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ABSTRACT. We investigate the action of imprecisely defined affine and Euclidean
transformations and compute tolerance zones of points and subspaces. Tolerance
zones in the Euclidean motion group are analyzed by means of linearization and
bounding the linearization error via the curvatures of that group with respect to an
appropriate metric.

1. INTRODUCTION

The topic of this paper is the action of imprecisely defined affine and Euclidean
transformations on R

d. More precisely this means that we consider a set of trans-
formations which has a small diameter in a well-defined sense (a tolerance zone of
transformations) and apply all transformations contained in this set to a geometric ob-
ject of R

d.
The idea to deal with imprecisely defined data in the way indicated above, i.e., by

replacing exactly defined geometric entities by their tolerance zones, has been used
in the investigation of error propagation in Computer-Aided Design [1, 2, 3, 4, 5]. It
has been called worst case tolerancing, because the use of tolerance zones means that
instead of finding the result of a computation with given input data, we find all possible
results, regardless of probability, for all possible input data.

This aspect of geometric transformations has been studied by [6, 7, 8] where subsets
of the complex plane are multiplied. [9] deals with toleranced geometric transforma-
tions in the Euclidean plane, which are in turn defined by toleranced points and lines.

2. OVERVIEW

In Section 3 we introduce a Euclidean metric in the space R
d×d+d of affine map-

pings acting on R
d. This allows us to define the diameter of a set of affine transfor-

mations, and balls of affine transformations. Section 4 shows that the image of a fixed
point of R

d under such a ball of transformations is a ball of points in the ordinary
sense. We use this result to compute the image of lines and other subspaces as well.

Section 5 deals with Euclidean transformations. A tolerance zone of a given Eu-
clidean transformation is defined as the set of those Euclidean transformations whose
distance to the given one does not exceed a certain radius. An exact description of such
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a set would require to compute the intersection of the Euclidean motion group SEd,
which lies as a surface in R

d×d+d, with a ball in that space. In order to circumvent this
problem, we replace SEd by one of its tangent spaces and compute an upper bound for
the linearization error we make in this process. The analysis of the latter requires an
investigation of the curvature of curves which cover SEd.

3. THE SPACE OF AFFINE MAPPINGS

An affine mapping γ of R
d into itself is given by

x 7→ γ(x) = Gx+ g,(1)

where G ∈ R
d×d, and g ∈ R

d. We denote the mapping γ also by the pair (G, g). In
this way the set of affine mappings is identified with R

D, D = d2 + d. We embed
both R

d×d and R
d into R

D by mapping G 7→ (G, 0) and g 7→ (0, g). The action of the
affine mapping γ on a point x ∈ R

d defines the mapping

πx : R
D → R

d ⊂ R
D, πx(γ) = γ(x).(2)

This is a parallel projection, which follows from linearity and the property πx ◦ πx =
πx. In [10, 11, 12], geometric properties of πx have been used for investigating affine
and projective motions.

The Euclidean scalar product in R
d is denoted by 〈x, y〉. A positive Borel measure

(mass distribution) µ can be used to define a scalar product in R
D by

〈γ, β〉 :=
∫
〈γ(x), β(x)〉 dµ(x)(3)

(see for example [13, 14, 15]). This scalar product is left-invariant in the sense that for
any α ∈ SEd and β, γ ∈ R

D, we have ‖β − γ‖ = ‖α ◦ β − α ◦ γ‖, i.e., multiplication
by α from the left yields an affine isometry of R

D.
Associated to the mass distribution µ is the inertia matrix J ∈ R

d×d whose co-
efficients are jkl =

∫
xkxl dµ(x). J is symmetric and positive definite, if µ is not

concentrated in an affine subspace of dimension < d. We always assume that this is
the case. An important special case is that µ is a finite sum of unit point masses located
at points p1, . . . , pn, in which case we have J =

∑n
i=1

pipi
T .

The total mass of µ is denoted by |µ| :=
∫

1 dµ, and b := |µ|−1
∫
x dµ(x) is called

the barycenter of µ. Of course, this makes sense only if all integrals above are finite. In
the special case mentioned above, |µ| = n and b = n−1

∑
pi. In a coordinate system

with b as origin, the scalar product of two affine transformations is computed by the
formula

〈(G, g), (H,h)〉 = tr(GTHJ) + |µ|〈g, h〉.(4)

If µ1, . . . , µd are the eigenvalues of J and e1, . . . , ed is a corresponding orthonormal
basis of eigenvectors, then it is elementary to verify that the scalar product (4), which
is characterized by J and |µ|, is generated by 2d points of mass |µ|/(2d) at positions
±λiei, where µi = λ2

i |µ|/d (see Figure 1, left).
Multiplying the measure µ by a constant factor will multiply the scalar product

defined by µ with the same factor, but does not change the orthogonality relation. We
thus normalize µ such that ‖(E, 0)‖ = 1. By (4), this is equivalent to

tr(J) = 1.(5)
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Most of the time we will use e1, . . . , ed as basis of an affine coordinate system whose
origin is the barycenter. This results in J = diag(µ1, . . . , µd). Without loss of gener-
ality, we assume that 0 < µ1 ≤ · · · ≤ µd.

4. TOLERANCE ZONES FOR AFFINE MOTIONS

We consider a subset Γ ⊂ R
D and ask for the set of points obtained by applying the

transformations of Γ to a point x or a subset X of R
d. We use the notations

Γ(x) := {γ(x) | γ ∈ Γ} and Γ(X) := {γ(x) | γ ∈ Γ, x ∈ X}(6)

4.1. Tolerance zones of points. According to (2), Γ(x) = πx(Γ) is an affine image
of Γ, so Γ(x) is an ellipsoid if Γ is a ball. We can show even more:

Theorem 1. If Γ ⊂ R
D is a ball, then so is Γ(x) for all x ∈ R

d. The radii rx and r of
Γ(x) and Γare related via

%(x)2 :=
r2x
r2

=
1

|µ| +
d∑

i=1

x2
i

µi
, %(x) ≥ 0.(7)

Proof. The theorem is proved if we can show that all singular values of the projec-
tion πx are equal to %(x). In order to compute the singular values, we construct an
orthonormal basis of R

D. By Eij we denote the d × d matrix whose entries ekl are
zero with exception of eij = 1. We let

ε′i0 = (0, ei) (i = 1, . . . , d), ε′ij = (Eij , 0), (1 ≤ i, j ≤ d).(8)

With (4) we compute ‖ε′i0‖2 = |µ| and ‖ε′ij‖2 = µj for j 6= 0. Furthermore, we have
〈ε′ij , ε′kl〉 = 0 if (i, j) 6= (k, l), so the affine mappings εij := ε′ij/‖ε′ij‖ constitute an
orthonormal basis of R

D. The coordinate matrix Px of πx with respect to the basis
(ε10, ε11, . . . , ε1d, ε20, . . . , εdd) has the form

Px =

[
cx . . . cx

]
, where cx =

( 1√
|µ|
,
x1√
µ1

, . . . ,
xd√
µd

)
.(9)

The theorem now follows from the obvious fact that all singular values of Px are equal
to ‖cx‖ = %(x). �

There are at least three arguments for using balls as tolerance zones for affine map-
pings: One is the spherical shape of Γ(x) if Γ is a ball (Theorem 1). Another is the
fact that for γ ∈ SEd, γ ◦ Γ is again a ball, by left-invariance of the metric. The third
argument is computational simplicity. Thus we focus on spherical tolerance domains
in the rest of this paper.

The ratio %(x) = rx/r of the radii of Γ(x) and Γ attains its minimum |µ|−1 in the
barycenter of µ, and is obviously constant for all points of the ellipsoid with equation
Et :

∑d
i=1

x2
i /µi = td/|µ|, (t ≥ 0). The distribution of %(x) is visualized in Figure 1.

The point masses at positions ±λiei, which define the same scalar product as the mass
distribution µ, are contained in the ellipsoid E1.
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FIGURE 1. The distribution of %(x) and the points ±λiei.

4.2. Tolerance zones of subspaces. In this section we describe the set Γ(X), if Γ is
a ball of affine mappings and X is k-dimensional affine subspace. In the generic case
the boundary of Γ(X) either will not exist or consist of a quadratic hypersurface (if the
radius of Γ is “sufficiently” small). In view of Theorem 1, this surface has rotational
symmetry with X as axis space.

We use a coordinate system with origin a ∈ X and an orthonormal basis B =
(b1, . . . , bd) such that the vectors b1, . . . , bk are parallel toX . Coordinates with respect
to this system are denoted by ξ, η ∈ R

d. Points in X have coordinates of the form
ξ = (ξ1, . . . , ξk, 0, . . . , 0). We now assume that we have chosen a and B such that the
function %|X is represented in normal form:

%̄(ξ)2 := %(a+Bξ)2 = %2
0 +

∑k

i=1
ξ2i /γ

2
i ,(10)

where 1/γ2
i are the eigenvalues of the matrix BT · diag(1/µ1, . . . , 1/µd) · B. By

construction, the values γi obey the inequality

µ1 ≤ γ2
1 , . . . , γ

2
k ≤ µd.(11)

Lemma 2. If the radius of the ball Γ equals r, then the envelope of the balls Γ(x) for
x ∈ X is the quadratic surface

∑
i≤k

γ2
i
6=r2

η2
i

1 − (γi/r)2
+

∑
i>k

η2
i = (r%0)

2, ηi = 0 if γ2
i = r2.(12)

Proof. We compute the envelope of the spheres Σ(x) with center x ∈ X and radius
r%(x). By (10), Σ(x) has the equation

η ∈ Σ(x) ⇐⇒
∑d

i=1
(ηi − ξi)

2 − r2
(
%2
0 +

∑k

i=1
ξ2i /γ

2
i

)
= 0.(13)

Differentiation of (13) with respect to ξ1, . . . , ξk yields ηi = 0 if γ2
i = r2, and ηi =

ξi(1 − r2/γ2
i ) if γ2

i 6= r2. We plug this into (13) and obtain an algebraic equation of
the envelope. �

The graph surface of the function r(x) = r%(x) in X × R is one sheet of a hyper-
boloid (Figure 1, right, Figure 2). If dimX = 1, it is one branch of a hyperbola. The
union of balls Γ(x) for x ∈ X is the interior of the surface (12) if the angle enclosed by
the line X and the asymptotes of this hyperbola is less than 45◦ (see Figure 2, right),
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FIGURE 2. Different types of envelopes: ellipse (γ2
1 < r2), pair of

points (γ2
1 = r2) and hyperbola (γ2

1 > r2).

and equals entire R
d if this angle exceeds 45◦ (see Figure 2, left). In the case the angle

equals 45◦, the closure of Γ(X) equals R
d (Figure 2, center). The term ‘interior’ refers

to that component of the surface’s complement which contains X .
For general X , Γ(X) is the interior of the surface (12) if and only if for all lines

Y ⊆ X the above mentioned angle does not exceed 45◦. This leads to the following
Theorem 3. Assume an affine subspace X and a corresponding coordinate system as
above such that the function % has the coordinate representation (10). For a ball Γ
of affine mappings of radius r, the set Γ(X) equals the interior of the surface (12) if
and only if r2 < γ2

i for i = 1, . . . , k. In the remaining cases, the closure of Γ(X)
equals R

d.

Proof. In view of the discussion preceding the theorem, we have to investigate hyper-
bolas which occur as graph of the function r%(x), when x ranges in a 1-dimensional
subspace of X . By (10), this angle does not exceed 45◦, if and only if r < γi. �

Theorem 3 has the following implications:
– If Γ(X) is the interior of the surface (12), then this is the case for all subspaces

parallel to X , because they have the same γi’s.
– If the radius r of Γ(X) is less than 1/µd, the condition of Theorem 3 is fulfilled for

all subspaces because of the inequalities (11).
In R

3, the set Γ(X) is the interior of a hyperboloid of revolution if X is a line. If
X is a plane, the lack of rotations with X as axis means that Γ(X) is bounded by a
hyperboloid of two sheets which is symmetric with respect to X . Figure 3, left, shows
an example of Γ(X), where X consists of the edges of a cube.
Remark. The so-called cyclographic mapping (see e.g. [16, p. 366ff]) assigns an ori-
ented sphere in R

d with center (x1, . . . , xd) and signed radius x0 to the point (x0, . . . , xd) ∈
R

d+1. Obviously this mapping and the geometries related to it are the right setting to
discuss further geometric properties of envelopes of spheres. In this paper we do not
pursue this viewpoint.

5. TOLERANCE ZONES FOR EUCLIDEAN TRANSFORMATIONS

We turn our attention to imprecisely defined Euclidean transformations. They are
more intricate than affine ones, because the exact intersection of SEd with a ball Γ of
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FIGURE 3. Tolerance zones of a cube with respect to a ball Γ ⊂ R
12

(left) and linearization of Euclidean tolerance zones (right).

radius r centered in γ ∈ SEd is not so easy to compute. We pursue a different approach
and replace SEd by its tangent space in the point γ. This means that we do not consider
the intersection Γ ∩ SEd, but the intersection S of Γ with the tangent space TγSEd of
SEd in γ (cf. Figure 3, right and Figure 4). The linearization error we make in this
process will be estimated by means of the curvatures of SEd.

Figure 4 shows the set S and the orbits S(x) and Γ(x). Because of S(x) = πx(S),
S(x) is an ellipsoid, whose dimensions can be computed from the singular values of
πx|TγSEd

. It turns out that the position of one of its axes is special and the correspond-
ing semi-axis length is independent of x:

Theorem 4. Let Γ ⊂ R
D be a ball with center γ and radius r, and denote by S(x) =

πx(Γ ∩ TγSEd) the corresponding linearized tolerance zone of a point x ∈ R
d. Then

S(x) is an ellipsoid one of whose axes contains the γ-image of the barycenter b of the
measure µ. The corresponding semi-axis length is r|µ|−1/2.

Proof. Without loss of generality we can assume γ = E, i.e., γ(b) = b = 0. As
TESOd consists of the skew-symmetric matrices, πx(TESOd) is a hyperplane Hx in-
cident with x and at the same time orthogonal to x.

We decompose TESEd ∩ Γ into a family of balls Γγ′ with centers γ′ ∈ TESOd,
contained in the subspace γ ′ × R

d, and having radius
√
r2 − dist(γ, γ′)2. As Γ ∩

TγSEd is a sphere, its πx-image S(x) is an ellipsoid with center γ(x). The restriction
of πx to γ′×R

d is a similarity transformation with factor |µ|−1/2. Thus, each πx(Γγ′)
is symmetric with respect to Hx and so is S(x). Consequently, one of the axis of S(x)

contains b and the corresponding semi-axis length is r|µ|−1/2. �

5.1. The distance of curves from their tangents. We present an auxiliary result from
differential geometry concerning the distance of a curve C with bounded curvature
from any of its tangents. In this paper, curvatures of curves are understood in the
Euclidean sense, with respect to a previously defined scalar product. All curvatures
are nonnegative, i.e., we do not assign a sign to curvatures of curves in R

2.
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Lemma 5. Assume that I ⊆ (−rπ/2, rπ/2) is an interval with 0 ∈ I and c : I → R
d

is an arc length parametrization of a C2 curve C with curvature κ ≤ 1/r. Then there
is a parametrization c̄(u) = ue1 + f(u) ·n(u) of C such that e1 = ċ(0), n(u) is a unit
vector orthogonal to e1, |u(t)| ≥ r sin(t/r) and |f(u)| ≤ r −

√
r2 − u2.

Proof. It is no loss of generality to assume r = 1. We observe ‖ċ‖ = 1 and c̈(t) =
κ(t)c2(t), where κ is the curvature and c2 is a unit vector orthogonal to ċ. Let ϕ(t) =
^(e1, ċ(t)), ψ(t) = ^(e1, c2(t)) such that ϕ,ψ ≥ 0. Then

−ϕ̇ sinϕ =
d

dt
cosϕ =

d

dt
〈e1, ċ〉 = κ〈e1, c2〉 = κ cosψ.(14)

We assume that the curve is defined in an interval such that ϕ ≤ π/2. Later we will
see that this inequality is true for all t ∈ I . Because of ^(ċ, c2) = π/2 and the
spherical triangle inequality we have π/2−ϕ ≤ ψ ≤ π/2+ϕ. Together with |κ| ≤ 1,
0 ≤ ϕ ≤ π/2 and Equation (14) this implies

|ϕ̇ sinϕ| = κ|cosψ| ≤ |cos(π/2 − ϕ)| = |sinϕ|.(15)

If sinϕ 6= 0, it follows that |ϕ̇| ≤ 1. By continuity, this is true for all t in the closure
of the set {t | ϕ(t) 6= 0}. If however ϕ(t) = 0 in an entire interval, then we have
ϕ̇ = 0 anyway. So in all cases, ϕ̇ ∈ [−1, 1] and consequently

|ϕ(t)| ≤ |t|.(16)

In particular, the assumption that ϕ ≤ π/2 in entire I is now justified.
We use (16) for estimating the distance ∆(t) of the point c(t) from the tangent at

t = 0. Because of ∆̇ = sinϕ, we have

∆(t) =
∫ t
0

sinϕ(τ) dτ ≤
∫ t
0

sin τ dτ = 1 − cos t.(17)

We write c(t) = c(0) + u(t)e1 + ∆(t)n̄(t), where n̄(t) is a unit vector orthogonal to
e1. As u̇(t) = cosϕ(t), the function u(t) is strictly increasing in I . It follows that
we may use u(t) as a parameter transform and C may be parametrized by c̄(u) =
c(0) + ue1 + f(u) · n(u) as stated in the theorem. The required lower bound for u(t)
is computed by

u(t) =
∫ t
0

cosϕ(τ)dτ ≥
∫ t
0

cos τdτ = sin t.(18)

The inverse of the function u(t) consequently obeys the inequality t(u) ≤ arcsin(u)
for u ∈ [−1, 1]. By construction, f(u(t)) = ∆(t), so

|f(u)| = ∆(t(u)) ≤ 1 − cos(t(u)) ≤ 1 − cos arcsinu = 1 −
√

1 − u2.(19)

The proof is complete. �

Lemma 6. Consider a surface M ⊆ R
d, a point p ∈M , and assume that there exists

a family C of curves such that
– every curve of C contains p;
– the curvature of the curves of C does not exceed 1/r; and
– every point q ∈M with ‖q − p‖ ≤ % lies on a curve C ∈ C such that the arc length

between p and q is less than rπ/2.

If q ∈M with ‖p− q‖ ≤ %, then dist(q, TpM) ≤ r −
√
r2 − %2.
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Proof. We consider a curveC which connects p and q, and we assume that its parametriza-
tion is c̄(u) as described by Lemma 5. As u ≤ ‖c̄(u) − p‖, we have u ≤ %, and conse-
quently the distance of c(u) from C’s tangent at p does not exceed r−

√
r2 − %2. �

We will apply Lemma 6 to SOd and use the result for an upper bound of the distance
of SOd from its tangent spaces. For that purpose we will construct two families of
curves on SOd: The one-parameter subgroups with their cosets, and the geodesics.
The similar problem for SEd is easily reduced to the case of SOd.

5.2. The curvature of one-parameter subgroups in SOd. We introduce the positive
square root of the inertia matrix J and denote it byK: If J = P−1 diag(µ1, . . . , µd)P
with P ∈ SOd, then K = P−1 diag(

√
µ1, . . . ,

√
µd)P .

Recall that the Frobenius norm ‖A‖F of a matrix A has a definition similar to the
norm ‖A‖ defined by (4). A relation between these two norms is given by

‖A‖F = tr(ATA), ‖A‖ = tr(ATAJ) = tr((AK)TAK) = ‖AK‖F .(20)

Recall further that for all A,B we have ‖AB‖F ≤ ‖A‖F · ‖B‖F . We let

Θ := ‖K−1‖F =
( ∑d

i=1
µ−1

i

)1/2
.(21)

Lemma 7. For A, B we have

‖A‖F ≤ Θ · ‖A‖ and ‖AB‖ ≤ Θ · ‖A‖ · ‖B‖.(22)

Proof. By (20), ‖A‖F = ‖AKK−1‖F ≤ Θ ·‖AK‖F = Θ ·‖A‖. Analogously, ‖AB‖
= ‖AKK−1BK‖F ≤ ‖A‖ · Θ · ‖B‖. �

Theorem 8. One-parameter cosets of SOd have curvature ≤ Θ.

Proof. A one-parameter coset of SOd can be parameterized by c(t) = MetX , where
M ∈ SOd and X is skew-symmetric. By left-invariance of the metric, it is sufficient
to consider M = E. Derivatives of c are then given by ċ = cX and c̈ = cX2.
Left-invariance of the metric implies that ‖ċ(t)‖ = ‖X‖ and ‖c̈(t)‖ = ‖X2‖. An
appropriate scaling of X makes c an arc length parametrization, i.e., ‖ċ‖ = ‖X‖ = 1,
so that the curvature κ = ‖c̈‖. By Lemma 7, κ = ‖X2‖ ≤ Θ · ‖X‖2 = Θ. �

5.3. The curvature of the geodesics in SOd and SEd. The curvature of the geodesics
in a surface M is bounded by the maximal normal curvature of M . The normal cur-
vature associated with a unit tangent vector T and a unit normal vector N in a point
x ∈M can be computed by the formula

κn(T,N) = 〈IIx(T, T ), N〉,(23)

where IIx : TxM × TxM → ⊥xM is the second fundamental form and ⊥xM denotes
the orthogonal space of M at x. If V ⊥ denotes the orthogonal projection of a vector
V onto ⊥xM , and x(s, t) is an M -valued function with x(0, 0) = x, ∂x

∂s (0, 0) = V ,
∂x
∂t (0, 0) = W , then

(
∂2x
∂s∂t(0, 0)

)⊥
= IIx(V,W ) (cf. [17]). Equation (23) implies that

normal curvatures do not exceed any upper bound for ‖IIx(T, T )‖.
Theorem 9. The normal curvatures κn of both SOd and SEd, and therefore the cur-
vature of their geodesics, are bounded by Θ.
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Proof. Since SEd is a cylinder with normal section SOd, it is sufficient to consider
SOd, and by left-invariance of the metric, it is sufficient to compute normal curvatures
in the point E. So we consider IIE : sod × sod → so⊥d , where sod and so⊥d denote the
tangent and normal spaces in the point E of the surface SOd in R

d×d, respectively.
SOd can be parameterized by

SOd : S(t,X) = exp(tX), where XT = −X and ‖X‖ = 1.(24)

We compute IIE(X,X) =
(

∂2

∂t∂se
tX+sX

∣∣
t=s=0

)⊥
= (X2)⊥ and hence, ‖IIE(X,X)‖ ≤

Θ · ‖X‖2 = Θ. �

Theorems 8 and 9 show that Θ is an upper bound for the curvature of both the one-
parameter subgroups and the geodesics. As to the geodesics, we give an alternative
upper bound which is better if the dimension d is low.
Theorem 10. The normal curvatures κn of SOd and SEd are bounded by

κ
2
n ≤ d(d+ 1)

2
max

{ µj

(µi + µj)2
,

µiµk

(µi + µj)(µj + µk)(µk + µi)

}
,(25)

where 1 ≤ i < j ≤ d and 1 ≤ k ≤ d.
The proof of Theorem 10 is spread over two subsections. It will be finished by the

end of Section 5.3.2. Readers who are not interested in the details of the computations
may continue with Section 5.4. As in the proof of Theorem 9, we consider SOd only.

5.3.1. Orthonormal bases of sod and so⊥d . We compute a coordinate representation
of the second fundamental form IIE with respect to orthonormal bases of the tangent
space sod (which consists of the skew-symmetric matrices) and the normal space so⊥d
of SOd in E. We consider SOd as a surface in R

d×d, which is equipped with the
scalar product 〈A,B〉 = tr(ATBJ). Without loss of generality we assume that J =
diag(µ1, . . . , µd).

We use the matrices Eij as in the proof of Theorem 1 and define T ′
ij := Eij − Eji,

N ′
i0 := Eii and N ′

jk := µjEjk + µkEkj for k > 0. Further, we let

Tjk :=
1√

µj + µk
T ′

jk (1 ≤ j < k ≤ d).(26)

It is elementary to verify that the matrices Tjk constitute an orthonormal basis of sod,
and so do the matrices

Ni0 := Ni0/‖Ni0‖, Njk := Njk/‖Njk‖ (1 ≤ i ≤ d, 1 ≤ j < k ≤ d)(27)

for so⊥d . The norms of N ′
ij are given by

‖N ′
i0‖2 = µi, ‖N ′

ij‖2 = µiµj(µi + µj).(28)

5.3.2. The second fundamental form. We use the parametrization

X(t10, . . . , td−1,d) = exp
(∑

j<k
tjkTjk

)
,(29)

of SOd in order to compute a coordinate representation of IIE with respect to the bases
(26) and (27) of tangent space and normal space, respectively:

IIE(Tij , Tkl) =
( ∂2X

∂tijtkl

∣∣∣
tij ,tkl=0

)⊥
=

1

2
(TijTkl + TklTij)

⊥,(30)
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where TijTkl =
δjkEil−δjlEik−δikEjl+δilEjk√

µi+µj ·
√

µk+µl

. By splitting Eij into a tangential and a

normal component according to

Eii =
√
µiNi0, Eij =

µj√
µi + µj

Tij +

√
µiµj√
µi + µj

Nij (i 6= j)(31)

one verifies that (TijTkl)
⊥ = (TklTij)

⊥. With µ̃ik =
√
µiµk/

√
µi + µk, it follows

that

IIE(Tij , Tkl) = (TijTkl)
⊥ = ((µi + µj)(µk + µl))

−1/2 ·
(
−δikδjl(

√
µiNi0 +

√
µjNj0)

+δjk(1 − δil)µ̃ilNil − δjl(1 − δik)µ̃ikNik − δik(1 − δjl)µ̃jlNjl + δil(1 − δjk)µ̃jkNjk

)
.

If τk (k = 1, . . . , d(d− 1)/2) are coordinates of T ∈ sod with respect to the basis Tij

and νk (k = 1, . . . , d(d+ 1)/2) are coordinates of N ∈ so⊥d with respect to the basis
Nij , then a coordinate representation of IIE has the form νi =

∑
j,k ξijkτjτk. Note

that at most one of the five terms in (5.3.2) is different from zero, which implies that
the entries of the symmetric matrixMi := (ξikl)

d′

k,l=1
, d′ = d(d−1)/2, are zero except

for two elements — either off the diagonal and equal, or on the diagonal. Such a matrix
has the property that for any unit vector x the inequality |xT ·Mi · x| ≤ maxjk |ξijk|
holds. It follows immediately that any unit vector T ∈ sod has the property

‖IIE(T, T )‖ ≤
√

dim(so⊥d )maxi νi ≤
√

dim(so⊥d )maxi(maxjk |ξijk|).(32)

This is the value given in (25), so the proof of Theorem 9 is complete. �

With Theorems 9 and 10, we have found two upper bounds for the curvature of
geodesics in SOd, one of which equals the upper bound for the curvature of one-
parameter subgroups. This shows that for geodesics we may have smaller curvatures
and consequently a smaller linearization error. The reason why we discuss subgroups
and their left cosets at all, is that they have a simpler parametrization and consequently
more of their properties are known. In Theorem 14 we use subgroups to show a result
concerning geodesics.
Remark. In case of d = 2, it is not necessary to estimate an upper bound of the normal
curvature: Since SO2 is a unit circle, all curvatures (also that of the essentially unique
one-parameter subgroup) equal 1.
Remark. For d = 3 it is possible to show that the upper bound given by (25) is always
smaller than the upper bound Θ of Theorem 9. It is easy to see that µ1 ≤ µ2 ≤ µ3

implies

Θ2 =
1

µ1

+
1

µ2

+
1

µ3

≥ 6µ1µ2

(µ1 + µ2)(µ2 + µ3)(µ3 + µ1)
.(33)

For large dimensions the factor d(d+ 1)/2 in (25) dominates and Theorem 9 yields a
better bound. This can already happen in case of d = 4. If all values µi are equal, this
happens for d > 15.

5.4. Connecting transformations by geodesics or subgroups. We are going to ver-
ify the third property needed in Lemma 6 for the geodesics and the one-parameter
cosets in SOd, i.e., either family of curves covers SOd. A more precise statement is
given by Lemma 13 and Theorem 14 below.
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A one-parameter subgroupC of SOd can be parameterized by c(t) = exp(tX) with
a skew-symmetric matrix X . After a suitable change of coordinates in R

d, X is of the
shape

X = diag(Y1, . . . , Yr, 0, . . . , 0), where Yi =

[
0 −ωi

ωi 0

]
,(34)

which leads to

c(t) = diag(R1, . . . , Rr, 1, . . . , 1), Ri =

[
cos tωi − sin tωi

sin tωi cos tωi

]
.(35)

It is no restriction to assume that ω1 ≥ · · · ≥ ωr > 0. We use the left-invariance of the
metric to compute

‖ċ(t)‖2 = tr((XetX)
T
(XetX)J) = tr(−X2J) =

∑r

i=1
ω2

i (j2i−1,2i−1 + j2i,2i).

(36)

By multiplying X with a suitable factor we can achieve ‖ċ‖ = 1, which means that
c(t) then is an arc length parametrization.
Lemma 11. If (35) is an arc length parametrization, then ω1 ≥ 1.

Proof. ‖ċ‖ = 1 in (36) implies that ω2
1 tr(J) ≥ 1. Recall tr(J) = 1. �

When using a coordinate system such that X has the normal form (34), we can no
longer without loss of generality assume that J is a diagonal matrix. We therefore
need the following inequality which compares the diagonal elements of J with its
eigenvalues µ1, . . . , µd:

µ1 ≤ jk,k ≤ µd.(37)

Lemma 12. If ‖ċ(t)‖ = 1 in (35) and |t| ≤ π/ω1, then ‖E − c(t)‖2 ≥ 4µ1(1−cos t).

Proof. It is sufficient to consider the case t ≥ 0, and it is easy to see that

‖E − c(t)‖2 = 2
∑r

i=1
(1 − cos tωi)(j2i−1,2i−1 + j2i,2i).(38)

This expression is greater or equal 2(1 − cos tω1)(j1,1 + j2,2). The statement of the
lemma now follows immediately from Lemma 11, Equation (37) and the fact that the
function 1 − cos tω1 is nondecreasing in the interval [0, π/ω1]. �

Lemma 13. The group SOd is covered by segments of one-parameter subgroups c(t)
with ‖ċ‖ = 1, where the parameter value t ranges in [0, π/ω1].

Proof. With respect to a suitable coordinate system in R
d every orientation-preserving

isometry has a matrix representation of the shape

M = diag(P1, . . . , Pr, 1, . . . , 1), Pi =

[
cosϕi − sinϕi

sinϕi cosϕi

]
, ϕi ∈ (0, π].

(39)

We use this same coordinate system and define a one-parameter subgroup c(t) of the
form (35) with ωi = λϕi, choose λ such that ‖ċ(t)‖ = 1, and let t0 = 1/λ. Obviously,
M = c(t0) and t0 = ϕ1/ω1 ≤ π/ω1. �

We collect the results of this section in
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γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
Γ

TγSEd

SEd πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)πx(Γ) = Γ(x)

x

πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)πx(S) = S(x)

FIGURE 4. Linear approximation of Γ∩SEd (left) and corresponding
orbit of a point (right).

Theorem 14. If A is a ball with centerM ∈ SOd and radius % such that % ≤ 4µ1(1−
cos t), then segments of one-parameter cosets of length ≤ t emanating in M cover
A ∩ SOd. The same is true for geodesic segments.

Proof. By left-invariance of the metric, it is sufficient to show this for the case M =
E, i.e., for the case of one-parameter subgroups. By Lemma 13 segments of length
≥ π/ω1 cover entire SOd, so the statement is true in this case. In the case t ≤ π/ω1,
Lemmas 12 and 13 show that the part of SOd whose distance from E does not exceed
%, is indeed covered by subgroup segments as described above.

The lemma remains true if we replace subgroups by geodesics: By the Hopf-Rinow
theorem [17, chapter 7], for all M ∈ SOd there is a shortest curve connecting M with
E, and this shortest curve is a geodesic. Thus its length does not exceed the length of
the shortest one-parameter subgroup. �

5.5. Toleranced Euclidean transformations. We are now ready to study tolerance
zones of points subject to toleranced Euclidean transformations. Assume that γ ∈ SEd

and consider a ball Γ with center γ. For a point x ∈ R
d we want to find a subset of

R
d which contains Γ(x). As Γ(x) = πx(Γ ∩ SEd) is not so easy to compute, we

replace SEd by its tangent space and consider the intersection S := Γ∩TγSEd instead
of Γ ∩ SEd. The ellipsoid πx(S) is a linear approximation of Γ(x), as illustrated by
Figure 4. The next lemma is used to determine how much πx(S) differs from Γ(x).

Lemma 15. Assume that k is an upper bound for the normal curvatures of SOd

(obtained either from Theorem 9 or Theorem 10 — whichever is smaller), r = 1/k,
t0 ≤ rπ/2 and % ≤ 4µ1(1 − cos t0). Consider a ball Γ in R

D with center γ ∈ SEd

and radius %. The distance of SEd ∩ Γ from the tangent space TγSEd does not exceed
r −

√
r2 − %2.

Proof. We consider β ∈ Γ, with β = (B, b). Let (C, c) = γ. Orthogonal projection
of R

D onto R
d×d maps the cylinder SEd to its basis SOd, β to B, γ to C, TγSEd onto

TCSOd, and the ball Γ to a ball Γ′ of the same size and center C. It follows that

dist(C,B) ≤ dist(γ, β) and dist(β, TγSEd) = dist(B,TCSOd),(40)

and it is sufficient to give an upper bound for the distance of SOd ∩ Γ′ from TCSOd.
By Theorem 14, there is a geodesic segment of length ≤ t0 which connects C and B.
By Lemma 6, the distance of B from TCSOd is bounded by r −

√
r2 − %2. �
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In the following theorem, we use the symbols BD and Bd for the unit balls in R
D

and R
d, respectively.

Theorem 16. Assume that Γ ⊂ R
D is a ball of radius % with center γ ∈ SEd, and that

r, % fulfill the conditions of Lemma 15. Then

SEd ∩ Γ ⊆
(
TγSEd ∩ Γ

)
+ (r −

√
r2 − %2)BD,(41)

i.e., the exact intersection is contained in an offset body of the linearized intersection.
The action of such motions on a point of x ∈ R

d fulfills

πx(SEd ∩ Γ) ⊆ πx

(
TγSEd ∩ Γ

)
+ %(x)(r −

√
r2 − %2)Bd,(42)

with ρ(x) from (7). Thus the exact orbit of x is contained in an offset of the linearized
orbit.

Proof. This follows directly from Lemma 15 and Theorem 1. �

We should mention that the obvious inclusion πx(SEd ∩ Γ) ⊆ πx(Γ) might be used to
sharpen (42). Theorem 16 is illustrated in Figure 4, right.

5.6. A numerical example. We present a numerical example for toleranced Euclidean
transformations. We assume a mass distribution in the Euclidean three-space such that
µ1 = 0.4, µ2 = 0.35, µ3 = 0.25 and |µ| = 1. An approximate upper bound of
3.06 for the curvature of the one-parameter cosets in SOd is furnished by Theorem 8,
and an upper bound of approximate value k ≈ 2.04 for the geodesics is given by
Theorem 10. In order to illustrate how Theorem 16 works, we choose r = 1/k,
t0 = 0.5 < rπ/2 ≈ 0.77 and % = 4µ1(1 − cos t0) ≈ 0.20 as radius of a rather big
tolerance ball Γ ⊂ R

6. According to Lemma 15, the linearization error is bounded by
r −

√
r2 − %2 ≈ 0.04.

6. CONCLUSION

We have developed a concept for dealing with toleranced affine and Euclidean trans-
formations. The tolerance zone of a transformation is defined in the kinematic space
R

D of affine mappings, by means of a certain Euclidean metric for affine mappings.
Tolerance zones of Euclidean transformations are shown to be contained in thin offset
bodies of linearized toleranced zones. The method has the following properties:
• The metric in the space of affine mappings R

D is defined by a mass distribution in
R

d. This allows adapting the metric to specific applications. In particular, it is possible
to define a domain of interest where tolerancing results are particularly useful, i.e.,
tolerance zones of points, where toleranced transformations act on, are small.
• The set γ(x), where x is a point of R

d and the affine transformation γ ranges in a
ball of R

D is again a sphere. This fact is very convenient for applications.
• The method of linearization and giving upper bounds for the linearization error
works comparatively well for the surface SEd, owing to the global bounds on its cur-
vatures. This is in contrast to the linearization errors for implicit constraints [5].
• The majority of applications involves basic geometric shapes like subspaces. The
action of toleranced affine and Euclidean transformation on such geometric entities is
easily described in view of the simple shape of tolerance zones of points.
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There remains work to be done, such as a more detailed investigation of tolerance
zones of simple geometric shapes, for both the affine and Euclidean cases. The de-
pendence of imprecisely defined transformations on input data such as occurs in CAD
applications is another important topic.

From the theoretical point of view, estimating the deviation of a curved surface from
its tangent space via a family of curves of bounded curvature which covers this surface
can be expected to be useful in other applications as well. The authors do not know
whether the inequalities given by Lemmas 5 and 6 are new, because they are rather
elementary.
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