
Using isometries for computational design and fabrication

CAIGUI JIANG, KAUST, Saudi Arabia
HUI WANG, KAUST, Saudi Arabia
VICTOR CEBALLOS INZA, KAUST, Saudi Arabia
FELIX DELLINGER, TU Wien and TU Graz, Austria

FLORIAN RIST, KAUST and TU Wien, Austria

JOHANNES WALLNER, TU Graz, Austria

HELMUT POTTMANN, KAUST, Saudia Arabia

We solve the task of representing free forms by an arrangement of panels

that are manufacturable by precise isometric bending of surfaces made from

a small number of molds. In fact we manage to solve the paneling task with

surfaces of constant Gaussian curvature alone. This includes the case of

developable surfaces which exhibit zero curvature. Our computations are

based on an existing discrete model of isometric mappings between surfaces

which for this occasion has been refined to obtain higher numerical accuracy.

Further topics are interesting connections of the paneling problem with the

geometry of Killing vector fields, designing and actuating isometries, curved

folding in the double-curved case, and quad meshes with rigid faces that are

nevertheless flexible.

CCS Concepts: · Computing methodologies→ Shape modeling; Opti-

mization algorithms.

Additional Key Words and Phrases: discrete differential geometry, computer-

aided design, computational fabrication, architectural geometry, discrete

isometry, isometric registration, Killing vector field

ACM Reference Format:

Caigui Jiang, Hui Wang, Victor Ceballos Inza, Felix Dellinger, Florian Rist,

Johannes Wallner, and Helmut Pottmann. 2021. Using isometries for com-

putational design and fabrication. ACM Trans. Graph. 40, 4, Article 42 (Au-

gust 2021), 12 pages. https://doi.org/10.1145/3450626.3459839

1 INTRODUCTION

In this work we apply recent progress in isometric mappings to

the paneling of freeform architectural skins. The paneling problem,

i.e., the decomposition of curved shapes into smaller elements that

are more easily manufacturable, is crucial to the actual realization

of freeform designs on the architectural scale. The choice of panel

geometry is central to visual appearance and thus is an integral

part of the artistic aspect of freeform architecture. At the same time

this choice has far-reaching consequences on manufacturing and

poses big computational challenges. There are at least two reasons
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Fig. 1. Smooth freeform skins from flexible panels. It turns out that constant

Gaussian curvature surfaces, i.e., spheres and pseudospheres, provide almost

universal molds for the manufacturing of panels bending isometrically. Here

a design by Zaha Hadid Architects is covered by panels struck from a small

number of spherical molds (red) and pseudospherical molds (blue), as well

as single-curved panels that are intrinsically flat (white).

for that: one is that a geometric fit of all panels may amount to a

global and nonlinear system of constraints that is hopeless to solve

by black box methods. Another is the sometimes prohibitive cost

of manufacturing panels, in particular double-curved ones. For an

overview of this broad topic we refer to [Pottmann et al. 2015].

In the case of an overall smooth skin, the most successful para-

digm for reducing costs has been to break up the fabrication process

into two stages, namely manufacturing molds first, and afterwards

making the panels from them. Since typically molds are more ex-

pensive than striking an individual panel from the mold, the idea is

to reuse molds. This concept has been used in practice several times

already, e.g. for the Arena Corinthians stadium in São Paolo which

was completed in 2014.

Beyond its literal meaning, łmoldž may refer to any machine or

technique used to produce a certain family of panels. One can think

of all flat glass panels to be associated with the same mold (which

is cheap, of course). Likewise all glass panels that lie on the surface

of any right circular cylinder correspond to a single łmoldž which

in reality is the machine capable of producing cylindrical shapes, cf.

[Baldassini et al. 2013].

Our work considers molds in the literal sense. In contrast to pre-

vious work on paneling in architecture, panels are put into place not

by a rigid transformation, but are bent isometrically. This method
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is applicable only to materials that allow isometric deformations

like sheet metal, certain plastics and textiles, and it drastically re-

duces the number of molds that are needed. We are able to accu-

rately model this process thanks to recent progress in the compu-

tational treatment of isometric mappings: we employ and improve

the ‘checkerboard pattern’ method proposed by Jiang et al. [2020].

A perhaps surprising discovery is that we found it sufficient to

use a rather small set of molds of high intrinsic symmetry, namely

surfaces of constant Gaussian curvature. This means that in most

instances we were able to cover free forms by panels that are ei-

ther developable, or are obtained from a small set of spherical and

pseudo-spherical molds. On an abstract mathematical level this pro-

cedure corresponds to the approximation of the Gaussian curvature

function by a piecewise-constant function. It was unexpected how

well this idea works in practice.

It is important to stress the difference between our work and

previous progress on non-rigid isometric registration in Computer

Graphics and Computer Vision [Bronstein et al. 2008], the greater

part of which is concerned with as-isometric-as-possible matching

of different shapes, not with exact isometric registration.

We would like to add two historical remarks. Firstly, the well

known sails of the Sydney opera house enjoy spherical geometry of

a single radius [Lewis 1973] and thus constitute a panelization via a

single spherical mold.

Secondly we point to the 19th century in-

vention of French curves useful for drawing
a great number of curves for which ruler and compass are not suf-

ficient but which occur in technical drawings. The act of drawing

can be thought of as panelization by means of the French curve

set as molds. One could say that our experimental results confirm

that as far as isometrically bending panels are concerned, we can

realize a great number of freeform architectural skins by flat/spher-

ical/pseudospherical molds, and we do not have to resort to more

complicated łFrench curvež molds.

1.1 Contributions

The new contributions of this paper are the following.

• We improve the precision of Jiang et al.’s [2020] checkerboard

method for isometric mappings by means of adapted regularizers

(ğ2.2). We also provide new insights on approximation order (ğ2.1).

• ğ3.1 presents a structure-preserving discretization of the con-

cept of infinitesimal isometry.

• We compute Killing vector fields, i.e., intrinsic infinitesimal

isometries, in a simple way (ğ3.2). They are employed to detect

surfaces that possess advantages in fabrication because they are

isometric to surfaces exhibiting symmetries like rotational surfaces.

• In ğ4 we discuss precise isometric registration, which in ğ5.1

is used for the paneling problem. We present two computational

pipelines for paneling freeform architectural skins with bendable

materials Ð one with constant Gaussian curvature surfaces as molds,

and another one with molds of rotational symmetry.

• Further applications (ğ5.2) include the design of quad meshes

which are flexible if the faces are moving rigidly and are connected

by the edges as hinges.

1.2 Previous Work

Previous Work in Freeform Architecture. On the architectural scale,

smooth shapes can be obtained by different means, e.g. as equilib-

rium of a membrane. More often they are an assembly of individual

panels that seamlessly join to form the surface. The high cost of

manufacturing double-curved panels in the past has led architects

to designs with repetitive geometry. This can e.g. take the form

of a hidden rotational symmetry which is not visually obvious be-

cause panel boundaries attract attention away from it ś the 2003

lens-shaped entrance to the St. Lazare metro station in Paris is an

instance of this. For such simple surfaces, panels in different places

of the surface can be struck from the same mold, and the cost of

molds plus panels is significantly reduced. An extension of this idea

to true free forms has been performed by Eigensatz et al. [2010]

and has been used in practice [Schiftner et al. 2013]. The present

paper can be seen as a continuation of this work, but with non-rigid

panels that bend isometrically.

As to curved panels originating in a flat rest state, prior con-

tributions are mainly concerned with elastic materials, in which

case paneling is modelled by mappings that are not isometric. Ex-

amples include flat pre-stretched tilings assuming a desired shape

upon release [Guseinov et al. 2017], auxetic micro-mechanisms

[Konaković-Luković et al. 2018], micro-mechanisms based on spiral

springs [Malomo et al. 2018] and deployable structures of a grid-

shell nature [du Peloux et al. 2013; Panetta et al. 2019]. Most recently,

and relevant to our work, Gavriil et al. [2020] used learning methods

to panel architectural freeform skins by cold-bent glass, taking the

restrictions of the material into account.

Previous Work on Isometric Mappings Between Surfaces. Finding
correspondences between geometric shapes is one of the most sig-

nificant and diverse problems in geometry processing. We here

focus on isometric mappings, i.e., mappings preserving the intrin-

sic distances measured inside the surface. Since in general two

surfaces cannot be connected by an isometry, mappings that are

near-isometric have been studied [Claici et al. 2017; Liu et al. 2009;

Pietroni et al. 2010; Sorkine and Alexa 2007]. Relevant work on

isometric mappings has been done by Chern et al. [2018]. Based on

a discrete theory of spin structures, they treat isometric mappings,

particularly immersions. Recently, Sassen et al. [2020] investigated

Fig. 2. Isometric deformation of a mesh. The deformation at left is analogous

to the łflectofinž shading elements [Lienhard et al. 2011] which are bionic

tech inspired by the naturally occurring hinge in the flower of Strelitzia

reginae (blue, in photo at right). The intrinsic geometry of the surface implies

that a light bending of the bottom corresponds to a much larger movement

of the flaps to either side.
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Fig. 3. Surfaces of constant negative Gaussian curvature K . They are (lo-

cally) isometric if and only if their respective Gaussian curvatures agree.

The unit pseudosphere shown at right enjoys K = −1 and is generated by

rotating the curve y = log( 1x (1 +
√
1 − x 2)) −

√
1 − x 2 about the y axis.

the flexions of triangle meshes with rigid faces via the manifold of

realizations of fixed edge lengths but variable dihedral angles. They

formulate the corresponding integrability conditions and solve both

exact and approximate reconstruction of meshes, which includes

computing isometric mappings. Our paper is based on a different

approach, namely checkerboard patterns as proposed by Peng et al.

[2019]. They work with patterns exhibiting rectangles. Extending

this idea to the general case of parallelograms, Jiang et al. [2020]

developed an isometric deformation model by requiring that the

parallelograms in a checkerboard pattern move rigidly. This is an in-

stance of the more general principle to model isometry via keeping

the shape of small elements, see e.g. [Bouaziz et al. 2012].

Isometric Bending. The differential geometry of time-continuous

isometric bending of surfaces is extensively surveyed by [Sabitov

1992]. Relevant to our work are statements on existence of bending

determined by initial values.

As to applications in engineering and nature, it is well known that

the bending of paper and similar thin-sheeted materials is modelled

by isometric mappings. Most of the extensive literature on this

subject is concerned with developable surfaces created by bending

flat sheets. We do not review it here but instead refer to [Jiang

et al. 2020; Liu et al. 2006]. Bending of non-flat surfaces occurs in

manifold ways in herbal tissue, and special cases of it have inspired

technology: The łFlectofinž shading mechanism is modelled after

the natural hinge present in the bending behaviour of the flower

of Strelitzia reginae. See [Lienhard et al. 2011; Masselter et al. 2012]

and Figure 2.

Infinitesimal Isometries. We also make use of the concept of in-

finitesimal isometry, which is the time-derivative vector field of a

deformation that is isometric up to the first order of differentiation.

This is an old topic and connections to meshes are summarized

by Sauer [1970]. Tangential infinitesimal isometries (Killing vector

field) have a flow that is isometric. For the geometry of Killing vector

fields we refer to the survey [Myers 1936]. Computation and appli-

cations have been demonstrated by [Ben-Chen et al. 2010; Solomon

et al. 2011a]. In particular they have been employed to detect parts

of surfaces enjoying intrinsic symmetries [Solomon et al. 2011b].

Constant Gaussian Curvature Surfaces. In this paper we employ

surfaces of constant Gaussian curvature, i.e., surfaces isometric to

parts of the plane, or to appropriately scaled copies of the unit sphere

S2 resp. the unit hyperbolic plane H2 [Alekseevskij et al. 1993]. An

often-used surface exhibiting K = −1 is the unit pseudosphere, see
Fig. 3. Efforts to build surfaces isometric to a part of H2 such as

the one shown by Fig. 3 started as soon as H2 was discovered.

They include kinematic metal models [Wunderlich 1951] and even

crochet [Henderson and Taimina 2001]. Both the textile and the

metal versions are relevant to paneling on the architectural scale.

Previous Work on Isometric Registration. Non-rigid registration

is a much studied topic in Vision and Geometry Processing. The

special case of isometric registration has been discussed by various

authors, see e.g. [Huang et al. 2008;Wand et al. 2007]. Both the initial

alignment (global registration) and the later fine tuning through

numerical optimization (local registration) have been treated. These

methods have been successfully employed for tasks in engineering

[Klein et al. 2014; Sacharow et al. 2011]. Most of the work however

is not addressing high accuracy applications like the ones we have

in mind and thus cannot be used directly. Huang et al. [2008] use

features of the target surfaces for registration. This is not suitable for

our setting, architectural freeform skins typically lacking prominent

features.

2 DISCRETE ISOMETRIES

For the computations with surfaces and their

isometric mappings, we represent a surface

by a quad mesh which is further subdivided into a checkerboard

pattern as proposed by Jiang et al. [2020]. Each original face is

associated with a parallelogram formed by the edge midpoints,

while each original vertex is associated with a quad, formed by the

midpoints of edges emanating from that vertex. In the inset figure,

inscribed parallelograms are shown in yellow. Figure 4 illustrates

the fact that they are parallel to the diagonals of faces of the original

mesh. Following Jiang et al. [2020], we say the surface deforms

isometrically, if each inscribed parallelogram moves as a rigid body.

2.1 Approximation Order of Discrete Isometries

We need to convince ourselves that discrete-isometric mappings of

checkerboard patterns do indeed approximate continuous isome-

tries, and that the discrete-isometric conditions take away just the

right number of degrees of freedom.

For that, consider a quadmeshwhich is the image, under a smooth

mapping ϕ, of the standard lattice hZ2 with stepsize h. Focus on the

v0

v3

v2
v1

v ′0 v ′3

v ′2

v ′1
m12

m23

m01

m30 1
2 (v2 − v0)

=m12 −m01

=m23 −m30

1
2 (v3 − v1)

=m30 −m01

=m23 −m12

Fig. 4. A parallelogramm01m12m23m30 inscribed in a quad v0v1v2v3. The

edges of the former are half the diagonals of the latter. A mapping of vertices

vi 7→ v ′i is called isometric, if inscribed parallelograms transform rigidly.

This image is taken from [Jiang et al. 2020].
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M1 M ′1

M2 M ′2 Fig. 5. Nonsmooth discrete isometries. Discrete isometriesMi →
M ′i approximate smooth ones only if meshes are fair and edge

vectors can be interpreted as derivatives. Deviation from fairness

may happen orthogonally to smooth reference surfaces or even

inside them, as demonstrated by flat meshes M2, M
′
2.

face v0v1v2v3 whose vertices are images of (0, 0), (h, 0), (h,h) and

(0,h) respectively.

It is easy to approximate derivatives of ϕ by first order differences

of vertices, e.g. ∂xϕ =
1
h
(v1−v0)+O (h) and ∂yϕ =

1
h
(v3−v0)+O (h).

Actually, these differences properly express the derivatives of ϕ in

edge midpoints, since ∂xϕ (me ) =
1
h
(v1 − v0) + O (h2), for me =

(h/2, 0). An analogous statement holds for ∂y and the edge midpoint

(0,h/2). In order to achieve the higher approximation order O (h2)

for both first derivatives in the same point, we resort to a trick and

apply a change of coordinates. With u = x + y and v = x − y,
derivatives in the face midpointmf = (h/2,h/2) are expressed as

∂uϕ (mf ) =
v2 −v0√

2h
+O (h2), ∂vϕ (mf ) =

v3 −v1√
2h
+O (h2),

as can be seen from a Taylor expansion centered inmf .

As to mappings from one mesh to another, consider meshesM =

ϕ (hZ2) and M ′ = ϕ ′(hZ2), so that the mapping ψ : M → M ′

obeys ψ ◦ ϕ = ϕ ′. With differentials dϕ = (∂uϕ, ∂vϕ) and dϕ
′
=

(∂uϕ
′, ∂vϕ ′) we have dψ ◦ dϕ = dϕ ′. This directly leads to the

second order approximation

dψ · (v2 −v0, v3 −v1) = (v ′2 −v
′
0, v

′
3 −v

′
1) +O (h2),

which is valid in the face łmidpointž ϕ (mf ). In terms of edges of

the inscribed parallelograms according to Figure 4, this relation

between differentials is expressed as

dψ · (m12 −m01,m30 −m01) = (m′12 −m
′
01,m

′
30 −m

′
01) +O (h2).

One interpretation of this equation is the following: ψ is isomet-

ric if and only if, up to an error of magnitude h2, the inscribed

parallelograms are isometric to each other.

This isometry of parallelograms is exactly our definition of a

discrete-isometric mapping. It amounts to 3 scalar constraints per

face. The higher approximation order is achieved because the set of

constraints respects the mesh’s combinatorial symmetries.

In analogy,ψ is a continuous isometry, if and only if everywhere

on the surface the linear mapping dψ is isometric. Thus we expect

that discrete-isometric mappings as we defined them faithfully ap-

proximate continuous isometries. This expectation has also been

confirmed by experiments.

If we had insisted that the faces of the original mesh move rigidly,

we would have imposed not 3, but 4 scalar constraints per face.

Actually most quad meshes are rigid if faces are kept rigid, so requir-

ing this would not have been a faithful discretization of isometric

mapping. We are coming back to this topic in ğ5.2.1.

2.2 Computing Discrete Isometries with High Accuracy

Jiang et al. [2020] use optimization to compute isometries between

meshesM,M ′. We recap their method to the extent necessary to ex-

plain the improvements we make. The variables in the optimization

are the vertices of M ′, and the target functional to be minimized

has the form λisoEiso + λfairEfair + . . . , where λiso, . . . are weights

and Eiso, . . . are functionals penalizing deviation from the desired

property.

2.2.1 Isometry Constraints. By definition, meshes M,M ′ are iso-
metric if the parallelograms inscribed in corresponding faces f =

v0v1v2v3 and f
′
= v ′0v

′
1v
′
2v
′
3 ofM resp.M ′ are isometric, i.e., if and

only if corresponding diagonals have the same lengths and enclose

the same angle:

ciso,0 ( f ) = (v0 −v2)2 − (v ′0 −v
′
2)
2
= 0, (1)

ciso,1 ( f ) = (v1 −v3)2 − (v ′1 −v
′
3)
2
= 0,

ciso,2 ( f ) = (v0 −v2) · (v1 −v3) − (v ′0 −v
′
2) · (v

′
1 −v

′
3) = 0.

We thus define

Eiso =
∑

f ∈F

∑2

j=0
ciso, j ( f )

2. (2)

Eiso = 0 expresses the discrete-isometric property.

2.2.2 Fairness. Our discretization is based on the interpretation of

edges and diagonals as first derivatives. This interpretation requires

fairness of mesh polylines. Otherwise meshes might deform in a

nonsmooth manner but still Eiso = 0, see Fig. 5. Jiang et al. [2020]

use a fairness energy of the form

Efair,M ′ =
∑

triples i, j,k
∥∆′

i jk
∥2, with ∆′

i jk
= v ′i − 2v

′
j +v

′
k
. (3)

Summation is over all triples v ′i ,v
′
j ,v
′
k
of consecutive vertices of a

mesh polyline inM ′. If the meshM is not fixed during optimization,

an analogous energy Efair,M is used. This fairness energy is based on

the interpretation of mesh polylines as discrete versions of curves

c (t ) Ð the 2nd differences occurring in Efair are discrete counterparts

of 2nd derivatives d2

dt 2
c . As such they carry information on both the

intrinsic (geodesic) curvature of mesh polylines withinM ′, and the

normal curvature ofM ′ itself. The energy is not able to distinguish

between the two. This has implications on our optimization pro-

cedures, since Efair will not be able to achieve zero residual if the

target shapeM ′ is curved.

Tangential Fairness. A way to remedy this situation is to consider

the tangential components of 2nd differences, which are discrete

counterparts of covariant derivatives D
dt

d
dt
c , cf. [do Carmo 1976].

After estimating unit normal vectors ni ,n
′
i in the vertices ofM,M ′,

we let ∆
tang

i jk
= ∆i jk − ⟨nj , ∆i jk ⟩ nj and similar for ∆

′ tang
i jk

.

It is well known that isometries respect covariant derivatives,

i.e., we expect that dψ (∆
tang

i jk
) = ∆

′ tang
i jk

holds. We thus formulate a

tangential fairness functional

E
tang

fair
=

∑
triples i, j,k

∥dψj (∆tang

i jk
) − ∆

′ tang
i jk
∥2.
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Fig. 6. Infinitesimal isometries and continuous bending. Here a surface un-

dergoes time-continuous isometric bending such that four selected vertices

move on prescribed trajectories. The computation involves i-vector fields.

Heredψj is a linearization of the isometry valid for the central vertex

vj . Like normal vectors, in our iterative procedures it is updated

after each round of optimization. For all edges vjvk we must have

dψj (vj − vk ) ≈ v ′j − v
′
k
. We also extend dψj to normal vectors by

requiring dψj (nj ) ≈ n′j . All these constraints are linear and can be

written in the form dψj ·Mj = M
′
j (the columns in matricesMj ,M

′
j

contain the vectors that are required to be mapped). This leads to

the least-squares solution dψj = M
′
jM

T
j (MjM

T
j )
−1.

2.2.3 The Optimization Procedure. Our procedure to compute iso-

metric mappings is analogous to the one proposed by [Jiang et al.

2020], only we use E
tang

fair
instead of Efair. Therefore we do not describe

it here. Furthermore, it is only a special case of the optimization pro-

cedure which in ğ4 is used for registration (in Equ. (10), let λorth = 0

and w
′
= 0).

3 INFINITESIMAL ISOMETRIES OF MESHES

Vector fields representing infinitesimal isometries occur several

times in our computations. Firstly a special case (Killing vector fields)

is important in understanding the intrinsic geometry of surfaces.

Secondly, we will use them for guiding isometries, in particular for

local isometric registration (see ğ4). We start with describing the

general case and then specialize to Killing vector fields.

3.1 Extrinsic Infinitesimal Isometries

Consider a time-continuous flexionM (t ) of a meshM , where each

vertexvi moves on a smooth path and all meshesM (t ) are isometric

in the sense that the parallelograms inscribed in faces move rigidly.

Fig. 6 shows an example of such a continuous isometric bending.

At a certain time t = t0 of interest we consider the velocity vectors

wi =
dvi
dt

(t0). The parallelograms inscribed in faces are required

to move rigidly, implying that in the original mesh, for any face

f = (v0v1v2v3), the diagonals’ lengths and enclosed angle remain

unchanged. Thus,

∥v0 −v2∥2, ∥v1 −v2∥2, ⟨v0 −v2,v1 −v3⟩

remain constant, and time-derivativeswi =
d
dt
vi obey

⟨v0 −v2, w0 −w2⟩ = 0, ⟨v1 −v3, w1 −w3⟩ = 0,

⟨v0 −v2, w1 −w3⟩ + ⟨w0 −w2, v1 −v3⟩ = 0. (4)

3.1.1 Infinitesimal Isometries: i-Velocity Fields and r-Velocity Fields.

We call any vector fieldw obeying (4) an i-velocity vector field. The

linear space of i-fields has dimension ≥ 6, because it always contains

the so-called r-velocity fields which are the time-derivatives of rigid

body motions. These have the form

wi = c ×vi + c̄, (5)

where c, c̄ ∈ R3, with c indicating the vector of angular velocity. See
Fig. 6 for a visualization of i-fields.

Remark 1. In most of the literature, i-velocity fields are called infin-

itesimal isometries, or infinitesimal flexions of the hinge-and-body
mechanism formed by rigid parallelograms connected with spher-

ical joints. It is known that generically every i-field is generated

as time-derivative of an actual time-continuous isometry. The con-

figuration space of isometries of the mechanism is algebraic and

generically its dimension equals the dimension of the space of i-

fields. Exceptions are possible for certain special vertex positions,

see the survey [Connelly 1987].

Remark 2. Equ. (4) is symmetric in the variablesvj andw j , and their

roles could be exchanged. Analogously, for an isometric bending of a

smooth surface x (u,v ) with time derivativew (u,v ) = d
dt
x (u,v ) we

have ⟨xu ,wu ⟩ = ⟨xv ,wv ⟩ = ⟨wu ,xv ⟩ + ⟨xu ,wv ⟩ = 0. This is called

the orthogonality relation between a surface and its infinitesimal

isometry, and Equ. (4) is its discrete counterpart.

Remark 3. A parallelogram inscribed in a face fi of the mesh moves

rigidly, so all edge midpointsmkl =
1

2
(vk +vl ) of f have velocity

vectors that fit a certain r-field of the kind given by Equ. (5): There

are ci , c̄i ∈ R3 with 1

2
(wk +wl ) = ci ×mkl + c̄i whenever vkvl is

an edge of fi . R-fields associated with faces are not independent, as

vkvl = fi ∩ fj =⇒ ci ×mkl + c̄i = c j ×mkl + c̄ j .

3.2 Intrinsic Infinitesimal Isometries (Killing Vector Fields)

3.2.1 Definition and Properties of Killing Vector Fields. A surface Φ

may admit time-continuous isometries within itself, or even a rigid

bodymotion within itself, e.g. if it is a complete surface of revolution.

The time-derivatives of such isometries are i-fields tangential to

Φ, or r-fields tangential to Φ. Also a kind of converse statement is

true: The flow of a tangential i-field (a Killing vector field) moves

Fig. 7. Infinitesimal isometries tangential to surfaces (Killing fields) exist on

surfaces isometric to rotational surfaces like the example at right. Otherwise

vector fields that are as Killing as possible yield information on paneling.

The color coding is according to Gaussian curvature Ð true Killing fields

must follow its level sets.
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any piece of Φ within Φ in an isometric way until the boundary is

reached. For an r-field, this motion is even a rigid body motion.

Within Geometry Processing, several contributions deal with

the computation and applications of Killing vector fields, see e.g.

[Ben-Chen et al. 2010]. One notable feature of Killing fields is that

they are always tangential to the isolines of Gaussian curvature

K (which follows directly from the fact that Gaussian curvature is

invariant under isometries, see Fig. 7). The Killing fields of a surface

Φ constitute a linear spaceKΦ which reveals geometric information

[Myers 1936]:

• dimKΦ ≥ 1: Simply connected pieces of Φ can be isometri-

cally mapped to a rotational surface, possibly with overlaps. This

deformation transforms the Killing field to an r-field tangential to

parallel circles. Its orthogonal trajectories are mapped to meridian

curves, see Figures 7 and 10.

• dimKΦ ≥ 2: Gaussian curvature K is constant. Simply con-

nected pieces of Φ can be mapped isometrically, possibly with over-

laps, to a plane if K = 0, to a sphere if K > 0, and to a pseudosphere

if K < 0. If Φ is simply connected, we have dimKΦ = 3, see Fig. 8.

One should be aware that topological features of surfaces typically

restrict existence of Killing fields. To obtain local information it is

therefore advisable to make surfaces simply connected by cutting

them open before computing Killings fields on them. We are going

to use Killing vector fields to find an isometry or near-isometry of

a surface to a surface of revolution, thus enabling paneling with a

small number of molds (see ğ5.1.2 and Fig. 10).

3.2.2 Computing Near-Killing Vector Fields. Vector fields can be ap-

proximately Killing in different ways: An i-vector field might be only

approximately tangential; or a tangential vector field might satisfy

the constraints (4) only approximately. The following optimization

procedure provides access to both versions.

Assume the surface of interest is given by a quad mesh (V ,E, F ),

and in each vertex vi , i = 1, . . . , |V | a unit normal vector ni has

been estimated. We let n = (n1,n2, . . .) ∈ R3 |V | . A Killing vector

field w = (w1,w2, . . .) ∈ R3 |V | consists of a vectorwi per vertex. It

is subject to three constraints: Firstly, w is tangential, i.e.,

Etang (w) =
∑

i
⟨wi ,ni ⟩2 = w

T (nnT )w = 0.

Secondly, it obeys the orthogonality constraint (4), which can be

written as Cw = 0, with a matrix C ∈ R3 |F |×3 |V | . Equivalently,

Eorth (w) = (Cw)T (Cw) = 0. (6)

Thirdly, a fairness energy of the form (3) is used, which is quadratic

and can therefore be expressed as Efair (w) = w
TMw. Summing up,

Fig. 8. For the surface of constant Gaussian curvature in Fig. 3, the space

KΦ of Killing vector fields has dimension 3. These images show a basis.

we require w to minimize EKilling = Etang + λorthEorth + λfairEfair:

EKilling (w) = w
TKw→ min, K = nn

T
+ λorthC

TC + λfairM, (7)

under the normalization constraint ∥w∥ = 1. The parameter λorth
is used to adjust the relative weight of constraints, while λfair is

small. The solution consists of an eigenvector of K corresponding

to the smallest eigenvalue. This procedure is very similar to the

computation of r-vector fields by [Pottmann et al. 2001]. The param-

eter λorth in (7) determines whether we want more emphasis on the

tangential property or the i-vector field property. ğ5.1.2 treats the

more difficult problem of modifying a mesh so that it has an exact

Killing field.

3.2.3 Computing the Dimension of KΦ. It may happen that the

matrix K of (7) has more than one small eigenvalue. The meaning

of ‘small’ has to be clarified: For any normalized eigenvector w

corresponding to the eigenvalue ω we have EKilling (w) = w
TKw =

ωwT
w = ω. Soω is small if, seen as an energy expressing the Killing

property, it is small. The occurrence of two or three such small

eigenvalues is evidence for dimKΦ ≥ 2, which can only happen

if the Gaussian curvature is constant. Our numerical experiments

confirmed this relation. Figures 7 and 10 show the case of a single

smallest eigenvalue, while the example of Fig. 8 has three.

Remark 4. There is an alternative to the energy defined by (7)

that does not require estimating normal vectors. Suppose f =

(vp ,vq ,vr ,vs ) is a face, and the inscribed parallelogram has nor-

mal vector nf which is thought to be valid for the center mf =

1
4 (vp + vq + vr + vs ). The vector field assigns to mf the vector
1
4 (wp + wq + wr + ws ), and tangency is expressed by Etang =∑
f =(vp,vq,vr ,vs )⟨wp +wq +wr +ws ,nf ⟩2 → min. This modified

energy Etang yields a modified energy EKilling.

4 ISOMETRIC REGISTRATION

For the purpose of paneling, we treat the following problem. Given

are two surfaces Φ1 (a panel) and Φ2 (the mold as target surface).

Isometrically deform Φ1 so that the resulting deformed surface Φ′1
matches Φ2. We do not require alignment of boundaries here. This

process is called nonrigid, isometric registration. Algorithmically,

one has to solve for an initial alignment first Ð this is a global

registration problem and will depend on the specific application. In a

second step one fine-tunes the alignment by numerical optimization

Ð this is a local registration problem.

For local registration, we will be able to work within the frame-

work of i-vector fields presented in ğ3. The surface Φ1 is represented

as a quad meshM1, while Φ2 is represented in any way which allows

us to compute closest points and distances.

The Distance Field of a Surface. We here build on prior work by

Pottmann et al. [2006] on rigid registration. For simplifying the

distance field of the target surface, we use the following property: If

a point y is not far from its closest point y∗ ∈ Φ2 (not far compared

to curvature radii of Φ2), then locally around y we may replace the

squared distance from the target by the squared distance from the
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(a) (b) (c)

Fig. 9. Paneling with surfaces of constant Gaussian curvature K . 5 positive curvature molds corresponding to red panels and negative curvature molds

corresponding to blue panels are used. The remaining panels are developable and correspond to one single flat virtual mold. The color coding indicates the

value of Gaussian curvature. Subfigures (b) and (c) show actual architectural freeform skins, namely a 2009 glass roof by Asymptote Architecture in Abu Dhabi

and a design by Zaha Hadid architects realized 2012 in concrete in Baku. See detailed statistics in Fig. 17.

tangent plane in y∗:

d (x ,Φ2)
2 ≈ ⟨x − y∗,n∗⟩2, where n∗ =

y − y∗
∥y − y∗∥ . (8)

The vector n∗ is the normal vector of Φ2 in the closest point y∗.
This approximation is a 2nd order Taylor approximation in case

that y actually lies in Φ2. We point out that the well known ICP

algorithm works on the basis d (x ,Φ2) ≈ ∥x − y∗∥, which is a good

approximation only far away from the target [Pottmann et al. 2006].

When the approximation (8) is used during iterative optimization,

closest points and normal vectors are recomputed before every

round of optimization.

Registration by Optimization. The local registration procedure

itself is based on iterative optimization. Its aim is to find a mesh

M ′1 isometric to the given mesh M1 (the panel), but close to the

target Φ2 (the mold). We even allow the panel to change a little in

the process so as to better fit the mold. Conceptually, we linearize

the evolution of the mesh by computing an i-vector field and move

vertices in this direction. Isometry is destroyed by this procedure

(but not by much) and has to be restored using optimization. These

two steps are combined into one, as described below.

We initialize byM ′1 = M1 and updateM ′1 in every round of opti-

mization. Collecting the vertices of M ′1 in v
′
= (v ′1, . . .) ∈ R

3×|V | ,
the update is via v

′ ←− v
′
+ w

′, where w
′ is an i-vector field

minimizing the energy Eorth according to Equ. (6). This vector field

linearizes the isometric evolution ofM ′1 over time.

Based on (8), proximity of the updated meshM ′1 to the target is

governed by the penalty term

Emold
close =

∑
i
⟨v ′i +w

′
i −v

∗
i ,n
∗
i ⟩
2
+ ε
∑
∥v ′i +w

′
i −v

∗
i ∥

2. (9)

It is formulated in terms of closest point projectionsv∗i of verticesv
′
i

onto the target. It includes a regularizer with small weight ε which

might not be necessary, depending on the application. If the original

panel M1 is also a variable, an analogous energy E
panel

close
penalizes

deviation ofM1 from the reference surface Φ1.

The energy Eiso of (2) expresses isometry ofM1 and the updated

meshM ′1, if applied to v′ +w′. Combining the constraints listed so

far with fairness, we create an energy which is to be minimized:

Ereg = λisoEiso (v
′
+w

′) + λpanel
close

E
panel

close
+ λmold

closeE
mold
close +

+ λorthEorth (w
′) + λfairEfair → min . (10)

The variables in this optimization are the vector field w
′ and, de-

pending on the application, also the vertices of the original panel

M1. Fairness applies to all meshes that are variables, namelyM ′1 and
possibly alsoM1. Therefore we do not use the fairness energy E

tang

fair

(which is based on a comparison of these two meshes), but stick

with Efair.

After updating we repeat until either the optimization goal or

the maximum number of iterations has been reached. A summary

of the procedure is given by Alg. 1. We found that for our main

application (paneling) it was not necessary to change the weights

occurring in (10).

Isometric Registration up to Scale. It turned out that a very suc-

cessful method of paneling is to use surfaces of constant Gaussian

curvatureK , see e.g. Fig. 9. We found it useful to have at our disposal

a way to match a given surface patch with a sphere or pseudosphere,

but where the value of K is still a variable. This is done by deciding

the sign of K first, and subsequently registering to the unit sphere,

or unit pseudosphere, in a way that is isometric up to scale.

Algorithm 1: Isometrically register mesh M1 to target surface Φ2.

Data: Mesh M1 with vertices v

v
′ ← v ;

Fix energy threshold Ereg,min and maximum iterations;

Choose weights ε , λorth, λfair, λ
panel
close

, λmold
close

for (9) and (10);

repeat

For all vertices vi , compute closest point v∗i ∈ Φ2;

Estimate unit normal vectors n∗i = (vi − v∗i )/ ∥vi − v
∗
i ∥;

Determine v, w′ such that Ereg → min;

Update v′ ← v
′
+w

′;

Update weights;

until Ereg ≤ Ereg,min or max. iterations reached;

return Vertex coordinates v, v′
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For that we modify Alg. 1, by replacing the energy Eiso by E
κ
iso =∑

f
∑2
j=0 c

κ
iso, j ( f ). The constraints c

κ
iso, j are based on the isometry

constraints (1) and express isometry up to scaling by a factor κ:

cκiso,0 ( f ) = κ
2∥v0 −v2∥2 − ∥v ′0 −v

′
2∥

2
= 0,

cκiso,1 ( f ) = κ
2∥v1 −v3∥2 − ∥v ′1 −v

′
3∥

2
= 0,

cκiso,2 ( f ) = κ
2⟨v0 −v2, v1 −v3⟩ − ⟨v ′0 −v

′
2, v

′
1 −v

′
3⟩ = 0.

Since κ2 enters these constraints linearly, we use κ2 as a variable.

If meshesM,M ′ obey these constraints andM represents the unit

sphere, then M ′ is isometric to a sphere of radius 1/κ and enjoys

Gaussian curvature K = κ2. In the pseudosphere case, K = −κ2.

5 APPLICATIONS

5.1 Isometric Paneling

The main motivation for our work is paneling of architectural

freeform skins by materials that allow isometric bending (sheet

metal, certain plastics, and textiles). We start from a given panel lay-

out on a surface and compute a set of molds for it, so that this set is

as small as possible and the predefined panels can be manufactured,

up to tolerances, by these molds. Quality criteria include deviation

from the reference surface, and gaps and kink angles at seams. A

second task is to guide the panel layout by geometric information.

Note however that the panel layout, if at all visible on the finished

architectural design, in a real-world application is going to be a

design decision.

5.1.1 Paneling Algorithm for Constant Gaussian Curvature Molds.

In the course of our work on the paneling problem we were sur-

prised to find out to which extent it is possible to achieve a smooth

paneling of freeform shapes by surfaces of constant Gaussian cur-

vature. Figures 1, 9aśc, 15, and 19 show results obtained by this

method. The panelization procedure starts with a given reference

surface plus panel boundary layout, and it consists of the following

steps.

• Intrinsic patch analysis. For this application, this means com-

puting Gaussian curvature K , for which we use the method of oscu-

lating jets [Cazals and Pouget 2003].

• Clustering. This means assigning a type of mold to each panel.

Panels where the Gaussian curvature does not exceed a threshold

are declared intrinsically flat, exhibiting zero Gaussian curvature.

On the other panels we employ k-means clustering on the average

value of K of the panel, using the algorithm of [Lloyd 1982]. This

leads to a small number of clusters centered around values Ki (we

simply chose to use 5 clusters). Ki is the Gaussian curvature of the

mold assigned to all panels in that cluster.

• Construction of molds. For each nonzero valueKi we construct
a mold by scaling the unit sphere resp. pseudosphere with the factor

|Ki |−1/2. It is very convenient to have spheres as molds since the

distance field is known. Similarly, the pseudospheres have rotational

symmetry and their distance field is manageable. The third kind of

mold is a flat plane, it is associated with zero Gaussian curvature.

• Local panel optimization. For a first alignment between panels

and molds, rigidly move molds of Gaussian curvature Ki to each

panel contained in the corresponding cluster. This global registration

task in case Ki > 0 consists of a standard least square fitting of a

sphere of known radius to the panel. In case Ki = 0 we use PCA to

fit a plane to the panel. In case Ki < 0 we find a pseudospherical

piece of the same size as the panel and likewise use PCA for the first

alignment. We subsequently for each panel Mj find an isometric

panelM ′j that is close to the mold which currently is positioned close

to Mj . This local registration procedure is initialized as M ′j = Mj

and is performed according to ğ4. In order to achieve a better fit

between the design surface and the molds we extend the registration

procedure by considering also the vertices of the original panels as

variables except for the boundaries which are kept fixed.

• Final optimization. While this was not necessary for most of

our examples, in order to achieve a smoother appearance (smaller

kink angles at panel boundaries) one can perform a few steps of

optimization of several panels (or even all panels) simultaneously.

The target functional of optimization is the sum of the ones used in

the local panel optimization above, cf. Fig. 14.

5.1.2 Paneling Algorithm Based on Rotational Surfaces. Paneling a

surface of revolutionΨ needs only a small number of molds ś choose

molds as pieces of Ψ along a meridian and ensure that each panel

can be rotated into at least one mold (see Fig. 10d). Any surface

Φ admitting a near-Killing vector field can be modified in small

ways to become isometric to a surface of revolution Ψ, so also Φ

has a paneling that needs only a small number of molds. Figure 10

illustrates the procedure we apply to achieve this modification.

We start with the cross field determined by the near-Killing vector

field and vectors orthogonal to it. We use the libigl implementation

of mixed-integer quadrangulation [Bommes et al. 2009; Jacobson

et al. 2018] to find a quad meshM aligned with this cross field, see

Fig. 10b.M becomes exactly isometric to a rotational surface, if any

pair of faces that are neighbours in the Killing field direction become

(a)

Φ

(b)

M,Φ

(c)

M ′,Φ′

(d)

M ′′,Ψ

Fig. 10. We use near-Killing vector fields as the one in (a) to find a rotational

surface Ψ isometric to a given surface Φ. Remeshing with edges are either

tangential or orthogonal to the field yields the mesh (b). It is optimized

so that quads that are neighbours in the Killing field direction become

isometric. This yields the mesh Ψ′ in (c) which is almost the same shape as

(b) because the vector field was almost Killing. Mapping mesh polylines to

parallel circles and meridians, we create an isometric rotational surface (d).
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0 0.02

rel. planarity

Fig. 11. A flexible quad mesh with planar faces. The design of such highly

constrained objects is very interesting from the differential-geometric view-

point. The color coding indicates the measure of nonplanarity, which is the

distance of diagonals in a face divided by average edge length. Its average

is about 7 · 10−4. Isometry is very accurate (the edge length error according

to the statistics in Fig. 17 does not exceed 5 · 16−6).

isometric. These constraints are expressed analogous to Equ. (1) and

are met by way of optimization. The result is a meshM ′ (Fig. 10c)
isometric to a meshM ′′ with rotational symmetry (Fig. 10d). The

construction of M ′′ is elementary and is described e.g. by [Wang

et al. 2019]; it is unique after choice of an initial value.

5.2 Designing and Actuating Isometries

5.2.1 Flexible Quad Meshes with Planar Faces. Certain special quad

meshes with planar faces admit flexions where all faces move as

rigid bodies and edges act as hinges. They have been a topic of

interest already in the earlier works on discrete differential geometry

[Sauer 1970]. In case of regular combinatorics, counting degrees of

freedom reveals that flexibility is equivalent to flexibility of each 3

by 3 submesh, but the classification of flexible 3×3 meshes is rather

involved [Izmestiev 2017].

It is remarkable that such highly constrained structures have

already been realized as an actual transformable design: we point

to the Kinematic Sculpture exhibit by S.O.M. at the 2018 Chicago

Design week [Baldwin 2018]. So far no algorithmic treatment was

available. We are able to numerically construct such meshes, as fol-

lows. Consider a quad mesh which enjoys fairness so that edges can

be interpreted as derivatives and the mesh is a discrete version of a

smooth surface Φ. Planar faces mean that edges are discrete versions

of conjugate tangent vectors w1,w2, i.e., they obey II(w1,w2) = 0

[Liu et al. 2006]. Here II is the second fundamental form of the sur-

face [do Carmo 1976]. A flexion with rigid faces thus is a discrete

counterpart of an isometric deformationψ : Φ→ Φ′ where conju-
gate vectorsw j are mapped to conjugate vectorsw ′j = dψ (w j ), i.e.,

Fig. 12. Local analysis of isometries. We investigate the ratio κn (v )/κ
′
n (v

′)
of normal curvatures before and after an isometric deformation and visual-

ize the cross field of directions where it is extremal. This is geometrically

meaningful in areas of positive Gaussian curvature.

we have II′(w ′1,w
′
2) = 0. Linear algebra tells us that in each point,

w1,w2 can be uniquely found as the generalized eigenvectors corre-

sponding to the generalized eigenvalue problem det(II′ − λII) = 0

(where tangent planes of Φ,Φ′ are identified via dψ ). Existence of

a solution depends on the sign of det II, i.e., the sign of Gaussian

curvature: If K < 0 there may be no solution; if K ≥ 0 solutions

exist; if K > 0 they are unique unless II, II′ happen to be multiples

of each other.

This leads to the following procedure for the design of flexible quad
meshes with planar faces. For a given isometric deformationψ : Φ→
Φ′, vectors v,w and their images v ′,w ′ define cross fields on Φ,Φ′.
We use the libigl implementation of mixed-integer quadrangulation

[Bommes et al. 2009; Jacobson et al. 2018] to find quad meshesM,M ′

aligned with them. We also initialize intermediate positionsMt for

selected values t ∈ [0, 1] by linearly interpolating betweenM0 = M

and M1 = M ′ (this crude method turned out to be sufficient for

our examples). Subsequent optimization for isometry follows the

principle of ğ2 with the difference that the isometry constraints now

refer to faces moving rigidly. Thus the constraints of (1) are replaced

by ∥vi −vj ∥2 − ∥v ′i −v
′
j ∥

2
= 0 for all pairs i, j where vertices vi ,vj

are contained in the same face. A result is shown by Fig. 11.

Remark 5. An easily understood class of flexible quad meshes are

discrete Voss surfaceswhere mesh polylines enjoy a discrete geodesic

property [Sauer 1970]. In each vertex the four angles ω1, . . . ,ω4 of

faces obeyω1−ω3 = ω2−ω4 = 0. For Fig. 11, average and maximum

of these differences equal 1.3◦ resp 10◦. This example therefore is

not a Voss surface.

Remark 6. When trying to understand the isometric bending ψ

of a surface Φ into another shape Φ′ = ψ (Φ), we might ask for

directions where the normal curvature changes the most, or changes

the least. This normal curvature in direction of a unit tangent vector

is expressed as II(v,v ). With v ′ = dψ (v ) the normal curvature

after bending is II′(v ′,v ′). When we ask for extremal values of

the quotient, we are led to the very same generalized eigenvalue

problem as above. Fig. 12 shows an example. Note that asking for

extremal values does not make sense in case of negative Gaussian

curvature, because if v ′ points in an asymptotic direction, we have

II(v ′,v ′) = 0 and the ratio will be infinite [do Carmo 1976, p. 148ff].

5.2.2 Isometric Bending Guided by Trajectories. Figure 6 shows the

time-continuous isometric bending of a surface such that selected

vertices vik , k = 1, . . . , r run on prescribed trajectories Tik . This is

simulated by computing an i-vector field w wherewik is tangential

to Tik , updating vertices by vi ← vi +wi and restoring isometry

to the mesh we started with by invoking optimization according to

ğ2. The movement of vertices along the prescribed trajectories is

ensured by penalizing distances by an energy Eclose analogous to (9).

This small example illustrates the many degrees of freedom that are

present in isometric bending.

5.2.3 Continuous Folding of Doubly-Curved Surfaces. Geometric

folding has produced a vast amount of literature. Specifically the

folding of flat sheets along curves has been treated from the view-

point of geometry processing only more recently. Double-curved

smooth surfaces likewise admit isometric deformations to surfaces
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Fig. 13. Time-continuous curved folding. In contrast to flat sheets, time-continuous curved folding is impossible for positive Gaussian curvature and can happen

only along asymptotic curves in case of negative Gaussian curvature. This example shows a smooth surface folding along two curves. It is an A-net exhibiting

planar vertex stars, where all mesh polylines are asymptotic, cf. [Bobenko and Suris 2008]. The photos at right show both the original surface and the result of

folding fabricated in polystyrene.

that are only piecewise smooth. Interestingly, time-continuous de-

formations of this kind are rather restricted. The reason for this

is a well known geometric property occurring at the foldline. The

foldline’s osculating plane must be a local supporting plane [Rabi-

novich et al. 2019], which in the moment we start folding, where

the surface is still smooth, means that the osculating plane equals

the tangent plane. Unfortunately in non-flat surfaces such curves

are rare. In case Gaussian curvature K is positive there are none, for

developable surfaces there are only the rulings. In the case K < 0

we have the network of asymptotic curves, with two curves passing

through each point. Curved folding is only possible along these

asymptotic curves. Fig. 13 shows an example. We simulated folding

by computing isometries under the side-condition that two selected

points move towards each other, while not enforcing fairness along

selected foldlines.

6 DISCUSSION

Implementation and Properties of the Optimization. For optimiza-

tion, we employ a Levenberg-Marquardt method according to [Mad-

sen et al. 2004, ğ3.2], using a damping parameter of 10−6, but we
could just as well have used other optimization methods. Our im-

plementation in C++ uses the data structures of OpenMesh [Botsch

et al. 2002] and the Taucs library for sparse linear solvers [Toledo

2003]. Detailed statistics on panelization examples are provided by

the table in Fig. 17. The computation times refer to an Intel Xeon

E5-2687W 3.0GHz processor without parallel processing or other

acceleration techniques. The result can be summarized by saying

that registering a single panel with 1024 vertices takes about 0.3

to 0.4 seconds. In comparison, computing an isometric mapping

according to ğ2 takes only about 20% of that time.

Fig. 14. Reflection lines reveal

small tangent discontinuities

in the result of Fig. 9a (left).

Simultaneous optimization of

several panels improves the

surface quality (right).

The panelization procedure is essentially local; each panel is

registered and optimized to a mold separately. We found that we

can achieve a surface quality sufficient for applications in this way.

However, a final round of global optimization, as described in the

last paragraph of ğ5.1.1, can still improve surface quality. Fig. 14

shows an example where panels are optimized together with their

immediate neighbourhood. Such a procedure is not difficult but

rather time-consuming.

Convergence. We also want to add a comment on convergence.

Convergence is not guaranteed, as is usual in nonlinear and noncon-

vex situations like ours, so a good initialization is very important.

Our experiments revealed the optimization problems we solved as

rather benign, with typically 5-10 iterations necessary to achieve

convergence.

As to the order of convergence, in particular of optimization of

isometries according to ğ2, we replaced the energy Efair by E
tang

fair

not just because of geometric considerations. This was done also

because we were concerned about Efair witnessing extrinsic curva-

ture and thus never achieving zero residual. E
tang

fair
can do that but in

practice does not. In consequence, the order of convergence was not

improved from one to two by switching to E
tang

fair
. This switch nev-

ertheless improves the behaviour of optimization. This is because

Fig. 15. Changing the panel layout

typically hardly influences the approx-

imation quality of the paneling, but

increasing the number of panels does

so in a significant way. The statistics

of Fig. 17 suggest higher than linear

approximation order.
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1

0.1

0.01

10−5
1 2 3 4 5 6 7

total
fairness
isometry Fig. 16. A typical logarithmic plot of ener-

gies expressing fairness and isometry as

iterative optimization performs 7 rounds.

The orange plot corresponds to using Efair,

the blue plot to tangential fairness E
tang
fair

.

E
tang

fair
regularizes like Efair while having significantly smaller value,

thus not dominating other energies as easily, see Fig. 16.

Accuracy. We distinguish two kinds of accuracy, one being the

quality of approximation of a reference surface by the paneling. It is

expressed by the distances δ ... in Fig. 17. Examples like the one of

Fig. 15 suggest that those distances behave like N−α , where N is the

number of panels and α > 1. Unfortunately also computation time

increases faster than linearly. Our experiments, e.g. by comparing

Figs. 15a with 15b further show that the concrete panel layout has

little influence on approximation quality. Secondly we measure the

quality of the isometry by the change of intrinsic distances. Constant

distances are expressed by smallness of the L-error defined in Fig. 17,

and by the success of practical examples.

Practical Feasibility. The materials and processes employed in

freeform architecture do not scale well to the kind of small models

we are able to build for experimental verification. We nevertheless

checked the feasibility of our paneling procedure by means of molds

created by CNC machining and panels made from high impact

polystyrene. Molds and panels are shown by Figures 18, 19.

Limitations. Our method of representing isometries has some

limitations. E.g. the importance of fairness makes it unsuitable for

Fig.
# panels
K = 0
K > 0
K < 0

# molds
T [sec]

δpanel,max

δpanel,avg
δmold,max

δmold,avg

L-err.

1
190
91
56
43
11
52

3.5·10−3
2.0·10−4
1.2·10−3
1.3·10−4
1.5·10−3

9a
295
117
113
65
11
115

2.5·10−2
3.3·10−4
3.7·10−3
2.9·10−4
2.5·10−4

9b
302
221
52
29
11
108

1.9·10−2
2.0·10−3
5.1·10−3
2.2·10−4
4.6·10−4

9c
408
320
16
72
11
148

2.3·10−2
3.6·10−4
9.1·10−3
2.4·10−4
7.4·10−4

15a
165
104
35
26
11
54

4.5·10−3
2.5·10−5
1.1·10−3
2.5·10−5
1.4·10−3

15b
144
76
39
29
11
48

4.4·10−3
1.8·10−5
7.0·10−4
4.1·10−5
1.6·10−3

15c
330
168
93
69
11
231

4.9·10−5
2.9·10−6
2.2·10−4
1.7·10−5
3.9·10−4

19
9
4
2
3
3
3.2

1.0·10−2
7.4·10−4
8.8·10−4
8.9·10−5
6.2·10−4

Weights: ε = 0, λfair = λ
panel
close

= 0.01, λmold
close
= λorth = 0.1, λiso = 1.

Fig. 17. Optimization statistics for nonrigid isometric registration according

to Alg. 1. For each of the freeform design surfaces referred to in the first line

we give the number of patches (of 32×32=1024 vertices each), the number

of patches which enjoy zero, positive, and negative Gaussian curvature,

and the number of molds. The number of iterations of our optimization

procedure is 10 throughout, the time (in seconds) is shown in the table. The

data verifying the quality of the result are the distance between patches

and design surface, the distance between isometrically deformed patches

and mold surface. Distances are normalized such that a patch bounding

box has length 1 in average. The last number is the L2 error of edge lengths,

defined as ∥L′−L ∥2/ ∥L ∥2, where L, L′ refer to the vector of all edge lengths
occurring in panels, resp. deformed panels.

Fig. 18. Paneling free forms. The rendering at left shows a covering of the

design surface by panels categorized according to Gaussian curvature K .

We fabricated them by minimally altering the shape via optimization so

that we need only two molds (at right): a spherical mold corresponding to 2

panels exhibiting K > 0; a mold with constant negative Gaussian curvature

corresponding to 3 panels; and a virtual flat łmoldž corresponding to 4

developable panels. See Fig. 19 for the final result.

modeling wrinkles and creases that might occur in isometric bend-

ing. This might lead to unrealistic behaviour in applications like the

one shown in Fig. 6. However this is not an issue with paneling.

Future Research. Several directions of research can build on our

work. Especially interesting are those having to do with continuous

flexions. Flexible meshes with rigid faces have been a source of

deep Mathematics and also actual transformable designs, but have

hardly been explored algorithmically. Also mechanisms consisting

of nonrigid parts are an interesting direction, maybe in connec-

tion with bionic technology. We may even go one step further and

leave the domain of isometric mappings. Mappings which obey con-

straints, e.g. on length distortion, have already been noticed to play

a role in our understanding of auxetic and other nonconforming

micromaterials which are actually mechanisms. Mappings subject to

length-related constraints are obviously relevant for the modeling of

the behaviour of more general sheet-like materials. We believe that

in this area, well-informed geometric modeling can significantly

speed up simulations.
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