only if

the distance from Φ is still big. Close to Φ, the shape of Φ is much

better represented by its tangent plane than by a single point, and

wprox,1 → 0 greatly speeds up convergence. This matter is discussed

in detail by [Wang et al. 2006].

M

M ′
Fig. 7. An isometric mapping be-

tween meshes M and M ′. Since

M ′ is contained in a plane, M is

a discrete developable.

2.3.3 Regularizing meshes and mappings. The discrete-isometric

relation between meshes does not prevent zigzagging of mesh poly-

lines, and regularization is necessary to achieve a fair solution. A

natural fairness functional is found by penalizing irregular spacing

of vertices on mesh polylines. In our optimization, we add the term

wfair,MEfair,M to the other energies already in use, with

Efair,M =
∑

vivjvk successive

vertices inM

∥vi − 2vj +vk ∥
2.

Similarly we consider wfair,M ′Efair,M ′ . These regularizers can be

employed whenever the mesh they refer to is not fixed anyway

during optimization. A prototypical algorithm where hard and soft

constraints are combined is shown below. The weight of the reg-

ularizing fairness term is small to begin with, but we are making

provision to lower it further in case the fairness term is too domi-

nant and prevents achieving isometry. For different examples in this

paper the energy used for optimization is different, and it might not

be M ′ that is the variable but M or even both M and M ′. In those

cases Algorithm 1 has to undergo obvious modifications.

Algorithm 1: Compute a mesh M ′ isometric to M

Data: Mesh M , initial value for M ′, side conditions encoded in Epos

Fix energy thresholds Emin, Eiso,min;

Initialize weights by letting wiso = 1, wpos = 1, wfair,M ′ = 0.1;

repeat

repeat
Subject M ′ to optimization by minimizing

E := wisoEiso +wfair,M ′Efair,M ′ +wposEpos;

until E ≤ Emin or number of iterations exceeds maximum;

wfair,M ′ ← wfair,M ′/10;

until Eiso ≤ Eiso,min;

return M ′

Regularizing mappings between meshes. We want to be able to

deal with meshes M , M ′ that are not particularly fair in terms of

these energies, even if the natural correspondence betweenM and

M ′ approximates a smooth mapping between surfaces. If, say,M is

fixed during optimization, then regularizing M ′ will have a detri-

mental effect on the quality of the mapping. In that case it is better

to regularize the mapping instead of the mesh.

In order to achieve this, we recall the following properties of

a smooth mapping ψ between surfaces Φ, Φ′. For corresponding

curves c (t ) and c ′(t ) = ψ (c (t )) corresponding tangent vectors dc/dt,

dc ′/dt at a certain time instant are related by the linearization (the

differential) dψ , which is a linear mapping between corresponding

tangent planes of Φ, Φ′. For isometric mappings, even more is true:

dψ is an isometric linear mapping which maps also the tangential
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(a) (b) (c) (d)

-1

K

0 1

Fig. 8. Degrees of freedom in computing developables. (a) An input surface is subdivided into 46 individual patches and yields a wireframe future computations

are based on. (b) Each 4-sided boundary is filled by a developable. One can see that in the negatively curved regions, this is not possible with a regular

surface. (c) The same, but with boundaries movable and smoothness across boundaries as a soft constraint. The resulting surface is not entirely piecewise

developable, since smoothness interferes with the developability constraint. (d) The same, with no smoothness across boundaries. Here the individual patches

are developable. The inset images show the Gaussian curvature (green is zero; bounding box size equals 11).

components of d2c/dt2, d2c ′/dt2 onto each other [do Carmo 1976,

p. 239]. This property is equivalent to requiring

⟨v⃗, d
2

dt2
c⟩ = ⟨dψ (v⃗ ), d

2

dt2
c ′⟩ (7)

for all tangent vectors v⃗ . For a discrete analogue of this property,

surfaces Φ, Φ′ are represented by meshesM ,M ′. Vectors v⃗ , dψ (v⃗ )

are replaced by corresponding edge vectors vl − vj and v
′
l
− v ′j .

Second derivatives of curves are replaced by 2nd differences of

mesh polylines. This yields the energy

Emap =

∑

vivjvk successive

vertices, vjvl ∈ E

(⟨vi − 2vj +vk ,vl −vj ⟩ − ⟨v
′
i − 2v

′
j +v

′
k
,v ′

l
−v ′j ⟩)

2.

Emap → min expresses the discrete version of (7). If, say,M is fixed

and M ′ is variable, a contribution wmapEmap to the total energy

will regularize the mapping and in turn, regularize the shape ofM ′

(without regularizing the polylines contained inM ′).

Example. Figure 4 illustrates a conformal mapping of a given

mesh to a planar meshM ′. Here variables are the x ,y coordinates

of vertices of M ′ as well as conformal factors λf for each face of

the mesh, using the terminology of Equ. (2). The z coordinates of

vertices ofM ′ are set to zero. The computation ofM ′ is performed by

minimizingwconf Econf +wλEλ +wfair,M ′Efair,M ′ . Here the energy

Eλ makes this conformal mapping as isometric as possible (in the

ℓ2 sense).

3 DISCRETE DEVELOPABLE SURFACES

We define a discrete developable surface as a quad meshM which

is isometric, in the sense of Equ. (1), to the quadrangulation of a

planar domain,M ′. We do not impose further constraints on either

M orM ′.

This definition is illustrated by Figure 7. It leads to meshes which

exhibit the known characteristics of smooth developables. In this

Fig. 9. TheGauss imageσ (M )

of a mesh M is curve-like if

and only if M itself is piece-

wise developable.
M σ (M )

section we discuss the computation of discrete developables, the

extraction of basic geometric properties such as rulings, and how

our definition relates to other approaches to discrete developables.

3.1 Computing developables

By definition, a meshM is developable, if there is an isometric mesh

M ′ which is contained in a plane. In different computational tasks

eitherM orM ′ may be fixed, or both may be variable. Each task is

solved by minimizing a suitable linear combination of the energies

defined in Sec. 2.3. The weights of individual contributions to the

total energy are summarized in the table in Fig. 22.

In Fig. 7, the unfoldingM ′ is given, andM is found by a handle-

based isometric bending. The shape ofM is the result of minimizing

an energy of the formwisoEiso +wposEpos +wfair,MEfair,M , using a

suitably modified Algorithm 1.

An analogous setup is used to compute the isometric deforma-

tion M ′ of a partly developable surface M in Fig. 10. Here M first

undergoes a handle-based deformation, which yields a reference

shape Φ. We now find a discrete surfaceM ′ isometric toM which

approximates Φ, by minimizing an energy of the form wisoEiso +

wprox,1Eprox,1 +wprox,2Eprox,2 +wfair,M ′Efair,M ′ → min.

An unfoldingM ′ of a developable surfaceM (see Fig. 12) is com-

puted in an analogous way, using the energy wiso Eiso + wfair,M ′

Efair,M ′ . Examples where both meshesM ,M ′ undergo simultaneous

optimization are shown throughout the paper, e.g. in Fig. 8.

Degrees of freedom and solvability of the optimization problem.

Figure 8 illustrates the fact that imposing developability significantly

reduces the number of degrees of freedom:

Ð In Fig. 8b, curvilinear quads are to be filled by developables. This

is possible e.g. if such a quad lies on the boundary of its convex hull,

but not always. Singularities develop, and our approach to discrete

isometries is no longer guaranteed to accurately model isometries of

smooth surfaces. Similarly wemust expect the computation of Gauss

curvature to break down in singularities. In any case such unsolvable

cases are identified by pockets of nonzero Gauss curvature.

Ð In Fig. 8c, a wireframe, which is itself variable, is filled by

developable patches, with smoothness across boundaries enforced.
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defor-
mation
←−−−→

Φ
M

←−−−→

isometric
deform.

M
M ′

←−−−−−−−−−−−−→
isometric mapping

Fig. 10. Handle-based isometric editing. We show a deformed state Φ of a tin-can shaped surface M (the deformation model is that of Rhinoceros® and is not

relevant for our result). We use the isometric constraint to simulate a surface M ′ close to Φ and isometric to M . Since M is piecewise developable, so is M ′.

This requirement is not compatible with developability, which can

be clearly seen by means of nonzero values of Gaussian curvature.

Ð Figure 8d illustrates a solvable problem: a wireframe, itself

subject to optimization, is to be filled by a piecewise-developable

surface.

3.2 Verifying developability

In order to verify developability of the surfaces we have computed,

we firstly observe if they are isometric to the planar domains used

in their computation. In addition we evaluate the Gauss curvature

(which should be zero) and check if the surface contains rulings.

Estimating normals and curvatures. The Gauss image of a dis-

crete surfaceM consists of its normal vectors, and can be computed

by several methods. We could e.g. simply take the normal vectors

nf of ‘black’ parallelograms. An alternative is to compute vertex

normal vectors ni according to Sec. 2.2, by minimizing the energy

wnormEnorm +wsymEsym +wfairEfair → min. In any case, developa-

bility of M is characterized by the fact that the Gauss image is

one-dimensional, see Fig. 9.

For computing curvatures, many more or less equivalent meth-

ods are available, for which we refer back to ğ2.2.1 and Fig. 6. We

visualize Gauss curvature information in Figures 8 and 13.

Visualizing Rulings. In each edge midpoint, where two ‘black’

parallelograms meet, we can compute a ruling by intersecting the

planes of the two parallelograms. This procedure discretizes the

computation of rulings of smooth developables via intersection of

two infinitesimally close tangent planes.

Another approach to rulings is based on an alternative criterion

for developability. Gauss curvature, by its very definition as determi-

nant of the shape operator s , vanishes if and only if s has a zero eigen-

value. We consider the conjugacy relation ⟨v⃗, s (r⃗ )⟩ = ⟨s (v⃗ ), r⃗ ⟩ = 0

Fig. 11. Developables possess right

circular osculating cones which in the

generic case tangentially pass from

one side of the developable to the

other (analogous to curves’ osculat-

ing circles). Existence follows from the

fact that along a ruling, the principal

radius of curvature is a linear function.

We verify this by experiment.

M ′1

M1

M ′2

M2←−−−−−−−−→

←
−→ isometry

←
−→ isometry

affine mapping
[1 .5

1 .5
1

]

Fig. 12. A surface M1

retains developability

when mapped to a sur-

face M2 via an affine

transformation. Here

we illustrate the fact

that no such simple

correspondence exists

between the respective

unfoldings M ′1, M
′
2.

between tangent vectors v⃗ , r⃗ and compute a vector r⃗ conjugate to a

given vector v⃗ via r⃗ = s (v⃗ )⊥. Then we have the following equiva-

lence: The surface is developable in the point under consideration

⇐⇒ s is rank-deficient ⇐⇒ r⃗ = s (v⃗ )⊥ always lies in the zero

eigenspace of s , regardless of v⃗ .

That zero eigenspace of the shape operator, indicating the princi-

pal direction corresponding to zero curvature, is the ruling. We use

this fact to visualize rulings in Figure 13, where in the bottom row

surfaces are near-developable. Vectors r⃗ nicely align along rulings.

Visualizing Osculating Cones. Smooth developables posses oscu-

lating cones of revolution, which are in second order contact with

the surface along an entire ruling. Their existence corresponds to

the fact that along a ruling, the principal radius of curvature (the

inverse of the nonzero principal curvature) is a linear function of

arc length. We were able to experimentally verify this, see Fig. 11.

3.3 Relation to other definitions of discrete developables

The relation of our definition of developables to the orthogonal geo-

desic nets proposed by Rabinovich et al. [2018a] is as follows. Our

definition considers developables as a discrete version of a paramet-

ric surface which happens to be developable, but without any restric-

tion on the nature of the parametrization. A discrete orthogonal-

geodesic net, on the other hand, discretizes a special parametrization

ś both parameter lines are geodesics and orthogonal to each other.

Such a parametrization does not have to be of constant speed (i.e.,

the faces do not need to approximate squares) but we can achieve

this property by re-parametrizing each parameter separately.

If within our framework, we obtain ameshwhose derived checker-

board pattern has ‘black’ faces which are squares of the same size,

then all face diagonals in the mesh are orthogonal and have the same

length. A quad mesh consisting of diagonals of the original mesh
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control mesh M subdivided mesh Sk (M ) limit surface M∞ ruling directions on M∞ bicubic interpolant of M

input

result of
optimization

-0.04 0

K

0.04

Fig. 13. Developable spline surfaces. A mesh M after k rounds of subdivision becomes a finer mesh Sk (M ). Here k = 3, and Sk (M ) is already a good

approximation of the limit surface M∞. By using an appropriate subdivision scheme we achieve that M∞ is a bi-cubic B-spline surface. By optimizing M such

that Sk (M ) is discrete-developable we make M∞ a near-developable spline surface. We here show the situation before and after optimization. The color

coding illustrates Gauss curvature (white is zero; bounding box size equals 10). We also show a bicubic interpolant defined by M , which exhibits particularly

bad curvature behaviour, despite M already being discrete-developable. The column labelled łruling directionsž shows tangents conjugate to parameters lines

which, in case of developability, arrange themselves along rulings.

therefore discretizes an orthogonal Chebyshev net, which is known

to be geodesic and to occur precisely in developable surfaces. In this

way a special checkerboard pattern discretizes the same smooth

object as a discrete orthogonal-geodesic net.

However from the perspective of applications presented in this

paper, it does not make sense to restrict ourselves to this special

case, since the freedom of choosing the parametrization is a great

advantage in practical modeling tasks. For example, we can align

boundaries and features with edges (or with diagonals). Another in-

stance where the greater freedom of our definition becomes evident

is when we transform a developable by an affine transformation (see

Fig. 12) or by offsetting. Such a transformation would not be possible

with orthogonal-geodesic nets without a global remeshing. Also

the watertight CAD models presented the next section illustrate the

flexibility of our definition.

4 DEVELOPABLE SPLINE SURFACES AND WATERTIGHT
CAD MODELS

It is not straightforward to express developable surfaces in the

framework of B-splines implemented in most CAD systems. It can

be done by segmenting developables into planar and ruled patches.

However this decomposition might be much more complex than

the first visual appearance of the developable suggests. From the

viewpoint of modeling, it would be highly preferable not having to

worry about it, and being able to use spline surfaces whose control

points are not aligned with rulings. This problem has been described

as unsolved recently by [Rabinovich et al. 2018a]. Our solution,

which represents a passage from discrete differential geometry to

computer-aided geometric design, is a main contribution of the

present paper. We show how to perform modeling with watertight

spline surfaces which are developable to an extent sufficient for

applications.

The idea is is illustrated by Fig. 13 and Alg. 2. We take a control

meshM and derive a B-spline surfaceM∞ from it. An alternative

way to produce this spline surface is to construct it as limit surface

of a certain stationary subdivision rule S . The idea is now to use a

small number k of rounds of subdivision to create a fine mesh Sk (M )

which approximates the final B-spline surfaceM∞ with sufficient

numerical accuracy, but is still small enough to be subjected to

optimization, in order to achieve developability.

Algorithm 2: Modeling with a developable spline surface M∞

Data: Initial control mesh M , subdivision level k (e.g. k = 2)

Macro Sk (mesh M )

k rounds of subdivision applied to each rectangular patch of M ;

Initialize 2D mesh M ′ combinatorially equivalent to Sk (M );

Set up energy Eiso expressing isometry of Sk (M ) and M ′;

Set up energies Efair,Sk (M )
and E

fair,M ′
;

while user is imposing constraints on design surface do

Express user’s constraints as energy Epos (S
k (M )) ;

Use a version of Alg. 1 on variables M, M ′ to minimize

w
iso
E
iso
+w

pos
E
pos
+w

fair,Sk (M )
E
fair,Sk (M )

+w
fair,M ′

E
fair,M ′

;

end

return the bicubic spline surface M∞ whose control mesh is M ;

The subdivision scheme we employ is an extension of the well

known Catmull-Clark scheme which in its combinatorially regular

case converges to bicubic spline surfaces [Peters and Reif 2008]. We

decompose the given mesh into quadrilateral patches bounded by

mesh polylines (the example of Fig. 13 has only one such patch). For

each patch we have 4 boundary polylines. The vertices {pj }j=1, ...,M
of such a boundary polyline are the control points of a cubic B-spline

curve (with uniform interior knots) interpolating the endpoints p1
and pM . This curve is alternatively produced as the limit curve of a

stationary subdivision rule whose stencil is derived from Boehm’s

knot insertion formula for B-splines [Prautzsch et al. 2002]: For

i ∈ {1, . . . , 2M − 3}, we let

pnewi =

M
∑

j=1

αi jpj , where αi j =
1

16



16
8 8

12 4
3 11 2

8 8
2 12 2

.
.
.


, (8)

cf. [Shen et al. 2014, Fig. 6]. In the interior of the polyline, this is the

usual cubic Lane-Riesenfeld subdivision rule. By applying it first to
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M

S3 (M )

M ′

Fig. 14. Left: A near-developable spline surface, its parameter lines and

rulings. Right: Coarse control mesh M (only edges shown), its subdivision

S3 (M ), and the unfolding M ′ of S3 (M ).

N , S2 (N ) =: M

M,Mopt Mopt, S
2 (Mopt),M

∞
opt

Fig. 15. A watertight CAD model. A mesh M is optimized such that a subdi-

videdmesh S2 (M ) becomes a discrete developable.We here show the control

mesh M and its optimized version Mopt as well as the near-developable

B-spline surface M∞opt. Actually, M has been created by subdivision in the

first place from a very coarse mesh N (top left) which however does not

have sufficiently many degrees of freedom to be used directly.

the rows and subsequently to the columns of anM × N rectangular

control point arrangement, we create (2M − 3) × (2N − 3) control

points in the next level of recursion. Apart from the 4 boundary

rows, this amounts to Catmull-Clark subdivision.

The collection of bicubic surface patches produced in this way is

watertight, because neighbouring patches share a boundary which is

interpolated on both sides. The resulting composite surface however

is smooth across patch boundaries only if this property is enforced

by optimization.

The geometric modeling procedure is summarized by Algorithm 2.

The user modifies the control mesh M until satisfied with the B-

spline surfaceM∞ derived from it, while in the background a refined

mesh Sk (M ), which closely approximates M∞, is optimized to be

discrete-developable. For that purpose an auxiliary flat mesh M ′

which is isometric to Sk (M ), has to be computed, cf. Fig. 14.

Figures 13, 15 show examples. Figure 13 in particular illustrates

the fact that the control meshM does not have to be fair for Sk (M )

to be a fair discrete-developable surface.

Remark. The surfaces produced by this method are developable

only up to a certain amount of numerical inaccuracy. If exact de-

velopability is required, the surface computed in this way could be

decomposed into its flat parts and ruled parts, and subsequently

be approximated by exact developables using e.g. the methods of

[Tang et al. 2016].

Remark: Such a subdivision method would not work for the

discrete-orthogonal nets of [Rabinovich et al. 2018a], since there are

no spline surfaces with orthogonal-geodesic parameter lines except

for cylinders (see the appendix).

5 RESULTS

Cutting and gluing. When computing a developable M from its

unfoldingM ′, we might force pairs of vertices to lie on top of each

other. Adding such constraints to our optimization procedure simu-

lates gluing, if the selected vertex pairs define an arclength-preserv-

ing correspondence between boundaries inM ′. Since our method

does not require that edges follow special curves on developables,

we can align edges with boundaries and features. It might even

be desirable to represent features not by the edges of a mesh, but

by diagonals of faces, since the isometry condition (1) operates on

diagonals rather than on edges. Examples are shown by Figures 18

and 16.

Cone points. By appropriately gluing planar domains one achieves

surfaces which are developable except in individual singularities,

where the intrinsic metric behaves like that of a non-flat cone. Fig.

17 exhibits a cone point with angle sum less than 360 degrees, and

another cone point with negative Gaussian curvature concentrated

in that point, i.e., with an angle sum greater than 360 degrees. We

include this example to show the flexibility of our approach.

D-forms and non-convex generalizations. The shapes obtained by

gluing together two planar domains with the same perimeter have

been of interest since the sphericon was proposed [Phillips 1999]

and the name D-form for such shapes was coined by [Wills 2006].

The domains in question can be n-gons or can be smooth; classically

convexity is assumed. It is well known that a unique convex surface

isometric to the glued domains exists, if that union is intrinsically

convex. This means that in corresponding points, the sum of cur-

vatures is nonnegative (if we use the convention that curvatures

of convex curves are always nonnegative). See [Bobenko and Iz-

mestiev 2008] for an algorithmic solution in the discrete case. Here

we are interested in the non-convex case and the shape of łD-formsž

obtained by gluing domains which violate the curvature condition.

Figure 19 gives some examples.

Fig. 16. The features of

this cut and glue exam-

ple are not aligned with

edges of the mesh, but

with diagonals. In this

way lengths are preserved

more accurately.

Fig. 17. Geometric singularities (cone points) can be achieved by appropriate

gluing of planar domains.
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Fig. 18. Cutting and Gluing. This example of computing a developable from its unfolding involves the gluing shut of holes. From left, we show the unfolding, the

developable, its mesh representation, and a photo of a paper model. Here all boundaries, including holes, are aligned with edges of the mesh. The combinatorial

singularities in the meshes which inevitably occur are not noticeable in the final rendering.

(a) (b) (c) (d)

Fig. 19. D-Forms and their generalizations. The two convex planar domains in (a) with the same perimeter can be glued together along their respective

boundaries to form a unique convex surface. If the domains are not convex, a unique convex surface only exists if in corresponding boundary points, curvatures

κ , κ′ obey the condition κ + κ′ ≥ 0. This is not the case in (b) and (c), where one can observe the emerging singularities on non-convex piecewise-developable

surfaces. Subfigure (d) shows a further kind of gluing domains along boundary components. In all cases we show, from top to bottom, the unfolding, the

(generalized) D-form, and a photo of a paper model.

Approximation with developables. For any given non-developable

surface, we may ask for a developable or piecewise-developable

surface approximating it. This is a difficult problem and one can

approach it from various angles, see e.g. [Mitani and Suzuki 2004].

Here we consider only a sub-problem: We assume that a reference

shape Φ has been segmented into patches, and we wish to approxi-

mate the individual patches by developables. The simplest case is

approximating one reference shape by a single developable. From

there, it is only a small step to simultaneously approximate a seg-

mented reference shape by a union of patches glued together along

their boundaries. Creating the segmentation is beyond the scope of

this paper. To approximate a reference shape Φ, we do the following:

• We represent Φ by a mesh M . M is subdivided into patches

Mj which correspond to the patches on Φ.

• We conformally and near-isometrically map each patchMj

to a planar meshM ′j , storing the patch connectivity in gluing

data for the unfoldingsM ′j .

• We simultaneously optimize all Mj and M ′j such that the

correspondence betweenMj andM
′
j becomes isometric and

gluing is respected.Mj must be in proximity with Φ.

Examples are shown by Fig. 21. The same procedure can be ap-

plied to increase the developability of a surface, if we set aside the

question of segmentation. We should mention that the problem of

making a surface developable has also been studied by [Stein et al.

2018], where a mesh is driven towards piecewise-developability by

clustering Gauss curvature along feature lines. This method is more

rigid than our approach, since edges are aligned with rulings and

feature lines.

Deformations. Figure 26 shows various stages in a deformation

sequence, computed analogous to Fig 10. It is important to appreciate

the fact that developables occur naturally as the shapes of thin sheets

of inextensible material. For this reason, developables and their

deformations can be used to compute believable geometric shapes

without any simulation of the actual physics involved, see e.g. Fig. 21.
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(a) (b) (c) (d)

Fig. 20. Paneling freeform designs in architecture. Here a detail of the NHHQ skyscraper project by Zaha Hadid Architects (a) is being approximated by a

piecewise-developable (b). For the surface in subfigure (c), more smoothness across patch boundaries has been required. That piecewise-developable surface is

realized as a piecewise single-curved architectural freeform skin in (d).

This observation extends to materials which do stretch, like metals,

but which nevertheless assume developable shapes when they revert

to a state of minimal tension. Figure 10 shows a deformed can. It

apparently does not resume its original cylindrical shape because

in several places the limits of elasticity have been exceeded and

deformation remains permanent. No such property was present in

the computation.

Paneling architectural freeform shapes. A specific and important

special case of the approximation problem is the paneling of archi-

tectural freeform shapes. Eigensatz et al. [2010] considered surface

segmentation into different kinds of panels, such that by using

simple panels, and panels manufacturable from the same mold, the

overall cost is reduced. Since developable panels are much less costly

than double-curved ones, a combination of their segmentation with

our approximation technique deserves investigation. A similar ap-

proach is pursued by Gavriil et al. [2018] who perform segmentation

by an analysis of the Gauss image. Once segmentation is performed

ś either automatically or by the user ś we can use our methods to

approximate the given design shape by a piecewise-developable

surface. Figure 20 shows a result.

6 DISCUSSION

Verification of results. We regard reconstructing the well known

geometric properties of developables as the main tools in verifying

the validity of our results. These include the visualization of rulings

(see Figures 13, 14, left) and even osculating cones (see Fig. 11). We

also check the values of Gauss curvature (Figures 8 and 13) and

we give statistics of length distortion in the table of Fig. 22. The

(a) (b) (c)

(d)

Fig. 21. Two developables and a near-devel-

opable surface approximating the same refer-

ence shape (d). The different effects have been

achieved by using different weights in optimiza-

tion, downweighting the approximation property

(a), fairness (b), and developability (c).

Fig. |V |∗ |F |∗ #var wiso wprox,1 wfair L-Err. A-Err. #it T
wpos wprox,2 [%] [%] [s]

1× 15k 15k 81k 1 1 .001 .001 .1 .29 .038 20 53.2
4∗∗ 1.1k 1.1k 3k .01 4.2 7.8 20 0.4
6∗∗ 29k 29k 87k .01 n/a n/a 5 10.5
7 1.9k 1.8k 6k 1 1 .1 .093 .18 10 1.2
8b 50k 47k 250k 1 1 .1 .38 .54 20 124.2
8c 48k 47k 250k 1 .1 1.8 1.1 10 412.3
8d 50k 47k 250k 1 1 .1 .035 .26 10 65.8
10 4.1k 4.1k 12k 1 1 .001 .001 .1 .38 .48 10 7.2
12 1.7k 1.6k 5k 1 .1 .11 .27 10 1.0
13 36 25 4k 1 .01 .12 .21 10 0.9
15 150 64 11k 1 1 .01 .026 .038 10 2.9
16 14k 14k 43k 1 1 .1 .065 .087 10 13.4
18 8.4k 8.2k 25k 1 1 .1 .081 .17 10 7.7
19a 2.5k 2.4k 7k 1 1 .1 .0042 .0057 10 2.5
19b 11k 11k 33k 1 1 .1 .15 .23 10 9.0
19c 2.5k 2.4k 7k 1 1 .1 .054 .031 20 5.2
19d 2.9k 2.8k 9k 1 1 .1 .023 .0072 20 7.4
20b 28k 26k 160k 1 1 .01 .01 .1 .041 .088 10 42.9
20cd 28k 26k 160k 1 1 .01 .01 .1 .058 .13 10 43.2
25 1.5k 1.4k 4k 1 1 .1 .012 .021 20 4.2
26× 20k 18k 98k 1 1 .001 .001 .1 .21 .055 20 67.8
∗ For Figs. 13, 15, both |V | and |F | refer to the control mesh M .
× Data for one subfigure. All subfigures have similar data
∗∗ In Fig. 4,wconf = 1,wλ = 0.1. In Fig. 6,wnorm = wsym = 1.

Fig. 22. Overview of the size of optimization problems solved for the exam-

ples in the paper. We also give the weights of energies used for optimization

and the computation time in seconds. The isometric property of mappings

is verified by the relative L2 error of edgelengths, defined as ∥L′ − L ∥/ ∥L ∥,

where L, L′ refer to the vector of edgelengths of meshes M, M ′, and ∥ · ∥

is the Euclidean norm. We also show the relative error in the area of faces,

which for nonplanar quads is computed via a subdivision into triangles.

obtained results are useful for practical applications, e.g. paneling

freeform architectural designs (Fig. 20) and engineering applica-

tions (Fig. 15). For several developables in this paper, especially cut

and glue examples and D-forms, we verified the obtained shapes

experimentally by building paper models, see Figures 18, 19, 25.

Limitations. The rigid nature of developables is still noticeable in

all applications, which is a limitation not of the method, but of the

subject matter. We found that our method can produce developable

surfaces and also (if they exist) isometric mappings to a satisfac-

tory extent. We also compute conformal and as-rigid-as-possible
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(a) (b) (c) (d) (e)

Fig. 23. Properties of ruling-based methods for computing developables. Here we highlight how a ruling-based method for computing developables behaves

when forced to perform a task it was not designed to do, namely filling the boundary of the quadrilateral surface patch (a) with a developable surface. The

solution (b), computed with our method, has rulings intersecting the boundary at nonzero angles (c). Stein et al. [2018] model discrete developables whose

rulings are aligned with the edges of the underlying mesh. Their method cannot recreate the solution. It instead produces surfaces with creases whose location

is mesh-dependent (d,e).

M M ′ N N ′

Fig. 24. The behaviour of orthogonal-geodesic nets.Here developablesM, N (with unfold-

ings M ′ resp. N ′) interpolate the same boundary curve c . M is an orthogonal-geodesic

net according to [Rabinovich et al. 2018a], simulating a rectangular piece of paper

pressed onto c . N is computed with our method with N ′ still variable, simulating paper

of any shape interpolating c . The relative length errors (cf. Fig. 22) are .015 and .0003 for

M resp. N , consistent with the fact that orthogonal-geodesic nets have fewer degrees

of freedom than our developable surfaces.

mappings, e.g. to initialize an isometric mapping. We found that

only a moderate effort was required to reproduce the kind of results

achieved by [Liu et al. 2009] in such cases where near-isometric

mappings exist. While our method can treat conformal mappings of

more challenging shapes like the well known Max Planck’s head

mesh, imposing the condition of near-isometry will cause overfold-

ings, if we do not add additional energies to prevent them. Since we

do not consider conformal mapping a contribution of this paper, we

did not pursue this subject further.

Implementation Details. The target functionals according to ğ2.3

are optimized by a Levenberg-Marquardt method according to [Mad-

sen et al. 2004, ğ3.2]. The damping parameter was set to 10−6. As a

stopping criterion we used a small value of the energy. The initial

values for optimization are often obvious like in deformation tasks

and in approximation problems. As a general rule an initial solution

can be a surface which fits the problem without the side-condition

of being isometric to the reference mesh. Our implementation in

C++ uses the data structures of OpenMesh [Botsch et al. 2002] and

the Taucs library for sparse linear solvers [Toledo 2003].

Detailed statistics are provided by the table in Fig. 22. These com-

putation times refer to an Intel Xeon E5-2687W 3.0GHz processor

without parallel processing or other acceleration techniques. Fig. 22

also shows the weights of the individual energies which make up

the target functional. We conducted numerical experiments to check

the sensitivity of our method w.r.t. the choice of weights. We gener-

ally observed robustness w.r.t. the choice of wiso, wpos. E.g. in Fig.

Fig. 25. Curved Folds. By Cutting holes of zero width and gluing we create

developables with curved folds. The folded shape is enforced by using the

energy Epos to move points to prescribed positions.

7 no perceptible change in the results is observed if those weights

range in the interval [0.1, 10]. Our method is more sensitive w.r.t.

the choice ofwfair, which is a fact accounted for by Algorithm 1.

Comparison with Previous Work. Figure 24 illustrates how a dis-

crete orthogonal-geodesic net M according to [Rabinovich et al.

2018a] interpolates a given boundary, and how such an interpola-

tion problem is solved by a quad mesh N which is developable in

our sense. The edges of the latter do not have to follow a network

of geodesics, but for the former, the rectangular combinatorics of

M already fixes its unfoldingM ′ to be rectangular. As expected, N

enjoys better developability, when measured via the relative length

error. In fact, the mesh M does not look like paper but like some

fabric which allows a small amount of stretching. We can recreate

such a result with our method by constraining the development

N ′ to be rectangular ś in that case N would look just likeM , with

the same length error. Developables according to [Stein et al. 2018]

enjoy even fewer degrees of freedom, as detailed in Fig. 23.

Future Research. There are some obvious directions of future re-

search. One is the segmentation problem when approximating ar-

bitrary surfaces with piecewise-developable surface. The first step

would be to investigate how previous work on segmentation can be

combined with our approximation procedures. Other directions of

future research include incorporating more properties of materials,

thereby extending the class of mappings under consideration. Fur-

ther, it would be interesting to develop a theory of curvatures based

on the Gauss map introduced in this paper, in particular because

there is already a relation to [Bobenko et al. 2010].
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Fig. 26. Isometric deformation. Once a piecewise-developable surface is found, handle-based editing can be used to simulate isometric bending.

REFERENCES
Basile Audoly and Yves Pomeau. 2009. Elasticity and Geometry: From hair curls to the

nonlinear response of shells. Oxford University Press.
Alexander Bobenko, Helmut Pottmann, and JohannesWallner. 2010. A curvature theory

for discrete surfaces based on mesh parallelity. Math. Annalen 348 (2010), 1ś24.
Alexander I. Bobenko and Ivan Izmestiev. 2008. Alexandrov’s theorem, weighted

Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier 58 (2008), 447ś505.
R.M.C. Bodduluri and Bahram Ravani. 1993. Design of developable surfaces using

duality between plane and point geometries. Computer-Aided Design 25 (1993),
621ś632.

Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. OpenMesh:
A Generic and Efficient Polygon Mesh Data Structure. Proc. OpenSG Symposium.
https://graphics.uni-bielefeld.de/publications/openmesh.pdf.

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.
Shape-Up: Shaping Discrete Geometry with Projections. Computer Graphics Forum
31, 5 (2012), 1657ś1667. Proc. Symposium Geometry Processing.

Frédéric Cazals and Marc Pouget. 2003. Estimating differential quantities using polyno-
mial fitting of osculating jets. In Proc. Symp. Geometry Processing. 177ś178.

Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from
Metric. ACM Trans. Graph. 37, 4 (2018), 63:1ś17.

Sebastian Claici, Mikhail Bessmeltsev, Scott Schaefer, and Justin Solomon. 2017.
Isometry-Aware Preconditioning for Mesh Parameterization. Computer Graph-
ics Forum 36, 5 (2017), 37ś47. Proc. Symposium Geometry Processing.

Manfredo do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.
Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy Mitra, Helmut Pottmann,

and Mark Pauly. 2010. Paneling Architectural Freeform Surfaces. ACM Trans. Graph.
29, 4 (2010), 45:1ś10.

Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible Harmonic Maps
between Discrete Surfaces. ACM Trans. Graph. 38, 2 (2019), 15:1ś12.

Konstantinos Gavriil, Alexander Schiftner, and Helmut Pottmann. 2018. Optimizing
B-spline surfaces for developability and paneling architectural freeform surfaces.
arXiv 1808.07560.

Philip Hartman and Louis Nirenberg. 1959. On spherical image maps whose Jacobians
do not change signs. Amer. J. Math 81 (1959), 901ś920.

Tim Hoffmann, Andrew Sageman-Furnas, and Max Wardetzky. 2017. A discrete

parametrized surface theory in R3 . Int. Math. Research Notices (2017), 4217ś4258.
Caigui Jiang, Klara Mundilova, Florian Rist, Johannes Wallner, and Helmut Pottmann.

2019. Curve-pleated structures. ACM Trans. Graph. 38, 6 (2019), 169:1ś13.
Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2009. A local/global

approach to mesh parametrization. Computer Graphics Forum 27, 5 (2009), 1495ś1504.
Proc. Symposium Geometry Processing.

Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang.
2006. Geometric modeling with conical meshes and developable surfaces. ACM
Trans. Graph. 25, 3 (2006), 681ś689.

Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. 2004. Methods for non-linear least
squares problems (2nd ed.). Technical Univ. Denmark.

Jun Mitani and Hiromasa Suzuki. 2004. Making papercraft toys from meshes using
strip-based approximate unfolding. In ACM SIGGRAPH 2004. 259ś263.

Chi-Han Peng, Caigui Jiang, Peter Wonka, and Helmut Pottmann. 2019. Checkerboard
Patterns with Black Rectangles. ACM Trans. Graph. 38, 6 (2019), 171:1ś13.

Jörg Peters and Ulrich Reif. 2008. Subdivision Surfaces. Springer.
Tony Phillips. 1999. The differential geometry of the sphericon. Feature Column 10/99,

American Math. Soc. www.ams.org/samplings/feature-column/fcarc-sphericon1.
Nico Pietroni, Marco Tarini, and Paolo Cignoni. 2010. Almost Isometric Mesh Parame-

terization through Abstract Domains. IEEE TVCG 16, 4 (2010), 621ś635.
Helmut Pottmann, Yang Liu, Johannes Wallner, Alexander Bobenko, and Wenping

Wang. 2007. Geometry of Multi-layer Freeform Structures for Architecture. ACM
Trans. Graph. 26, 3 (2007), 65:1ś11.

Helmut Pottmann and Johannes Wallner. 1999. Approximation algorithms for devel-
opable surfaces. Comput. Aided Geom. Design 16 (1999), 539ś556.

Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. 2002. Bézier and B-Spline
Techniques. Springer.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018a. Discrete
Geodesic Nets for Modeling Developable Surfaces. ACM Trans. Graph. 37, 2 (2018),

16:1ś17.
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018b. The Shape

Space of Discrete Orthogonal Geodesic Nets. ACM Tr. Graph. 37, 6 (2018), 228:1ś17.
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2019. Modeling

Curved Folding with Freeform Deformations. ACM Trans. Graph. 38, 6 (2019),
170:1ś12.

Kenneth Rose, Alla Sheffer, Jamie Wither, Marie-Paule Cani, and Boris Thibert. 2007.
Developable Surfaces from Arbitrary Sketched Boundaries. In Proc. Symposium
Geometry Processing. 163ś172.

Josua Sassen, Behrend Heeren, Klaus Hildebrandt, and Martin Rumpf. 2020. Geometric
optimization using nonlinear rotation-invariant coordinates. Comp. Aided Geom.
Des. 77, Article 101829 (2020).

Robert Sauer. 1970. Differenzengeometrie. Springer.
Jingjing Shen, Jiří Kosinka, Malcolm A. Sabin, and Neil A. Dodgson. 2014. Conversion

of Trimmed NURBS Surfaces to Catmull-Clark Subdivision Surfaces. Comput. Aided
Geom. Des. 31 (2014), 486ś498.

Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012. Flexible
Developable Surfaces. Comput. Graph. Forum 31, 5 (2012), 1567ś1576.

Olga Sorkine and Mark Alexa. 2007. As-rigid-as-possible surface modeling. In Proc.
Symposium Geometry Processing. Eurographics, 109ś116.

Oded Stein, Eitan Grinspun, and Keenan Crane. 2018. Developability of Triangle Meshes.
ACM Trans. Graph. 37, 4 (2018), 77:1ś14.

Kenneth Stephenson. 2005. Introduction to Circle Packing. Cambridge Univ. Press.
Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. 2016. Interac-

tive design of developable surfaces. ACM Trans. Graph. 35, 2 (2016), 12:1ś12.
Sivan Toledo. 2003. Taucs, A Library of Sparse Linear Solvers. www.tau.ac.il/∼stoledo/

taucs.
WenpingWang, Helmut Pottmann, and Yang Liu. 2006. Fitting B-Spline Curves to Point

Clouds by Curvature-Based Squared Distance Minimization. ACM Trans. Graph. 25,
2 (2006), 214ś238.

Tony Wills. 2006. D-Forms: 3D Forms from Two 2D Sheets. In Proc. Bridges. 503ś510.

APPENDIX

Lemma. A spline surface x (u,v ) whose parameter lines are geo-

desic and orthogonal to each other is cylindrical of the form x (u,v ) =

a(u) + b (v ) where a(u) is a planar curve and b (v ) parametrizes a

straight line orthogonal to it (or possibly vice versa).

Proof. Using subscripts for partial derivatives, the orthogonality

mentioned here is expressed as ⟨xu ,xv ⟩ = 0. Parameter lines are

geodesic ⇐⇒ planes [xu ,xuu ] and also [xv ,xvv ] are orthogonal

to the surface ⇐⇒ conditions ⟨xuu ,xv ⟩ = ⟨xvv ,xu ⟩ = 0 hold.

By differentiating the orthogonality condition (and using the

geodesic property) we get ⟨xuv ,xv ⟩ = ⟨xuv ,xu ⟩ = 0, which implies

∂v ∥xu ∥
2
= 2⟨xuv ,xu ⟩ = 0. I.e., the length of the vectors xu does

not depend onv . For fixedu, xu moves in a sphere. B-spline surfaces

are piecewise polynomial, and so is xu . The only polynomial curves

contained in spheres are constant, so xu does not depend onv . Then

xuv = 0 implies that the surface has the form x (u,v ) = a(u) + b (v ),

with curves a, b.

By orthogonality, for all u,v we have ⟨xu ,xv ⟩ = ⟨ȧ(u), ḃ (v )⟩ = 0.

Unless a(u) is a straight line, ȧ(u) assumes at least two linearly

independent values. If ḃ (v ) is to be orthogonal to both of them, ḃ

cannot change direction and b (v ) is a straight line. In turn, all ȧ(u)’s

are orthogonal to this line, and the curve a(u) lies in a plane. □
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