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Fig. 1. Design with developables in freeform architecture.We propose a simple approach to isometric mappings between quad meshes, which immediately leads
to a way to model developable surfaces. For this example we started from a segmentation into panels of part of a freeform concrete shell by Zaha Hadid
Architects, built in 2014 in Baku. We approximated it by a quad mesh which is piecewise discrete-developable in the sense of our framework. A�erwards this
mesh undergoes an isometric deformation which respects the panelization. Our approach to discrete-developable surfaces is very flexible in the sense that the
edges of meshes do not have to be aligned with rulings or otherwise special curves on developables, and can be aligned with boundaries and features instead.

We discretize isometric mappings between surfaces as correspondences
between checkerboard patterns derived from quad meshes. This method
captures the degrees of freedom inherent in smooth isometries and enables
a natural de�nition of discrete developable surfaces. This de�nition, which
is remarkably simple, leads to a class of discrete developables which is much
more �exible in applications than previous concepts of discrete developables.
In this paper, we employ optimization to e�ciently compute isometric map-
pings, conformal mappings and isometric bending of surfaces. We perform
geometric modeling of developables, including cutting, gluing and folding.
The discrete mappings presented here have applications in both theory
and practice: We propose a theory of curvatures derived from a discrete
Gauss map as well as a construction of watertight CAD models consisting
of developable spline surfaces.
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1 INTRODUCTION
The geometric modeling of developable surfaces is a topic attracting
attention since many years. One reason for that is the great prac-
tical importance of developables, which represent shapes made by
bending �at pieces of inextensible sheet material into space. Ma-
terials which fall into this category include paper and su�ciently
thin plates [Audoly and Pomeau 2009]. New algorithms and compu-
tational representations of developables continue to emerge. This
steady progress is a sign that the problem of modeling developables
still has no complete and satisfactory solution. The mathematical
theory of developables is far from simple, which probably accounts
for a part of the computational di�culties which occur. The ap-
proach to developables presented in this paper is via a systematic
theory of isometric mappings. It is based on correspondences be-
tween quad meshes, with no speci�c restrictions on the meshes
themselves.

1.1 Overview and Contributions
We propose to manage discrete surfaces and their mappings not
directly, via properties of the vertices, edges and faces, but via prop-
erties of a checkerboard pattern inscribed in the original mesh.
That pattern is created by inserting midpoints of edges � the edge
midpoints belonging to a face will always form a parallelogram,
regardless of the shape of the original face.
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Fig. 2. A checkerboard pa�ern. The
black parallelograms are inscribed in
the original faces. Physical models such
as this can be moved around on devel-
opable reference surfaces, which is evi-
dence for our claim that checkerboard
pa�erns are a good discretization.

Two combinatorially equivalent quad meshes, and their derived
checkerboard patterns are now used to discretize the concept of
mapping between surfaces (Sec. 2). First-order properties of map-
pings are de�ned in terms of the checkerboard pattern, e.g. for an
isometric mapping we require that corresponding parallelograms
are congruent.

The setup we use for mappings between surfaces can also be
employed to de�ne a discrete version of the Gauss mapping, from
which curvatures are derived (Sec. 2.2).

The constraints we use to express the isometric property leave
just the right number of degrees of freedom that we expect from the
smooth case. This is why we are able to use our discrete-isometric
mappings directly for geometric modeling. In particular we are able
to de�ne discrete developables as surfaces isometric to a quadran-
gulation of a planar domain (Sec. 3).

We demonstrate the capabilities of our discrete-developable sur-
faces by means of geometric modeling tasks, the most important
one being watertight developable CAD models. We approach this
hitherto unsolved problem by combining our discrete-isometric
mappings with subdivision (Sec. 4) .

Section 5 contains more results, including approximating a given
surface with a developable one, and how to increase the developabil-
ity of a given surface. We also show how to compute developables
de�ned by gluing boundaries, and by folding along curves.

1.2 Previous Work
There is a large amount of literature on developable surfaces, and
even more about the topic of mappings between surfaces, which
includes mesh parametrization. Related work in discrete and numer-
ical di�erential geometry is discussed later, in Ÿ2.2.2.

Previous work on developable surfaces.Computational treatments
of developables can be divided into two groups. One kind of meth-
ods is based on the fact that developables are, essentially, one-
dimensional objects. Each developable consists of pieces of ruled
surfaces with enjoy the property that the tangent plane along a
ruling is constant. In geometric modeling, a big advantage can be
gained by reducing the dimensionality of the problem from two to
one. Rose et al. [2007] use this principle in solving the problem of
�nding all developables de�ned by a given boundary. The dual ap-
proach by [Bodduluri and Ravani 1993] and follow-up publications
like [Pottmann and Wallner 1999] treats developables as curves in
dual space. Ruled surfaces as degree(1;n) B-spline surfaces, with
developability imposed as an extra nonlinear side condition have
been proposed early, and form the basis of the work by [Jiang et al.
2019; Tang et al. 2016] (for a history of this approach we refer to the
extensive bibliographies contained in these papers). In the discrete

realm, a ruled surface can be represented in a sequence of quadri-
laterals, with developability expressed by planarity of quads. This
principle proposed by [Sauer 1970] is the basis of [Liu et al. 2006]
and [Solomon et al. 2012].

A disadvantage of these methods is that the decomposition of
a developable into its ruled pieces can be arbitrarily complicated
combinatorially [do Carmo 1976, p. 195]. The rulings are no stable
function of the location on a developable surface: This dependence
may be non-smooth [Hartman and Nirenberg 1959, p. 916f], and the
ruling pattern can change in unpredictable ways during deformation
� e.g. when passing through a �at state, the ruling patterns before and
after the �at position are unrelated. With ruling based-methods it is
more di�cult to model situations where the ruling pattern changes
much, and such methods are naturally biased towards solutions
where big changes do not occur.

Alternative computational models are discrete two-dimensional
surfaces characterizing developability in a local manner. This can be
done e.g. by requiring a triangle mesh to be intrinsically �at, having
angle sum 2� in each vertex. It is however not straightforward to
model, in addition to developability, also the bending behaviour
of developables, since the developability constraints can easily be
stronger than we expect from the smooth situation. Recent examples
of discrete developables are the orthogonal-geodesic nets proposed
by Rabinovich et al. [2018a; 2018b; 2019], and the developable tri-
angle meshes of Stein et al. [2018] where a local `hinge' condition
ensures existence of rulings.

Approximation with developables has been done on various levels,
starting with [Mitani and Suzuki 2004]. Stein et al. [2018] use their
de�nition of discrete developability to modify surfaces such that
the Gauss curvature becomes concentrated on curves, achieving a
piecewise-developable approximation. A di�erent approach exploits
the essentially one-dimensional nature of developables. While the
Gauss image (normal vector image) of an arbitrary surface covers
an area of the unit sphere, the Gauss image of a developable or
piecewise-developable surface has zero area [do Carmo 1976, p.
167] and thus, assuming smoothness, is a curve on the unit sphere.
Approximating an arbitrary surface by a few developable patches
is therefore at least as di�cult as approximating a 2D domain by
a few 1-dimensional arcs. Recently, Gavriil et al. [2018] employed
this viewpoint to realize architectural freeform shapes by individual
developable panels.

Previous work on checkerboard patterns.This paper has been mo-
tivated by recent work on discrete surfaces exhibiting two classes of
`white' and `black' faces arranged in a checkerboard pattern. Peng
et al. [2019] discuss patterns with `black rectangles', their degrees of
freedom and their computation. Our paper operates with checker-
board patterns with `black parallelograms' generated by subdivision
from an arbitrary quad mesh. A special case, namely patterns with
`black squares' turns out to be related to [Rabinovich et al. 2018a].

Previous work on mappings between surfaces.Finding correspon-
dences and mappings between geometric shapes is one of the most
signi�cant and diverse problems in geometry processing, cf. e.g.
the recent contributions [Chern et al. 2018; Ezuz et al. 2019]. In our
own work we focus onisometricmappings. They have been stud-
ied in detail, often from the viewpoint that true isometries cannot
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be achieved. As a consequence, as-rigid-as-possible mappings resp.
near-isometric mappings have been investigated, see e.g. [Claici
et al. 2017; Liu et al. 2009; Pietroni et al. 2010; Sorkine and Alexa
2007]. Our idea to model isometry via keeping the shape of small
elements is not entirely new, see e.g. constrained shape exploration
as set up by Bouaziz et al. [2012]. Peng et al. [2019] already propose
to de�ne isometric and conformal mappings by local isometries and
local similarities of checkerboard patterns, but considered restricted
shapes of patterns only.

Relevant work on isometric mappings has been done by Chern et
al. [2018]. Based on a discrete theory of spin structures, they treat
isometric mappings, particularly immersions. Recently, Sassen et al.
[2020] investigated the �exions of triangle meshes with rigid faces
via the manifold of realizations of �xed edge lengths but variable
dihedral angles. They formulate the corresponding integrability
conditions and solve both exact and approximate reconstruction of
meshes, which includes computing isometric mappings. The main
points in which our work di�ers from these two recent contributions
is the di�erent focus (ours is geometric modeling, cutting and gluing,
applications in paneling) and the simplicity of our approach.

Conformal mappings are not a focus of the present paper, and we
only refer to the bibliography in [Peng et al. 2019].

2 MAPS BETWEEN SURFACES AS CORRESPONDENCES
BETWEEN CHECKERBOARD PATTERNS

In the same way a meshM is a discrete surface, a pairM, M0 of
combinatorially equivalent meshes can be seen as a discrete version
of a mappingbetween surfaces. This viewpoint has been highly
successful e.g. in the study of discrete conformal mappings as cor-
respondences between special meshes (namely, circle patterns, see
[Stephenson 2005]). In the same tradition, Peng et al. [2019] suggest
the following setup. A control meshM = (V;E;F) is associated with
a checkerboard pattern(VP;EP; FP) derived fromM.

� Every edgevw 2 E de�nes a vertexmvw = 1
2 (v + w), which

is the midpoint of that edge, see Fig. 3.
� Every vertexv 2 V de�nes a new `white' face with vertices

mvw wherevw is an edge incident withv.
� Every facef 2 F de�nes a new `black' face with vertices

mvw , wherevw is an edge contained inf .
� Vertex�face inclusion translates to adjacency of white and

black faces in the checkerboard pattern.

Fig. 4. A conformal mapping between quad meshesM and M0. HereM0 is
flat, which makes the mapping fromM0 to M a conformal parametrization.
In fact this parametrization is as isometric as possible.

Varignon's theorem. For any quadrilateral face ofM, the edges of
the inscribed `black' face obey the equations shown by Fig. 3. They
say that these edges are parallel to the diagonals of the original face,
implying the inscribed face is a parallelogram. This fact, holds even
if the original face is not planar, and is sometimes calledVarignon's
theorem.

2.1 Conformal maps and isometric maps
Peng et al. [2019] propose to discretize a mapping between surfaces
as the correspondence between combinatorially equivalent meshes
M andM0. They consider only such meshes where induced checker-
board patterns exhibit black rectangles, and they propose that the
mapping is isometric (resp., conformal), if corresponding black faces
are related by a congruence (resp. similarity) transformation. We are
going to demonstrate that the very same de�nition is sensible also
in the general case, without any restriction to the shape of faces.

Consider corresponding facesf = v0v1v2v3 and f 0= v 0
0v

0
1v

0
2v

0
3

of the given meshesM andM0, see Figure 3. The inscribed parallel-
ograms are congruent, if and only if their edge lengths and angles
coincide, i.e., if and only if

ciso;0(f ) = kv0 � v2k2 � k v 0
0 � v 0

2k2 = 0;

ciso;1(f ) = kv1 � v3k2 � k v 0
1 � v 0

3k2 = 0;

ciso;2(f ) = hv0 � v2;v1 � v3i � h v 0
0 � v 0

2;v 0
1 � v 0

3i = 0: (1)

In an analogous way we state conditions expressing a similarity
transformation: The equations

cconf;0(f ) = � f kv0 � v2k2 � k v 0
0 � v 0

2k2 = 0;

cconf;1(f ) = � f kv1 � v3k2 � k v 0
1 � v 0

3k2 = 0;

cconf;2(f ) = � f hv0 � v2;v1 � v3i � h v 0
0 � v 0

2;v 0
1 � v 0

3i = 0 (2)

say that edge lengths of the inscribed parallelogram are multiplied
with the factor (� f )1=2, but angles stay the same. Both(1)and(2)
directly refer to the control meshM.

2.2 Curvatures for quad meshes
Checkerboard patterns as introduced above are well suited to intro-
duce curvatures, because the `black' faces are planar see (Fig. 3) and
have well-de�ned normal vectors. The classical de�nition of curva-
tures via the Gauss map is nicely compatible with our de�nition of
discrete mappings between discrete surfaces. We here describe our
construction and its relation to other de�nitions of curvatures.

2.2.1 Definition of curvatures per face.The main idea is to de�ne
a normal vectorni for each vertexv i of the control meshM, and
consider o�set meshesM� with verticesv i + �n i . We require that
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Fig. 5. A meshM (le�) with vertices v i , normal vectorsni (Gauss image
� (M ), at right) and an o�set M � with verticesv i + �n i . The distance of
corresponding `black' parallelograms inscribed toM; M � is � .

in the checkerboard patterns derived from meshesM;M� , corre-
sponding `black' parallelograms lie in parallel planes at distance�
from each other. Figure 5 illustrates this situation. By linearity, it is
su�cient to require this property only for � = 1.

For the facef = v0v1v2v3 with normal vectorsn0; : : : ;n3, our
distance requirement translates to the four conditions

cnorm; j (f ) = hnj + nj +1;nf i � 2 = 0; (j = 0; : : : ;3) (3)

wherenf is a unit normal vector of the inscribed parallelogram,
consistently pointing to one side of the mesh. Indices are taken
modulo 4. Actuallycnorm;3(f ) is redundant (because if 3 vertices of
a parallelogram lie in a certain plane, also the 4th vertex does).

Note that the normal vectorsni arenot unit vectors, and they
are also not uniquely de�ned by(3) alone. In practice, they are
computed via optimization, see Sec. 2.3.1. They constitute the ver-
tices of the Gauss image� (M). By construction, the checkerboard
pattern derived from� (M) has `black' parallelograms tangentially
circumscribed to the unit sphere. The Gauss map within each paral-
lelogram de�nes a shape operator, mapping edges of a parallelogram
inscribed toM to the corresponding edges of a parallelogram in-
scribed in� (M). The usual sign convention (the shape operator is
the negative derivative of the Gauss map) implies that the discrete
shape operator in the facef reads

sf :
� v2 � v0 7�! � (n2 � n0);

v3 � v1 7�! � (n3 � n1):

Both parallelograms inscribed inf = v0v1v2v3 and in � (f ) =
n0n1n2n3 havenf as a normal vector. It therefore makes sense to
view sf as a mapping of the two-dimensional subspacenf

? into
itself. Then both Gauss curvatureK and mean curvatureH (in the
pointwise sense) are naturally de�ned via determinant and trace of
sf , just like in the smooth theory:

K(f ) = det(sf ) =
[n3 � n1;n2 � n0]
[v3 � v1;v2 � v0]

; (4)

H(f ) =
tr (sf )

2
= �

[n3 � n1;v2 � v0] + [v3 � v1;n2 � n0]
2[v3 � v1;v2 � v0]

:

Here we used the notation [a;b] = det(a;b;nf ) for the determinant
of vectors in the subspacenf

? . Further, it is natural to consider the
shape operator's eigenvalues� 1(f ); � 2(f ) as the principal curva-
tures, with eigenvectors indicating principal directions. Eigenvalues
are computed e.g. as the roots of the equationx2 � 2Hx + K = 0.

The principal directions must be orthogonal to each other, which
happens if and only if the shape operator is symmetric, i.e,

csym(f ) = hn3 � n1;v2 � v0i � h v3 � v1;n2 � n0i = 0: (5)

We add this condition as a constraint in our computations. It acts as
a regularizer and contributes to eliminating the ambiguity which is
still left after conditions(3)are imposed. The results are numerically
convincing, see Fig. 6.

2.2.2 Comparison with other quad mesh-based curvature theories.
Curvatures of polyhedral surfaces were introduced by [Bobenko
et al. 2010; Pottmann et al. 2007]. They consider a polyhedral mesh
M endowed with polyhedral o�setsM� at distance� such that
corresponding facesf , f � of M;M� lie in parallel planes. Mean
curvatureH(f ) and Gauss curvatureK(f ) of the facef are derived
from Steiner's formula,

area(f � ) = area(f )(1 � 2�H (f ) + � 2K(f )): (6)

The very same relation applies to our curvatures and the areas of
`black' parallelograms. This can be easily seen from(4), because the
area of the parallelogram inscribed in the facev0v1v2v3 is exactly
1
4[v2 � v0;v3 � v1]. The major di�erence between our setup and that
of Bobenko et al. [2010] is that in our case, the relation(6)applies
to only one half of the faces. If it applies to all faces, it represents a
rather strong condition on the meshes involved � for quad meshes
this essentially requires that edges follow principal curvature lines.

A further development is the theory of curvatures foredge-con-
straint netsby Ho�mann et al. [2017]. They operate with unit nor-
mal vectors of vertices. From the computational viewpoint, their
constraints on normal vectors are more involved than ours. While
the work of Ho�mann et al. [2017] is capable of unifying several
previous constructions, a thorough theoretical investigation of our
de�nition of curvatures is a topic of future research.

2.3 Computation of mappings via optimization
In geometric modeling with mappings, a basic task is to make them
isometric or conformal, changing them as little as possible (this
includes the task of making surfaces developable, changing them as
little as possible in the process). Obviously it is important that this
can be done quickly. Since the conditions we impose on mappings
are not su�cient to guarantee smoothness, we perform all compu-
tational tasks via optimization and employ suitable regularizers.

2.3.1 Setup of variables and mapping-related constraints.The com-
putations in this paper involve two quad meshesM = (V;E;F) and

-100 0 100

Fig. 6. Comparing the value of Gauss curvature computed with our method
(le�) with the jet �t method of [Cazals and Pouget 2003] (center). The
di�erences, visualized via color di�erence (right) are barely visible.
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M0 = (V0;E0; F0) which are combinatorially equivalent. The natural
correspondence between vertices encodes a mapping. The variables
of our computation, including the coordinates of vertices, are stored
in a vectorX 2 RN . Constraints originally formulated as equations
are expressed via minimization of energies. The isometry constraint
of Equ. (1) is expressed bywisoEiso(X) ! min, where

Eiso =
X

f 2F

X 3

j =1
ciso; j (f )2;

andwiso is a positive weight. Similarly, to compute a conformal
mapping between meshesM;M0we convert Equ.(2)into the opti-
mization problemwconfEconf(X) + w� E� (X) ! min, where

Econf =
X

f 2F

X 3

j =1
cconf; j (f )2; E� =

X

f 2F
(� f � 1)2:

The energyE� penalizes deviation of conformal factors from 1. It is
used for regularization and (ifw� is big enough) to make a conformal
map as isometric as possible.

In handle-based editing there are verticesv i which have to be
close to �xed positionsai and pairs of verticesv i andv j which are
forced to lie on top of each other (this is necessary for gluing). Similar
conditions can be imposed on the meshM0. These requirements are
handled by energies of the form

Epos=
X

i 2I
kv i � ai k2 +

X

(i ; j )2J
kv i � v j k2 + (: : :);

where(: : :) stands for analogous contributions from the meshM0. A
suitable multiplewposEposis to be combined with the other energies,
as required by the task at hand.

A special case of mappings discussed here is whereM0 is the
Gauss image ofM. We express conditions(3)and(5) in the form
wnormEnorm + wsymEsym ! min, with

Enorm =
X

f 2F

X 3

j =0
cnorm; j (f )2; Esym =

X

f 2F
csym(f )2:

2.3.2 So� constraints and approximation.The magnitude of weights
employed for the di�erent energies can be used to inform the opti-
mization algorithm of the importance of individual constraints. We
speak of soft constraints if weights are small. Typical examples are
constraints where we already know they cannot be ful�lled, like the
requirement� f = 1 in conformal mappings which was mentioned
above. Another instance of soft constraints are the ones used to
express proximity of a meshM to a reference shape� .

Such a condition is implemented by computing the closest point
projectionv �

i 2 � of a representative samplefv i gi 2I of vertices.
We subsequently represent the tangent plane of� in that point
by a linear equation� i (x) = 0. Then proximity is expressed by
wprox;1Eprox;1 + wprox;2Eprox;2 ! min, with

Eprox;1 =
X

i 2I
kv i � v �

i k2; Eprox;2 =
X

i 2I
� i (v i )2:

The footpointsv �
i and tangent planes are recomputed in each round

of our iterative optimization procedure. Using onlyEprox;1 amounts
to a version of the well known ICP algorithm and is suitable only if
the distance from� is still big. Close to� , the shape of� is much
better represented by its tangent plane than by a single point, and
wprox;1 ! 0 greatly speeds up convergence. This matter is discussed
in detail by [Wang et al. 2006].

M

M0
Fig. 7. An isometric mapping be-
tween meshesM and M0. Since
M0 is contained in a plane,M is
a discrete developable.

2.3.3 Regularizing meshes and mappings.The discrete-isometric
relation between meshes does not prevent zigzagging of mesh poly-
lines, and regularization is necessary to achieve a fair solution. A
natural fairness functional is found by penalizing irregular spacing
of vertices on mesh polylines. In our optimization, we add the term
wfair;M Efair;M to the other energies already in use, with

Efair;M =
X

v i v j vk successive
vertices inM

kv i � 2v j + vk k2:

Similarly we considerwfair;M0Efair;M0. These regularizers can be
employed whenever the mesh they refer to is not �xed anyway
during optimization. A prototypical algorithm where hard and soft
constraints are combined is shown below. The weight of the reg-
ularizing fairness term is small to begin with, but we are making
provision to lower it further in case the fairness term is too domi-
nant and prevents achieving isometry. For di�erent examples in this
paper the energy used for optimization is di�erent, and it might not
beM0 that is the variable butM or even bothM andM0. In those
cases Algorithm 1 has to undergo obvious modi�cations.

Algorithm 1: Compute a meshM0 isometric toM

Data: MeshM, initial value for M0, side conditions encoded inEpos

Fix energy thresholdsEmin, Eiso;min;
Initialize weights by lettingw iso = 1,wpos= 1,wfair; M 0 = 0:1;
repeat

repeat
SubjectM0 to optimization by minimizing
E := w isoEiso + wfair; M 0Efair; M 0 + wposEpos;

until E � Emin or number of iterations exceeds maximum;
wfair; M 0  wfair; M 0=10;

until Eiso � Eiso;min;
return M0

Regularizing mappings between meshes.We want to be able to
deal with meshesM, M0 that are not particularly fair in terms of
these energies, even if the natural correspondence betweenM and
M0approximates a smooth mapping between surfaces. If, say,M is
�xed during optimization, then regularizingM0 will have a detri-
mental e�ect on the quality of the mapping. In that case it is better
to regularize themappinginstead of the mesh.

In order to achieve this, we recall the following properties of
a smooth mapping between surfaces� , � 0. For corresponding
curvesc(t ) andc0(t ) =  (c(t )) corresponding tangent vectorsdc=dt,
dc0=dt at a certain time instant are related by the linearization (the
di�erential) d , which is a linear mapping between corresponding
tangent planes of� , � 0. Forisometricmappings, even more is true:
d is an isometric linear mapping which maps also the tangential
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(a) (b) (c) (d)
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Fig. 8. Degrees of freedom in computing developables. (a) An input surface is subdivided into 46 individual patches and yields a wireframe future computations
are based on. (b) Each 4-sided boundary is filled by a developable. One can see that in the negatively curved regions, this is not possible with a regular
surface. (c) The same, but with boundaries movable and smoothness across boundaries as a so� constraint. The resulting surface is not entirely piecewise
developable, since smoothness interferes with the developability constraint. (d) The same, with no smoothness across boundaries. Here the individual patches
are developable. The inset images show the Gaussian curvature (green is zero; bounding box size equals 11).

components ofd2c=dt2, d2c0=dt2 onto each other [do Carmo 1976,
p. 239]. This property is equivalent to requiring

h~v; d2

dt2
ci = hd (~v ); d2

dt2
c0i (7)

for all tangent vectors~v. For a discrete analogue of this property,
surfaces� , � 0are represented by meshesM, M0. Vectors~v, d (~v )
are replaced by corresponding edge vectorsv l � v j andv 0

l � v 0
j .

Second derivatives of curves are replaced by 2nd di�erences of
mesh polylines. This yields the energy

Emap =
X

v i v j vk successive
vertices,v j v l 2 E

(hv i � 2v j + vk ;v l � v j i � h v 0
i � 2v 0

j + v 0
k ;v 0

l � v 0
j i )

2:

Emap ! min expresses the discrete version of(7). If, say,M is �xed
and M0 is variable, a contributionwmapEmap to the total energy
will regularize the mapping and in turn, regularize the shape ofM0

(without regularizing the polylines contained inM0).

Example.Figure 4 illustrates a conformal mapping of a given
mesh to a planar meshM0. Here variables are thex;y coordinates
of vertices ofM0 as well as conformal factors� f for each face of
the mesh, using the terminology of Equ.(2). Thez coordinates of
vertices ofM0are set to zero. The computation ofM0is performed by
minimizing wconfEconf + w� E� + wfair;M0Efair;M0. Here the energy
E� makes this conformal mapping as isometric as possible (in the
`2 sense).

3 DISCRETE DEVELOPABLE SURFACES
We de�ne a discrete developable surface as a quad meshM which
is isometric, in the sense of Equ.(1), to the quadrangulation of a
planar domain,M0. We do not impose further constraints on either
M or M0.

This de�nition is illustrated by Figure 7. It leads to meshes which
exhibit the known characteristics of smooth developables. In this

Fig. 9. The Gauss image� (M )
of a meshM is curve-like if
and only if M itself is piece-
wise developable. M � (M)

section we discuss the computation of discrete developables, the
extraction of basic geometric properties such as rulings, and how
our de�nition relates to other approaches to discrete developables.

3.1 Computing developables
By de�nition, a meshM is developable, if there is an isometric mesh
M0which is contained in a plane. In di�erent computational tasks
eitherM or M0may be �xed, or both may be variable. Each task is
solved by minimizing a suitable linear combination of the energies
de�ned in Sec. 2.3. The weights of individual contributions to the
total energy are summarized in the table in Fig. 22.

In Fig. 7, the unfoldingM0 is given, andM is found by a handle-
based isometric bending. The shape ofM is the result of minimizing
an energy of the formwisoEiso+ wposEpos+ wfair;M Efair;M , using a
suitably modi�ed Algorithm 1.

An analogous setup is used to compute the isometric deforma-
tion M0 of a partly developable surfaceM in Fig. 10. HereM �rst
undergoes a handle-based deformation, which yields a reference
shape� . We now �nd a discrete surfaceM0 isometric toM which
approximates� , by minimizing an energy of the formwisoEiso +
wprox;1Eprox;1 + wprox;2Eprox;2 + wfair;M0Efair;M0 ! min.

An unfolding M0of a developable surfaceM (see Fig. 12) is com-
puted in an analogous way, using the energywiso Eiso + wfair;M0

Efair;M0. Examples where both meshesM, M0undergo simultaneous
optimization are shown throughout the paper, e.g. in Fig. 8.

Degrees of freedom and solvability of the optimization problem.
Figure 8 illustrates the fact that imposing developability signi�cantly
reduces the number of degrees of freedom:

� In Fig. 8b, curvilinear quads are to be �lled by developables. This
is possible e.g. if such a quad lies on the boundary of its convex hull,
but not always. Singularities develop, and our approach to discrete
isometries is no longer guaranteed to accurately model isometries of
smooth surfaces. Similarly we must expect the computation of Gauss
curvature to break down in singularities. In any case such unsolvable
cases are identi�ed by pockets of nonzero Gauss curvature.

� In Fig. 8c, a wireframe, which is itself variable, is �lled by
developable patches, with smoothness across boundaries enforced.
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defor-
mation

 ���!

�
M

 ���!
isometric
deform.

M
M0

 ������������!
isometric mapping

Fig. 10. Handle-based isometric editing. We show a deformed state� of a tin-can shaped surfaceM (the deformation model is that ofRhinoceros®and is not
relevant for our result). We use the isometric constraint to simulate a surfaceM0 close to� and isometric toM. SinceM is piecewise developable, so isM0.

This requirement is not compatible with developability, which can
be clearly seen by means of nonzero values of Gaussian curvature.

� Figure 8d illustrates a solvable problem: a wireframe, itself
subject to optimization, is to be �lled by a piecewise-developable
surface.

3.2 Verifying developability
In order to verify developability of the surfaces we have computed,
we �rstly observe if they are isometric to the planar domains used
in their computation. In addition we evaluate the Gauss curvature
(which should be zero) and check if the surface contains rulings.

Estimating normals and curvatures.The Gauss image of a dis-
crete surfaceM consists of its normal vectors, and can be computed
by several methods. We could e.g. simply take the normal vectors
nf of `black' parallelograms. An alternative is to compute vertex
normal vectorsni according to Sec. 2.2, by minimizing the energy
wnormEnorm + wsymEsym+ wfairEfair ! min. In any case, developa-
bility of M is characterized by the fact that the Gauss image is
one-dimensional, see Fig. 9.

For computing curvatures, many more or less equivalent meth-
ods are available, for which we refer back to Ÿ2.2.1 and Fig. 6. We
visualize Gauss curvature information in Figures 8 and 13.

Visualizing Rulings.In each edge midpoint, where two `black'
parallelograms meet, we can compute a ruling by intersecting the
planes of the two parallelograms. This procedure discretizes the
computation of rulings of smooth developables via intersection of
two in�nitesimally close tangent planes.

Another approach to rulings is based on an alternative criterion
for developability. Gauss curvature, by its very de�nition as determi-
nant of the shape operators, vanishes if and only ifshas a zero eigen-
value. We consider the conjugacy relationh~v;s(~r )i = hs(~v );~r i = 0

Fig. 11. Developables possess right
circularosculating coneswhich in the
generic case tangentially pass from
one side of the developable to the
other (analogous to curves' osculat-
ing circles). Existence follows from the
fact that along a ruling, the principal
radius of curvature is a linear function.
We verify this by experiment.

M0
1

M1

M0
2

M2 ��������!

 �!

isometry  �!

isometry

a�ne mapping
"1 :5

1 :5
1

#

Fig. 12. A surfaceM1
retains developability
when mapped to a sur-
face M2 via an a�ine
transformation. Here
we illustrate the fact
that no such simple
correspondence exists
between the respective
unfoldingsM0

1, M0
2.

between tangent vectors~v,~r and compute a vector~r conjugate to a
given vector~v via~r = s(~v )? . Then we have the following equiva-
lence: The surface is developable in the point under consideration
() s is rank-de�cient () ~r = s(~v )? always lies in the zero
eigenspace ofs, regardless of~v.

That zero eigenspace of the shape operator, indicating the princi-
pal direction corresponding to zero curvature, is the ruling. We use
this fact to visualize rulings in Figure 13, where in the bottom row
surfaces are near-developable. Vectors~r nicely align along rulings.

Visualizing Osculating Cones.Smooth developables posses oscu-
lating cones of revolution, which are in second order contact with
the surface along an entire ruling. Their existence corresponds to
the fact that along a ruling, the principal radius of curvature (the
inverse of the nonzero principal curvature) is a linear function of
arc length. We were able to experimentally verify this, see Fig. 11.

3.3 Relation to other definitions of discrete developables
The relation of our de�nition of developables to theorthogonal geo-
desic netsproposed by Rabinovich et al. [2018a] is as follows. Our
de�nition considers developables as a discrete version of a paramet-
ric surface which happens to be developable, but without any restric-
tion on the nature of the parametrization. A discrete orthogonal-
geodesic net, on the other hand, discretizes a special parametrization
� both parameter lines are geodesics and orthogonal to each other.
Such a parametrization does not have to be of constant speed (i.e.,
the faces do not need to approximate squares) but we can achieve
this property by re-parametrizing each parameter separately.

If within our framework, we obtain a mesh whose derived checker-
board pattern has `black' faces which are squares of the same size,
then all face diagonals in the mesh are orthogonal and have the same
length. A quad mesh consisting of diagonals of the original mesh
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control meshM subdivided meshSk (M ) limit surfaceM1 ruling directions onM1 bicubic interpolant ofM

input

result of
optimization

-0.04 0

K

0.04

Fig. 13.Developable spline surfaces. A meshM a�er k rounds of subdivision becomes a finer meshSk (M ). Herek = 3, and Sk (M ) is already a good
approximation of the limit surfaceM1 . By using an appropriate subdivision scheme we achieve thatM1 is a bi-cubic B-spline surface. By optimizingM such
that Sk (M ) is discrete-developable we makeM1 a near-developable spline surface. We here show the situation before and a�er optimization. The color
coding illustrates Gauss curvature (white is zero; bounding box size equals 10). We also show a bicubicinterpolantdefined byM, which exhibits particularly
bad curvature behaviour, despiteM already being discrete-developable. The column labelled �ruling directions� shows tangents conjugate to parameters lines
which, in case of developability, arrange themselves along rulings.

therefore discretizes an orthogonal Chebyshev net, which is known
to be geodesic and to occur precisely in developable surfaces. In this
way a special checkerboard pattern discretizes the same smooth
object as a discrete orthogonal-geodesic net.

However from the perspective of applications presented in this
paper, it does not make sense to restrict ourselves to this special
case, since the freedom of choosing the parametrization is a great
advantage in practical modeling tasks. For example, we can align
boundaries and features with edges (or with diagonals). Another in-
stance where the greater freedom of our de�nition becomes evident
is when we transform a developable by an a�ne transformation (see
Fig. 12) or by o�setting. Such a transformation would not be possible
with orthogonal-geodesic nets without a global remeshing. Also
the watertight CAD models presented the next section illustrate the
�exibility of our de�nition.

4 DEVELOPABLE SPLINE SURFACES AND WATERTIGHT
CAD MODELS

It is not straightforward to express developable surfaces in the
framework of B-splines implemented in most CAD systems. It can
be done by segmenting developables into planar and ruled patches.
However this decomposition might be much more complex than
the �rst visual appearance of the developable suggests. From the
viewpoint of modeling, it would be highly preferable not having to
worry about it, and being able to use spline surfaces whose control
points are not aligned with rulings. This problem has been described
as unsolved recently by [Rabinovich et al. 2018a]. Our solution,
which represents a passage from discrete di�erential geometry to
computer-aided geometric design, is a main contribution of the
present paper. We show how to perform modeling with watertight
spline surfaces which are developable to an extent su�cient for
applications.

The idea is is illustrated by Fig. 13 and Alg. 2. We take a control
meshM and derive a B-spline surfaceM1 from it. An alternative
way to produce this spline surface is to construct it as limit surface
of a certain stationary subdivision ruleS. The idea is now to use a
small numberk of rounds of subdivision to create a �ne meshSk (M)

which approximates the �nal B-spline surfaceM1 with su�cient
numerical accuracy, but is still small enough to be subjected to
optimization, in order to achieve developability.

Algorithm 2: Modeling with a developable spline surfaceM1

Data: Initial control meshM, subdivision levelk (e.g.k = 2)
Macro Sk (meshM)

k rounds of subdivision applied to each rectangular patch ofM;
Initialize 2D meshM0 combinatorially equivalent toSk (M );
Set up energyEiso expressing isometry ofSk (M ) andM0;
Set up energiesEfair;Sk (M ) andEfair; M 0;

while user is imposing constraints on design surfacedo
Express user's constraints as energyEpos(Sk (M )) ;
Use a version of Alg. 1 on variablesM; M0 to minimize
w isoEiso + wposEpos+ wfair;Sk (M )Efair;Sk (M ) + wfair; M 0Efair; M 0;

end
return the bicubic spline surfaceM1 whose control mesh isM;

The subdivision scheme we employ is an extension of the well
known Catmull-Clark scheme which in its combinatorially regular
case converges to bicubic spline surfaces [Peters and Reif 2008]. We
decompose the given mesh into quadrilateral patches bounded by
mesh polylines (the example of Fig. 13 has only one such patch). For
each patch we have 4 boundary polylines. The verticesfpj gj =1; :::;M
of such a boundary polyline are the control points of a cubic B-spline
curve (with uniform interior knots) interpolating the endpointsp1
andpM . This curve is alternatively produced as the limit curve of a
stationary subdivision rule whose stencil is derived from Boehm's
knot insertion formula for B-splines [Prautzsch et al. 2002]: For
i 2 f1; : : : ;2M � 3g, we let

pnew
i =

MX

j =1

� i j pj ; where� i j =
1
16

266666664

16
8 8

12 4
3 11 2

8 8
2 12 2

: : :

377777775

; (8)

cf. [Shen et al. 2014, Fig. 6]. In the interior of the polyline, this is the
usual cubic Lane-Riesenfeld subdivision rule. By applying it �rst to

ACM Trans. Graph., Vol. 39, No. 4, Article 128. Publication date: July 2020.



�ad-mesh based isometric mappings and developable surfaces ˆ 128:9

M

S3(M)

M0

Fig. 14. Le�: A near-developable spline surface, its parameter lines and
rulings. Right: Coarse control meshM (only edges shown), its subdivision
S3(M ), and the unfoldingM0 of S3(M ).

N;S2(N) =: M

M;Mopt Mopt;S2(Mopt);M1
opt

Fig. 15.A watertight CAD model.A meshM is optimized such that a subdi-
vided meshS2(M ) becomes a discrete developable. We here show the control
meshM and its optimized versionMopt as well as the near-developable
B-spline surfaceM1

opt. Actually,M has been created by subdivision in the
first place from a very coarse meshN (top le�) which however does not
have su�iciently many degrees of freedom to be used directly.

the rows and subsequently to the columns of anM � N rectangular
control point arrangement, we create(2M � 3) � (2N � 3) control
points in the next level of recursion. Apart from the 4 boundary
rows, this amounts to Catmull-Clark subdivision.

The collection of bicubic surface patches produced in this way is
watertight, because neighbouring patches share a boundary which is
interpolated on both sides. The resulting composite surface however
is smooth across patch boundaries only if this property is enforced
by optimization.

The geometric modeling procedure is summarized by Algorithm 2.
The user modi�es the control meshM until satis�ed with the B-
spline surfaceM1 derived from it, while in the background a re�ned
meshSk (M), which closely approximatesM1 , is optimized to be
discrete-developable. For that purpose an auxiliary �at meshM0

which is isometric toSk (M), has to be computed, cf. Fig. 14.
Figures 13, 15 show examples. Figure 13 in particular illustrates

the fact that the control meshM does not have to be fair forSk (M)
to be a fair discrete-developable surface.

Remark.The surfaces produced by this method are developable
only up to a certain amount of numerical inaccuracy. If exact de-
velopability is required, the surface computed in this way could be
decomposed into its �at parts and ruled parts, and subsequently
be approximated by exact developables using e.g. the methods of
[Tang et al. 2016].

Remark:Such a subdivision method would not work for the
discrete-orthogonal nets of [Rabinovich et al. 2018a], since there are

no spline surfaces with orthogonal-geodesic parameter lines except
for cylinders (see the appendix).

5 RESULTS
Cutting and gluing.When computing a developableM from its

unfolding M0, we might force pairs of vertices to lie on top of each
other. Adding such constraints to our optimization procedure simu-
lates gluing, if the selected vertex pairs de�ne an arclength-preserv-
ing correspondence between boundaries inM0. Since our method
does not require that edges follow special curves on developables,
we can align edges with boundaries and features. It might even
be desirable to represent features not by the edges of a mesh, but
by diagonalsof faces, since the isometry condition(1)operates on
diagonals rather than on edges. Examples are shown by Figures 18
and 16.

Cone points.By appropriately gluing planar domains one achieves
surfaces which are developable except in individual singularities,
where the intrinsic metric behaves like that of a non-�at cone. Fig.
17 exhibits a cone point with angle sum less than 360 degrees, and
another cone point with negative Gaussian curvature concentrated
in that point, i.e., with an angle sum greater than 360 degrees. We
include this example to show the �exibility of our approach.

D-forms and non-convex generalizations.The shapes obtained by
gluing together two planar domains with the same perimeter have
been of interest since thesphericonwas proposed [Phillips 1999]
and the nameD-formfor such shapes was coined by [Wills 2006].
The domains in question can ben-gons or can be smooth; classically
convexity is assumed. It is well known that a unique convex surface
isometric to the glued domains exists, if that union is intrinsically
convex. This means that in corresponding points, the sum of cur-
vatures is nonnegative (if we use the convention that curvatures
of convex curves are always nonnegative). See [Bobenko and Iz-
mestiev 2008] for an algorithmic solution in the discrete case. Here
we are interested in the non-convex case and the shape of �D-forms�
obtained by gluing domains which violate the curvature condition.
Figure 19 gives some examples.

Fig. 16. The features of
this cut and glue exam-
ple are not aligned with
edges of the mesh, but
with diagonals. In this
way lengths are preserved
more accurately.

Fig. 17. Geometric singularities (cone points) can be achieved by appropriate
gluing of planar domains.
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Fig. 18.Cutting and Gluing. This example of computing a developable from its unfolding involves the gluing shut of holes. From le�, we show the unfolding, the
developable, its mesh representation, and a photo of a paper model. Here all boundaries, including holes, are aligned with edges of the mesh. The combinatorial
singularities in the meshes which inevitably occur are not noticeable in the final rendering.

(a) (b) (c) (d)

Fig. 19.D-Forms and their generalizations. The two convex planar domains in (a) with the same perimeter can be glued together along their respective
boundaries to form a unique convex surface. If the domains are not convex, a unique convex surface only exists if in corresponding boundary points, curvatures
� , � 0 obey the condition� + � 0 � 0. This is not the case in (b) and (c), where one can observe the emerging singularities on non-convex piecewise-developable
surfaces. Subfigure (d) shows a further kind of gluing domains along boundary components. In all cases we show, from top to bo�om, the unfolding, the
(generalized) D-form, and a photo of a paper model.

Approximation with developables.For any given non-developable
surface, we may ask for a developable or piecewise-developable
surface approximating it. This is a di�cult problem and one can
approach it from various angles, see e.g. [Mitani and Suzuki 2004].
Here we consider only a sub-problem: We assume that a reference
shape� has been segmented into patches, and we wish to approxi-
mate the individual patches by developables. The simplest case is
approximating one reference shape by a single developable. From
there, it is only a small step to simultaneously approximate a seg-
mented reference shape by a union of patches glued together along
their boundaries. Creating the segmentation is beyond the scope of
this paper. To approximate a reference shape� , we do the following:

� We represent� by a meshM. M is subdivided into patches
Mj which correspond to the patches on� .

� We conformally and near-isometrically map each patchMj
to a planar meshM0

j , storing the patch connectivity in gluing
data for the unfoldingsM0

j .

� We simultaneously optimize allMj and M0
j such that the

correspondence betweenMj andM0
j becomes isometric and

gluing is respected.Mj must be in proximity with � .

Examples are shown by Fig. 21. The same procedure can be ap-
plied to increase the developability of a surface, if we set aside the
question of segmentation. We should mention that the problem of
making a surface developable has also been studied by [Stein et al.
2018], where a mesh is driven towards piecewise-developability by
clustering Gauss curvature along feature lines. This method is more
rigid than our approach, since edges are aligned with rulings and
feature lines.

Deformations.Figure 26 shows various stages in a deformation
sequence, computed analogous to Fig 10. It is important to appreciate
the fact that developables occur naturally as the shapes of thin sheets
of inextensible material. For this reason, developables and their
deformations can be used to compute believable geometric shapes
without any simulation of the actual physics involved, see e.g. Fig. 21.
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(a) (b) (c) (d)

Fig. 20.Paneling freeform designs in architecture. Here a detail of the NHHQ skyscraper project by Zaha Hadid Architects (a) is being approximated by a
piecewise-developable (b). For the surface in subfigure (c), more smoothness across patch boundaries has been required. That piecewise-developable surface is
realized as a piecewise single-curved architectural freeform skin in (d).

This observation extends to materials which do stretch, like metals,
but which nevertheless assume developable shapes when they revert
to a state of minimal tension. Figure 10 shows a deformed can. It
apparently does not resume its original cylindrical shape because
in several places the limits of elasticity have been exceeded and
deformation remains permanent. No such property was present in
the computation.

Paneling architectural freeform shapes.A speci�c and important
special case of the approximation problem is the paneling of archi-
tectural freeform shapes. Eigensatz et al. [2010] considered surface
segmentation into di�erent kinds of panels, such that by using
simple panels, and panels manufacturable from the same mold, the
overall cost is reduced. Since developable panels are much less costly
than double-curved ones, a combination of their segmentation with
our approximation technique deserves investigation. A similar ap-
proach is pursued by Gavriil et al. [2018] who perform segmentation
by an analysis of the Gauss image. Once segmentation is performed
� either automatically or by the user � we can use our methods to
approximate the given design shape by a piecewise-developable
surface. Figure 20 shows a result.

6 DISCUSSION
Veri�cation of results.We regard reconstructing the well known

geometric properties of developables as the main tools in verifying
the validity of our results. These include the visualization of rulings
(see Figures 13, 14, left) and even osculating cones (see Fig. 11). We
also check the values of Gauss curvature (Figures 8 and 13) and
we give statistics of length distortion in the table of Fig. 22. The

(a) (b) (c)

(d)

Fig. 21. Two developables and a near-devel-
opable surface approximating the same refer-
ence shape (d). The di�erent e�ects have been
achieved by using di�erent weights in optimiza-
tion, downweighting the approximation property
(a), fairness (b), and developability (c).

Fig. jV j� jFj� #var wiso wprox;1 wfair L-Err. A-Err. #it T
wpos wprox;2 [%] [%] [s]

1� 15k 15k 81k 1 1 .001 .001 .1.29 .038 20 53.2
4�� 1.1k 1.1k 3k .014.2 7.8 20 0.4
6�� 29k 29k 87k .01n/a n/a 5 10.5
7 1.9k 1.8k 6k 1 1 .1 .093 .18 10 1.2
8b 50k 47k 250k 1 1 .1 .38 .54 20 124.2
8c 48k 47k 250k 1 .1 1.8 1.1 10 412.3
8d 50k 47k 250k 1 1 .1 .035 .26 10 65.8
10 4.1k 4.1k 12k1 1 .001 .001 .1.38 .48 10 7.2
12 1.7k 1.6k 5k 1 .1 .11 .27 10 1.0
13 36 25 4k 1 .01.12 .21 10 0.9
15 150 64 11k1 1 .01.026 .038 10 2.9
16 14k 14k 43k 1 1 .1 .065 .087 10 13.4
18 8.4k 8.2k 25k1 1 .1 .081 .17 10 7.7
19a 2.5k 2.4k 7k1 1 .1 .0042 .005710 2.5
19b 11k 11k 33k 1 1 .1 .15 .23 10 9.0
19c 2.5k 2.4k 7k 1 1 .1 .054 .031 20 5.2
19d 2.9k 2.8k 9k 1 1 .1 .023 .007220 7.4
20b 28k 26k 160k1 1 .01 .01 .1.041 .088 10 42.9
20cd 28k 26k 160k1 1 .01 .01 .1.058 .13 10 43.2
25 1.5k 1.4k 4k 1 1 .1 .012 .021 20 4.2

26� 20k 18k 98k 1 1 .001 .001 .1.21 .055 20 67.8
� For Figs. 13, 15, bothjV j and jF j refer to the control meshM .
� Data for one sub�gure. All sub�gures have similar data
�� In Fig. 4,wconf = 1, w � = 0:1. In Fig. 6,wnorm = wsym = 1.

Fig. 22. Overview of the size of optimization problems solved for the exam-
ples in the paper. We also give the weights of energies used for optimization
and the computation time in seconds. The isometric property of mappings
is verified by the relativeL2 error of edgelengths, defined askL0 � L k=kL k,
whereL; L0 refer to the vector of edgelengths of meshesM; M0, and k � k
is the Euclidean norm. We also show the relative error in the area of faces,
which for nonplanar quads is computed via a subdivision into triangles.

obtained results are useful for practical applications, e.g. paneling
freeform architectural designs (Fig. 20) and engineering applica-
tions (Fig. 15). For several developables in this paper, especially cut
and glue examples and D-forms, we veri�ed the obtained shapes
experimentally by building paper models, see Figures 18, 19, 25.

Limitations.The rigid nature of developables is still noticeable in
all applications, which is a limitation not of the method, but of the
subject matter. We found that our method can produce developable
surfaces and also (if they exist) isometric mappings to a satisfac-
tory extent. We also computeconformaland as-rigid-as-possible
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(a) (b) (c) (d) (e)

Fig. 23.Properties of ruling-based methods for computing developables. Here we highlight how a ruling-based method for computing developables behaves
when forced to perform a task it was not designed to do, namely filling the boundary of the quadrilateral surface patch (a) with a developable surface. The
solution (b), computed with our method, has rulings intersecting the boundary at nonzero angles (c). Stein et al. [2018] model discrete developables whose
rulings are aligned with the edges of the underlying mesh. Their method cannot recreate the solution. It instead produces surfaces with creases whose location
is mesh-dependent (d,e).

M M0 N N 0

Fig. 24.The behaviour of orthogonal-geodesic nets.Here developablesM; N (with unfold-
ingsM0 resp.N 0) interpolate the same boundary curvec. M is an orthogonal-geodesic
net according to [Rabinovich et al. 2018a], simulating a rectangular piece of paper
pressed ontoc. N is computed with our method withN 0still variable, simulating paper
of any shape interpolatingc. The relative length errors (cf. Fig. 22) are .015 and .0003 for
M resp.N , consistent with the fact that orthogonal-geodesic nets have fewer degrees
of freedom than our developable surfaces.

mappings, e.g. to initialize an isometric mapping. We found that
only a moderate e�ort was required to reproduce the kind of results
achieved by [Liu et al. 2009] in such cases where near-isometric
mappings exist. While our method can treat conformal mappings of
more challenging shapes like the well known Max Planck's head
mesh, imposing the condition of near-isometry will cause overfold-
ings, if we do not add additional energies to prevent them. Since we
do not consider conformal mapping a contribution of this paper, we
did not pursue this subject further.

Implementation Details.The target functionals according to Ÿ2.3
are optimized by a Levenberg-Marquardt method according to [Mad-
sen et al. 2004, Ÿ3.2]. The damping parameter was set to 10� 6. As a
stopping criterion we used a small value of the energy. The initial
values for optimization are often obvious like in deformation tasks
and in approximation problems. As a general rule an initial solution
can be a surface which �ts the problem without the side-condition
of being isometric to the reference mesh. Our implementation in
C++ uses the data structures ofOpenMesh[Botsch et al. 2002] and
the Taucs library for sparse linear solvers [Toledo 2003].

Detailed statistics are provided by the table in Fig. 22. These com-
putation times refer to an Intel Xeon E5-2687W 3.0GHz processor
without parallel processing or other acceleration techniques. Fig. 22
also shows the weights of the individual energies which make up
the target functional. We conducted numerical experiments to check
the sensitivity of our method w.r.t. the choice of weights. We gener-
ally observed robustness w.r.t. the choice ofwiso, wpos. E.g. in Fig.

Fig. 25.Curved Folds.By Cu�ing holes of zero width and gluing we create
developables with curved folds. The folded shape is enforced by using the
energyEposto move points to prescribed positions.

7 no perceptible change in the results is observed if those weights
range in the interval [0:1;10]. Our method is more sensitive w.r.t.
the choice ofwfair , which is a fact accounted for by Algorithm 1.

Comparison with Previous Work.Figure 24 illustrates how a dis-
crete orthogonal-geodesic netM according to [Rabinovich et al.
2018a] interpolates a given boundary, and how such an interpola-
tion problem is solved by a quad meshN which is developable in
our sense. The edges of the latter do not have to follow a network
of geodesics, but for the former, the rectangular combinatorics of
M already �xes its unfoldingM0 to be rectangular. As expected,N
enjoys better developability, when measured via the relative length
error. In fact, the meshM does not look like paper but like some
fabric which allows a small amount of stretching. We can recreate
such a result with our method by constraining the development
N0 to be rectangular � in that caseN would look just likeM, with
the same length error. Developables according to [Stein et al. 2018]
enjoy even fewer degrees of freedom, as detailed in Fig. 23.

Future Research.There are some obvious directions of future re-
search. One is the segmentation problem when approximating ar-
bitrary surfaces with piecewise-developable surface. The �rst step
would be to investigate how previous work on segmentation can be
combined with our approximation procedures. Other directions of
future research include incorporating more properties of materials,
thereby extending the class of mappings under consideration. Fur-
ther, it would be interesting to develop a theory of curvatures based
on the Gauss map introduced in this paper, in particular because
there is already a relation to [Bobenko et al. 2010].
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Fig. 26.Isometric deformation.Once a piecewise-developable surface is found, handle-based editing can be used to simulate isometric bending.
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APPENDIX
Lemma.A spline surfacex(u;v ) whose parameter lines are geo-

desic and orthogonal to each other is cylindrical of the formx(u;v ) =
a(u) + b(v ) wherea(u) is a planar curve andb(v ) parametrizes a
straight line orthogonal to it (or possibly vice versa).

Proof. Using subscripts for partial derivatives, the orthogonality
mentioned here is expressed ashxu ;xv i = 0. Parameter lines are
geodesic() planes[xu ;xuu ] and also[xv ;xvv ] are orthogonal
to the surface() conditionshxuu ;xv i = hxvv ;xu i = 0 hold.

By di�erentiating the orthogonality condition (and using the
geodesic property) we gethxuv ;xv i = hxuv ;xu i = 0, which implies
@v kxu k2 = 2hxuv ;xu i = 0. I.e., the length of the vectorsxu does
not depend onv. For �xedu,xu moves in a sphere. B-spline surfaces
are piecewise polynomial, and so isxu . The only polynomial curves
contained in spheres are constant, soxu does not depend onv. Then
xuv = 0 implies that the surface has the formx(u;v ) = a(u) + b(v ),
with curvesa, b.

By orthogonality, for allu;v we havehxu ;xv i = h_a(u); _b(v )i = 0.
Unlessa(u) is a straight line,_a(u) assumes at least two linearly
independent values. If_b(v ) is to be orthogonal to both of them,_b
cannot change direction andb(v ) is a straight line. In turn, all_a(u)'s
are orthogonal to this line, and the curvea(u) lies in a plane. �
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