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Abstract: We consider a space X of constant curvature (Euclidean, el-

liptic, and hyperbolic space, and the sphere). The set of isometries of

X transforming a surface such that it touches a second surface is called

the con�guration space of surface-surface contact. We investigate when

this subset of Isom(X) is an immersed submanifold, and characterize

the absence of singularities by the principal curvatures of the surfaces

involved.

1 Introduction

The set of positions of one object such that it touches another, has been studied

from various di�erent points of view. From the side of mechanical engineering

comes the problem of milling a sculptured surface by a cutter, which is, geo-

metrically, a convex surface of revolution. It moves such that it always touches

a given surface, and it should touch only in one point in order to avoid under-

cuttings. Geometric aspects of the restricted problem of translational motions,

which include self-intersections of generalized o�set surfaces and special cases of

the obstacle problem, have been studied in [14].

Integral-geometric kinematic formulas for submanifolds in spaces of constant

curvature have been studied by E. Teufel [12, 13], where he introduces a measure

on the aforementioned set of positions.

The aim of this paper is to determine when the set of positions of one subman-

ifold of a space of constant curvature, such that it touches another submanifold,

has the structure of an immersed submanifold of the isometry group of the space.

2 De�nitions

Let X equal a simply connected space of constant curvature, i.e., X = E

m

(n � 1), or X = S

m

(n � 2), or X = H

m

(n � 2), with E

m

being the Euclidean

space, S

m

the sphere, and H

m

the hyperbolic space of m dimensions. Then the

group G = Isom

+

(X) of orientation-preserving isometries acts with stabilizer

G

x

�

=

SO

m

.
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Let �

1

: M

1

! X and �

2

: M

2

! X be two (m � 1)-dimensional immersed

oriented di�erentiable submanifolds. The tangent space at p 2M

i

is denoted by

T

p

M

i

, the oriented unit normal vector of d�

i

(T

p

i

M

i

) by n

i

(p).

We say that M

1

touches M

2

at (p

1

; p

2

) if �

1

(p

1

) = �

2

(p

2

) and n

1

(p

1

) = n

2

(p

2

),

and that M

1

touches M

2

if there are points (p

1

; p

2

) such that the M

i

touch at

(p

1

; p

2

). If g 2 G, by abuse of notation, we denote the g-transform of M

i

by

g(M

i

) = g � �

i

. Then the set

C = fg 2 G j g(M

1

) touches M

2

g: (1)

is called the con�guration space of surface-surface contact of M

1

, M

2

.

We consider the orthonormal frame bundles O(M

i

) (i = 1; 2), the scalar

product in T

p

M

i

being given by hv;wi = hd�

i

(v); d�

i

(w)i: Obviously every pair of

frames (p

i

; F

i

) (i = 1; 2) de�nes a unique g 2 C: g(M

2

) touches M

1

in (p

1

; p

2

)

such that d�

2

(F

2

) is mapped onto d�

1

(F

1

). For all orthonormal (m� 1)-frames F

and h 2 SO

m�1

the image h(F ) is de�ned. Thus SO

m�1

acts on O(M

1

)�O(M

2

)

by h((p

1

; F

1

); (p

2

; F

2

)) = ((p

1

; h(F

1

)); (p

2

; h(F

2

))) and obviously for all h 2 SO

m�1

the pairs h(p

i

; F

i

) determine the same g 2 G as the pairs (p

i

; F

i

). Therefore there

is a di�erentiable mapping

� : (O(M

1

)�O(M

2

))=SO

m�1

! C; (2)

which is onto. The factor space in (2) has dimension 2 dimO(M

i

)�dimSO

m�1

=

2(dimM

i

+ dim SO

m�1

)� dim SO

m�1

= (m+ 2)(m � 1)=2.

3 Euclidean space

We want to know when � is an immersion, i.e., C is a (m+2)(m�1)=2-dimensional

immersed submanifold of G. Let us �rst consider Euclidean space E

m

. Our aim is

to �nd linearly independent paths in C which pass through a given g 2 C, which

means paths g

i

: I ! C with g

i

(0) = g and f

d

dt

j

t=0

g

i

g linearly independent.

In Euclidean space X = E

m

, the group G equals the semidirect product G =

T

m

o

id

SO

m

of SO

m

with the group T

m

= R

m

of translations. It is an m(m+1)=2-

dimensional Lie group, with T

m

as its m-dimensional normal Lie subgroup. If

� of (2) is actually an immersion then C has codimension 1. We consider a

neighborhood of a g 2 C which belongs to a pair (p

i

; F

i

). The translation in

direction of n(p

1

) never is in this neighborhood, so T

m

is transverse to �, which

we denote by T

m

t �. This shows that locally �

�1

(T

m

) = �

�1

(T

m

\ C) is a

(n � 1)-dimensional submanifold. Having this in mind, we assume without loss

of generality that g = id and M

i

touch each other in (p

1

; p

2

). We are going

to describe a number of linearly independent paths which span T

id

C. We let

n = n

1

(p

1

) = n

2

(p

2

) and identify the tangent spaces �

i

(T

p

i

) = T

n(p

i

)

S

m�1

= V by

parallel translations.
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Paths in C which leave the common normal �xed: It is easy to �nd

linearly independent rotations which leave the common surface normal �xed:

The stabilizer (denoted by H) in G of the tangent space V and the common

surface normal is canonically isomorphic to the special orthogonal group SO(V )

of the tangent space V . H is entirely contained in C, so there are dim(H) =

(m� 1)(m� 2)=2 linearly independent paths h

i

(t) in H � C with h

i

(0) = id.

Other rotational paths in C: Next we want to �nd m� 1 rotations g

i

(t) in

C with g

i

(0) = id, which are linearly independent, and none of which leaves the

common surface normal invariant. Then the union of all paths h

i

and g

i

will still

be linearly independent.

Consider the spherical mappings �

i

: M

i

! S

m�1

� E

m

, p 7! n

i

(p), and

assume that �

1

t �

2

at p

1

; p

2

. Then there are submanifolds M

0

i

�M

i

containing

p

i

such that

M

i=1;2

d�

i

(T

p

i

M

0

i

) = V (3)

and �

i

jM

0

i

locally is regular.

Construct an orthonormal basis B = (e

1

; : : : ; e

m

) of R

m

with e

m

= n and

consider the m� 1 linearly independent one-parameter rotation subgroups �

i

(t)

(i = 1; : : : ;m � 1) of SO

m

which leave the linear span of B n e

i

�xed. None of

them leaves the direction of common surface normal n invariant.

The submanifolds M

0

i

still are transverse, if one of them is transformed by a

g 2 G su�ciently close to the identity. A transverse intersection of submanifolds

of complementary dimension locally is a single point, so by appropriately resizing

M

i

we have

�

1

(M

0

1

) \ �

i

(t) � �

2

(M

0

2

) = fq

i

(t)g (4)

for t su�ciently small. The intersection point q

i

(t) depends smoothly on t, be-

cause the di�erentiable submanifolds f(t; �

i

(t) � �

2

(p

2

) j �" < t < "; p

2

2 M

0

2

g

and f(t; �

1

(p

1

) j �" < t < "; p

1

2 M

0

1

g of R� X intersect transversely in the

smooth curve (t; q

i

(t)), whose smooth image is the curve q

i

(t).

The points in M

0

j

corresponding to q

i

(t) are then given by

q

i

(t) = �

1

� p

(i)

1

(t) = �

i

(t) � �

2

� p

(i)

2

(t): (5)

Thus p

(j)

i

are smooth paths in SO

m

, and obviously

g

i

=

�

p

(i)

1

� �

i

� p

(i)

2

; �

i

�

2 T

m

o

id

SO

m

(6)

are m� 1 linearly independent paths in C with g

i

(0) = id, none of which leaves

the common surface normal n invariant.
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Translational paths in C: At last we want to �nd m�1 linearly independent

purely translational paths t

i

in C with t

i

(0) = id. Their existence will depend on

the di�erence of second fundamental forms of the surfaces M

i

.

Assume again that �

1

t �

2

at p

1

; p

2

. A regular translational path u(t) in

T

m

\C is an image of a path ((p

1

(t); F

1

(t)), (p

2

(t), F

2

(t))) � SO

m�1

in (O(M

1

)�

O(M

2

))=SO

m�1

, therefore there are paths p

i

(t) of contact points. Moreover,

u = �

2

� p

2

� �

1

� p

1

. The surfaces �

1

and �

2

+ u touch at p

1

; p

2

if and only

n(p

1

) = n(p

2

). Two pairs p

i

and p

0

i

de�ne the same translation if and only if

�

1

p

1

� �

2

p

2

= �

1

p

0

1

� �

2

p

0

2

.

Assume a pair of paths (p

1

(t); p

2

(t)) which gives rise to a path in T \ C. Let

(v;w) = (d�

1

_p

1

(0); d�

2

_p

2

(0)). We introduce the mappings

s

i

: V ! V; s

i

(v) = d�

i

� d�

�1

i

(v): (7)

We now can write down the di�erential of the condition that �

1

and �

2

+ u touch

at points p

i

, and that _u 6= 0: It is necessary that

s

1

(v) = s

2

(w); and v 6= w:

We are going to determine the number of linearly independent solutions of this

equation of di�erentials:

Let  : V � V ! V , (v;w) 7! s

1

(v) � s

2

(w), and let � = f(v; v)g. Then

rk = m � 1 because of �

1

t �

2

, which implies dimker = m � 1. Further

dim(ker \�) = dim�� rk( j�). Thus dim(ker =(� \ ker )) = rk( j�) =

rk(�

1

� �

2

), and the maximum number of linearly independent paths in C \ T

equals rk(s

1

� s

2

). If �

1

; �

2

are not transverse but codim(s

1

(V ) + s

2

(V )) = k,

then the same calculations show that the number is rk(s

1

� s

2

) + k.

If we can show that there is an (m� 1)-dimensional submanifold of possible

pairs of points (p

1

; p

2

) in M

1

�M

2

with �

1

(p

1

) = �

2

(p

2

), then we can can use

the calculations above to deduce that we can actually choose m � 1 linearly

independent paths p

i;1

(t); p

i;2

(t) of contact points which give rise to m�1 linearly

independent translational paths t

i

(t) = p

i;1

(t)� p

i;2

(t) in con�guration space.

This is done by considering the mapping (�

1

; �

2

) :M

1

�M

2

! S

m�1

�S

m�1

,

which is easily see to be transverse to the diagonal D = f(n; n) j n 2 S

m�1

g

if �

1

t �

2

. If rk(s

2

� s

1

) = m � 1, then (�

1

; �

2

)

�1

(D) actually is an (m � 1)-

dimensional di�erentiable submanifold.

Theorem 1 A point g 2 C of the con�guration space of two surfaces �

i

: M

i

!

E

m

is regular if and only if the spherical mappings �

1

; �

2

ful�ll the condition

rk(s

1

� s

2

) = m� 1 at the point of contact.

Proof: A point g in C is regular if and only if we can �nd (m+2)(m�1)=2 linearly

independent paths in C which pass through g. In the discussion preceding the

theorem it is shown that under the assumption that �

1

t �

2

, there is a linearly
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independent set of paths consisting of (m � 1)(m � 2)=2 rotations about the

common surface normal, of m�1 other rotations, and of rk(s

2

� s

1

) translations.

If �

1

; �

2

are not transverse, then rk(s

1

� s

2

) < m � 1, there are less then

(m�1)(m�2)=2+m�1 rotations and the number of translations is less or equal

m� 1, so g is not regular in this case.

Remark: In [12] a G-invariant contact density in C is de�ned as

dC(v

2

; : : : ; v

dimG

) = dG(v

1

; v

2

; : : : ; v

dimG

);

where v

1

is the tangent vector of a translation of unit speed in direction of the

contact normal of the two surfaces, and dG is the both right and left invariant

density in G. After introducing an appropriate density dB in the factor space of

(2), and orthonormal bases in V , dC can be expressed as

dC = k � det(s

1

� s

2

) � dB;

with a certain constant k, which is in accordance with our result.

Corollary 1 If �

1

t �

2

a point in con�guration space is regular if and only if

there are m� 1 linearly independent translations in C.

The translations in C have been investigated in [14], where also the connections

with collision problems are studied.

We consider the set C

o

of those g 2 C which leave a point o 2 X �xed. Again

we want to determine when C

o

is an immersed di�erentiable submanifold.

Theorem 2 Suppose g 2 C is a regular point of C and g(o) = o. Then g is a

regular point of C

o

, and C

o

locally is a (m+1)(m�2)=2-dimensional submanifold,

if and only if the tangent plane at the point p = �

1

(p

1

) = �

2

(p

2

) of contact is not

orthogonal to

�!

po.

Proof: Consider the mapping  : C ! E

m

, g 7! g(o). Then  

�1

(o) = C

o

�

G

o

�

=

SO

m

. Without loss of generality assume g = id.

Consider all paths g(t) : I ! C with g(0) = id, which are also paths in

T

m

. The linear span of their tangent vectors

d

dt

j

t=0

g(t)(o) equals V = T

p

i

�

i

.

Now consider the m� 1 non-translational motions g

i

in the discussion preceding

Theorem 1. For at least one of them,

d

dt

j

t=0

g

i

(t)(o) 62 V , so d (d

g

C) = R

m

, i.e.,

 t fog, and therefore C

o

=  

�1

(o) locally is a m-codimensional submanifold of

C.

Comparison of dimensions shows that it is also a 1-codimensional submanifold

of G

o

�

=

SO

m�1

.

The following lemma is needed later:

5



Lemma 1 With the notations of Th. 2, assume that id is a regular point of C,

and choose w such that

[w] = [

�!

po; n] \ [

�!

po]

?

;

where n is the common surface normal. Consider paths g(t) in C

o

with g(0) = id.

Then for all x 62 p + [w;

�!

po] the velocity vectors

d

dt

j

t=0

g(t)(x) of all paths in C

0

with g(0) = id span [

�!

xo]

?

� T

x

R

m

.

Proof: Consider an orthogonal frame b

1

; : : : ; b

m

centered in o such that b

1

=

�!

op

and [b

2

] = [w]. Then [b

3

; : : : ; b

n

] = V \ [po]

?

. Consider the frame's motion

under g(t). We have the di�erential equation

d

dt

j

t=0

g(t)b

j

=

P

c

ij

b

i

with a skew-

symmetric matrix c

ij

, and

d

dt

j

t=0

g(t)(p) 2 V shows that c

12

= �c

21

= 0. C

o

has

codimension 1 is C, so this is precisely the linear equations which de�nes that

tangent space T

id

C

o

.

The subspace of possible velocity vectors of x therefore spans entire [

�!

xo]

?

.

4 Spaces of constant curvature

In order to prove that our results hold in other spaces of constant curvature as

well, we embed them into a projective space and consider the group of isometries

as a subgroup of PGL

m

.

Real projective m-space RP

m

is equipped with homogeneous coordinates x

0

:

: : : : x

n

. Euclidean space E

m

is the subset x

0

6= 0 of RP

m

, and Isom(E

m

) is the

subgroup

Isom(E

m

) =

�

R

�

1 0

t M

�

�

�

�

t 2 R

m

;M 2 O

m

�

(8)

of PGL

m

. Hyperbolic space is embedded into RP

m

as follows:

H

m

= fRx j

X

i>0

x

2

i

< x

2

0

g (9)

and

Isom(H

m

) =

�

RM jM

T

JM = J;

	

; (10)

with J = diag(�1; 1; : : : ; 1). Instead of the sphere we consider elliptic space

e

S

m

which is the factor space of S

m

with respect to the two-element group of

isometries consisting of the identity and the antipodal map. It is embedded into

RP

m

by:

e

S

m

= RP

m

; (11)

and

Isom(

e

S

m

) =

�

RM jM

T

=M

�1

	

: (12)

We denote the connected component of the identity in Isom(X) by Isom

+

(X). It

consists of the orientation-preserving transformations, if the space is orientable.
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The projective point o = (1 : 0 : : : : : 0) then is contained in E

m

\H

m

\

e

S

m

. If

X is any of the three spaces, and G = Isom

+

(X), then

G

o

= fRdiag(1;M) jM 2 SO

m

g

�

=

SO

m

: (13)

If we are given two immersed surfaces as above, we again ask for C and C

o

. As

we can assume, without loss of generality, that o = (1 : 0 : : : : : 0), and G

o

is the

same for all three spaces, Th. 2 and Lemma 1 hold not only in E

n

, but in

e

S

m

and H

m

also. (The spherical mappings �

i

are always in the Euclidean sense).

Thus we are able to prove:

Lemma 2 A point g 2 C of the con�guration space of two surfaces �

i

:M

i

! X,

where X is any of E

m

;

e

S

m

;H

m

; S

m

is regular if and only if the spherical mappings

�

1

; �

2

ful�ll the condition rk(s

1

� s

2

) = m� 1.

Proof: Assume that X = E

m

, X = H

m

or X =

e

S

m

. Then without loss of

generality we may assume that g = id. We denote the point of contact by p.

Consider a point o 2 X such that op is not orthogonal to V . (The orthogonality

is in the sense of X). Without loss of generality we may assume that o = (1 : 0 :

: : : : 0). Then Th. 2 implies that C

o

locally is an (m+ 1)(m� 2)=2-dimensional

submanifold of G

o

.

Lemma 1 shows that for all points x 2 X \ E

m

except those in a plane, the

paths in C

o

give rise to velocity vectors which span a hyperplane orthogonal to

�!

xo, where the orthogonality is both in the sense of E

m

and in the sense of X.

Thus an appropriate choice of points o

1

; : : : ; o

m

and regular paths g

j

in C

o

j

with

g

j

(0) = id such that f

d

dt

j

t=0

g

j

(t)(o)g is linearly independent shows that there are

in in fact (m+ 1)(m� 2)=2 +m = (m+ 2)(m� 1)=2 linearly independent paths

in C, and we have shown the result in the cases X = E

m

;H

m

;

e

S

m

.

If X = S

m

the results also holds because it is of a local nature and S

m

is a

twofold covering of

e

S

m

, which is locally isomorphic to

e

S

m

with respect to both

its smooth structure and its metric.

5 Second order contact of Surfaces

We used the spherical mappings �

i

and their derivatives d�

i

and s

i

to characterize

the situation that there are less than m�1 linearly independent translations in C.

We want to interpret the condition rk(s

1

� s

2

) < m� 1 geometrically: Suppose

the two regular surfaces �

i

: M

i

! E

m

of Euclidean space locally touch each

other along a regular curve, i.e., there are curves c

i

: I ! m

i

with �

1

c

1

= �

2

c

2

and n

1

c

1

= n

2

c

2

. Then it is easily seen that rk(s

1

� s

k

) < m � 1. On the other

hand, if rk(s

1

� s

2

) < m� 1, then there is a regular surface �

3

:M

3

! E

m

which

osculates M

1

and touches M

2

along a regular curve.
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Osculation of two surfaces is de�ned as follows: We use the a�ne tangent

space d�

i

(T

p

i

M

i

) as coordinate chart and choose an appropriate Cartesian coor-

dinate system in E

m

such that we can write both �

1

and �

2

in the form

��

i

: u = (u

1

; : : : ; u

m

) 7! (u

1

; : : : ; u

m

; z

i

(u

m

)): (14)

Then

@

@u

j

z

i

= 0, and the two surfaces osculate if and only if

@

2

@u

i

@u

j

(z

1

� z

2

) = 0,

for all i; j. Osculation is invariant with respect to di�eomorphisms, so it is well

de�ned in any of E

m

; S

m

;

e

S

m

;H

m

, and is invariant with respect to the action of

every g 2 Isom(X). Thus what in Euclidean space is rk(s

2

� s

1

) < m � 1 is a

well-de�ned notion of geometry of spaces of constant curvature, and we call it

second order contact of surfaces.

6 Curvatures

In Euclidean space the mappings s

i

are self-adjoint with respect to the Euclidean

scalar product in V , so there are eigenvalues �

(i)

1

; : : : ; �

(i)

m�1

, which are the prin-

cipal curvatures of �

i

at p

i

. If X is not Euclidean space, we de�ne the principal

curvatures of �

i

at p

i

as the principal curvatures of the then Euclidean surface

g � �

i

where g 2 Isom

+

(X) = G is such that g(�

i

(p

i

)) = (1 : 0 : : : : : 0) = o.

Because G

o

� Isom(E

m

) \ Isom

+

(X), they are well de�ned.

This brute force method to de�ne curvatures on the one hand is well suited

for our method to describe non-euclidean isometries by Euclidean ones, which

allows to use the more elementary geometry of one-parameter subgroups of the

Euclidean isometry group, instead of the respective spherical and hyperbolic ones.

On the other hand curvatures are already de�ned for submanifolds of Riemannian

manifolds, so it is necessary to convince ourselves that these notions actually

coincide:

Lemma 3 A curve c : I ! RP

n

with c(0) = (1 : 0 : : : : : 0) has curvatures

�

e

, �

s

, and �

h

with respect to the Euclidean, elliptic and hyperbolic metrics. All

these curvatures are equal: �

e

= �

s

= �

h

.

Proof: It is su�cient to consider circles as curves. They are contained in planes,

so it is su�cient to consider the two-sphere and the hyperbolic plane. We embed

the former in Euclidean 3-space as the unit sphere

�

X , and likewise the latter

in pseudo-euclidean 3-space as the unit sphere

�

X : z

2

� x

2

� y

2

= 1; z > 0. A

distance circle �c of radius r then is the intersection of X with a cone � = fx 2

X;\(x;m) = rg, where the angle is in the respective metric. The models X of

(9) and (11) are the result of central projection of the spatial models with center

0 onto the plane � : z = 1. The projection of the distance circle �c then equals

c = � \ �.
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�c is a circle in the sense of (pseudo)-euclidean geometry, so its axis of curvature

is known. Assume that o = (0; 0; 1) 2 �. Meusnier's theorem implies that the

Euclidean center of curvature of c at o equals [m] \ �. Thus the Euclidean

curvature of c at o equals 1= tan r for

e

S

2

and 1= tanh r for H

2

.

On the other hand the formulas for perimeter p(r) and area A(r) of distance

circles in the elliptic/spherical and hyperbolic geometries, which are given by

p(r) = 2� sin r and p(r) = 2� sinh r, A(r) = 2�(1�cos r) and A(r) = 2�(cosh r�

1), together with the Gauss-Bonnet theorem �A(r) + �p(r) = 2� imply that

the geodesic curvatures of distance circles are given by 1= tan(r) and 1= tanh r,

respectively.

Thus we have shown the theorem in elliptic/spherical geometry. In hyperbolic

geometry we have shown it for all circles with � > 1. The rest follows from

linearity.

Thus we have justi�ed our mixing of Euclidean and Non-Euclidean geometries,

and we are able to specify the following theorem without having to state which

geometry the curvatures refer to:

Theorem 3 In any of the spaces X = E

m

, S

m

,

e

S

m

, H

m

the con�guration space

of surface-surface contact has no singularity at the points p

1

; p

2

if and only if the

principal curvatures of the surfaces �

i

:M

i

! X lie completely separated (see Fig.

1). If this holds for all pairs p

i

2M

i

, then C is an immersed (m+ 2)(m� 1)=2-

dimensional submanifold of Isom

+

(X).

Proof: We assume that �

i

touch each other in points p

i

. We ask the question: is

it possible to rotate �

2

about the common surface normal such that rk(s

1

� s

2

) <

m� 1? If it is, then there is a singular point in C with contact points p

i

. Denote

the common tangent space by V . Let h 2 SO(V ) and consider its extension

�

h to

G. If M

2

is transformed by

�

h, the mapping s

2

transforms by h

�1

s

2

h or h

T

s

2

h,

depending on our interpretation of s

2

as linear mapping or as bilinear form.

Because h

T

= h

�1

in a Cartesian coordinate system, this makes no di�erence.

The eigenvalues of s

i

are the principal curvatures �

(i)

j

at p

i

.

Now we can use the result in [15] where it is shown that there is an h 2 SO(V )

such that rk(s

1

� h

T

s

2

h) < m � 1 if and only if the sets f�

(1)

1

; : : : ; �

(1)

m�1

g and

f�

(2)

1

; : : : ; �

(2)

m�1

g are completely separated on the projective line R[ f1 = �1g

(see Fig. 1).

Di�erent from the usual terminology, we call a surface strictly convex, if it is

convex and has only elliptic surface points.

Corollary 2 Assume that X = E

m

or X = H

m

. If neither �

1

(M

1

) nor �

2

(M

2

)

is a strictly convex surface, then the con�guration space has singularities.

Proof: All smooth surfaces have elliptic surface points. If they have only elliptic

surface points, then they are convex. Thus a surface which is not strictly convex

9
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Figure 1: Principal curvatures such that rk(s

1

� s

2

) = m� 1.

in our sense has parabolic points. This means that there are points p

i

2M

i

such

that at least one principal curvature is zero at p

1

and p

2

. Now Th. 3 shows that

there is a singularity at p

1

; p

2

.

Theorem 4 Assume that M

i

is compact, that �

i

is an embedding and that X =

E

3

or X = H

3

. There are the following possibilities concerning the singularities

of C:

1. If both �(M

1

); �(M

2

) 6= 2, then C has singularities.

2. If �(M

1

) = 2 and �(M

2

) 6= 0, denote the minimum and maximum principal

curvatures of �

i

(M

i

) by k

0

i

and k

00

i

. Then C has no singularities if and only

if [k

0

1

; k

00

1

] \ [k

0

2

; k

00

2

] = ;.

3. If �(M

1

) = 2 and �(M

2

) = 0, then the set of all principal curvatures of

M

2

is either an interval K

2

= [k

0

2

; k

00

2

] or a union of two intervals K

2

=

[k

0

2

; k

000

2

] [ [k

000

2

; k

00

2

]. C has no singularities if and only if [k

1

; k

0

1

] \K

2

= ;.

Proof: We consider the set R

2

sym

= R

2

=S

2

of unordered pairs of real numbers

where S

2

denotes the symmetric group of two elements. It is well known (cf. [2])

that the mapping K

i

: M

i

! R

2

sym

, p

i

7! (�

(i)

1

; �

(i)

2

) is continuous. In Euclidean

three-space, every surface with nonzero Euler characteristic has an umbilic, so

K

i

(M

i

) is connected, if �(M

i

) 6= 0.

If K

i

(M

i

) � R

+

, then �

i

(M

i

) is strictly convex in our sense, and �(M

i

) = 2.

All surfaces have elliptic points. If �(M

i

) 6= 2, or if �

i

(M

i

) is not strictly convex

in our sense, then it has parabolic points also, which means 0 2 K

i

(M

i

).

10



Thus if both �(M

1

); �(M

2

) 6= 2, then C has a singularity according to Cor.

2, and we have shown part (i).

If �(M

i

) 6= 0, then �

i

(M

i

) has at least one umbilic point p

i

, i.e., �

(i)

1

(p

i

) =

�

(i)

2

(p

i

). The set of all principal curvatures of �

i

(M

i

) on the real axis is the union

of the two projections of K

i

(M

i

) onto the x

1

- and the x

2

-axis in R

2

sym

. It has

therefore at most two connected components. If there is an umbilic, it has one

component, and equals therefore the interval [k

0

i

; k

00

i

]. If �(M

i

) = 0, it is possible

that it equals the union of two intervals.

Theorem 3 now shows the second and third assertion of the theorem.

7 C as an embedded submanifold

If we know some global shape properties of the surfaces involved, we are able

show that the mapping � of Equ. (2) is an embedding in some cases. We will use

the results of [14], where analogous results have been obtained in the restricted

case of purely translational motions.

Theorem 5 Assume that X = E

m

,M

1

;M

2

are compact. If both are non-convex,

C is not an embedded submanifold. If �

2

(M

2

) is a strictly convex surface, then

there is a �

0

> 0 such that for all surfaces ��

2

:M

2

! X, p 7! ��

2

(p) with � < �

0

the con�guration space is an embedded submanifold of G.

Proof: If both surfaces are not strictly convex, C has singularities according to

Cor. 2. Assume now that �

2

(M

2

) is a strictly convex surface. For all g 2 G we

consider the set T

g

� (O(M

1

)�O(M

2

))=SO

m�1

which is de�ned by x 2 T

g

if and

only if �(x)g

�1

is a translation. �(T

g

) is the set of all h 2 G which transform

M

2

in a position where it touches M

1

, but such that h di�ers from g only by a

translation.

Clearly, if �(x

1

) = �(x

2

) = g, then x

1

; x

2

2 T

g

and �jT

g

is not injective. The

injectivity of this mapping has been studied in [14]. It is shown that for all g 2 G

there is a �

g

such that for all � < �

g

the mapping �

g

, de�ned by surfaces �

1

and

��

2

, is an embedding. By compactness of (O(M

1

) � O(M

2

))=SO

m�1

, there is a

positive minimum �

1

of the �

g

's.

Furthermore, scaling by � scales the curvatures by the same factor, so there

is a �

2

> 0 such that for all � < �

2

the surfaces �

1

and ��

2

satisfy the conditions

of Th. 3. Now we can take �

0

= min(�

1

; �

2

).

If we know more about the shape of �

i

(M

i

), then we can say more about self-

intersections of C. We call a closed embedded surface positively oriented, if its

positive normals point to its outside. The convex core of a star-shaped surface is

the set of points whith to respect to which the surface is star-shaped. It is easily

seen to be convex.
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Theorem 6 Assume that M

i

are compact and that X = E

m

. Denote the min-

imum and maximum principal curvature of �

i

(M

i

) by k

0

i

and k

00

i

(the sign of the

curvatures is determined by the positively oriented normal vector). In the follow-

ing cases the con�guration space is an embedded submanifold:

1. if �

i

(M

i

) are convex and oppositely oriented, and at least one of them is

strictly convex;

2. if �

i

(M

i

) are strictly convex, equally oriented, and [k

0

1

; k

00

1

], [k

0

2

; k

00

2

] are dis-

joint;

3. if �

i

(M

i

) are oppositely oriented, one is star-shaped and the other is strictly

convex, and [k

0

1

; k

00

1

], [k

0

2

; k

00

2

] are disjoint,

4. if �

i

(M

i

) are equally oriented, �

1

(M

1

) is star-shaped and �

2

(M

2

) is strictly

convex, [k

0

1

; k

00

1

], [k

0

2

; k

00

2

] are disjoint, and �

2

(M

2

) is freely movable in the

convex core of �

1

(M

1

).

Proof: Two oppositely oriented convex surfaces one of which is strictly convex

touch in at most one point, so � of (2) is injective. They satisfy also the conditions

of Th. 3, because one surface has strictly positive principal curvatures, and the

other one nonpositive ones, or vice versa, which proves the �rst statement of the

theorem.

A strictly convex surface M with minimal and maximal principal curvatures

k

0

, k

00

is freely movable in a sphere of radius 1=k

00

and a sphere of radius 1=k

0

is

freely movable inM (see [5, 7, 10]). IfM

i

satisfy the conditions of statement 2, we

assume without loss of generality that k

0

1

< k

0

2

. A sphere of radius

1

2

(1=k

00

1

+1=k

0

2

)

shows that �

1

(M

0

2

) is freely movable in the interior of �

2

(M

0

1

) and it touches in at

most one point. Thus � is injective. The assumption on k

0

i

, k

00

i

further ensures

that � has no singularities, so we have shown the second statement.

As to the third statement, we may without loss of generality assume that

�

1

(M

1

) is star-shaped and not convex, and that �

2

(M

2

) is strictly convex. We may

also assume that k

0

2

; k

00

2

> 0. Then k

0

1

< 0; k

0

2

> 0, because a non-convex surface

must have at least one elliptic and at least one hyperbolic point. Analogous to

the proof of Th. 5 we assume that � is not injective, i.e., �(x) = �(x

0

) = g. Then

�jT

g

is not injective. In [14] it is shown that if a strictly convex surface touches a

star-shaped surface from the outside (which is the case here), and the di�erence

of second fundamental forms in points of contact is positive de�nite (which is the

case here, because all principal curvatures of �

2

(M

2

) are greater than all principal

curvatures of �

1

(M

1

)), then h � g � �

2

(M

2

) touches �

1

(M

1

) in at most one point for

all translations h. This implies that �jT

g

is injective, and so is �. Th. 3 shows

again that � is nonsingular, so we have shown the third statement.

The proof of the fourth statement is completely analogous: We use the result

in [14] which says that �jT

g

is injective, if h�g � �

2

(M

2

) is contained in the convex

core of �

1

(M

1

) for some translation h.
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Example: At last we show an example where the con�guration space is an

embedded submanifold even if k

0

1

< k

0

2

< k

00

2

< k

00

1

: Assume that M

1

is a torus

in Euclidean three-space with radii r;R (r < R) and M

2

is a sphere with radius

� such that r < � < R � r, and iota

i

are the obvious embeddings. Then the

principal curvatures ful�ll

�

(1)

1

= 1=r; 1=(R + r) < �

(1)

2

< 1=(R � r);

�

(2)

1

= �

(2)

2

= 1=�:

All spheres touching M

1

in two points either have radius � R� r or radius r, so

� of (2) is injective. Th. 3 shows that � is also nonsingular, so C is an embedded

5-dimensional submanifold of G. This result holds also for surfaces, which are

`not very di�erent' from these M

i

with respect to their shape, �rst and second

derivatives.
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