
Generalized Multiresolution Analysis

for Arc Splines

Johannes Wallner

Abstract. In order to approximate a curve by another curve consist-

ing of circular arcs (`arc spline'), we apply a generalized multiresolution

analysis on base of trigonometric spline functions to the support function

of this curve.

x1. Homogeneous B-Splines and Trigonometric Splines

In this section we recall some facts about the connection between trigonometric

B-spline functions and homogeneous polynomial B-spline functions. First, we

follow [10,3], then [9,12].

We assume that the reader is familiar with the de�nition of the space

T

k

(�;M) of trigonometric splines of order k, based on a knot sequence � =

(�

0

; : : : ; �

n�k

) with a = �

0

< �

1

< � � � < �

n�k�1

< �

n�k

= b, and a vector

M = (m

1

; : : : ;m

n�k�1

) of integer multiplicities m

i

which satisfy 1 � m

i

�

k + 1. It is of dimension n and is a special case of an L-spline space. We are

going to demonstrate its connections with homogeneous polynomial B-splines.

The polar angle �(u; v) of two nonzero vectors u; v 2 IR

2

is de�ned to be

the smallest � 2 IR, � � 0, such that

�

cos � �sin �

sin � cos �

�

� u = �v (� > 0). For u; v 2

IR

2

n 0 we de�ne the closed interval [u; v] := fx 2 IR

2

n 0; �(u; x) + �(x; v) =

�(u; v)g; and the half-open interval [u; v) := fx 2 [u; v]; 8� > 0 : x 6= �vg:

Let k � 0 and t = (t

0

; : : : ; t

n+k

) be a sequence of nonzero vectors 2 IR

2

(knot

sequence), such that for all i = 0; : : : ; n� 1

�(t

i

; t

i+1

) + �(t

i+1

; t

i+2

) + � � �+ �(t

i+k

; t

i+k+1

) = �(t

i

; t

i+k+1

) < � (1)

holds, and we always have �(t

i

; t

i+k+1

) > 0. Because the sequence may wind

itself around the origin more than once, we lift it to the universal cover

f

IR

2

of

IR

2

n 0; i.e. we tacitly assign to each vector of IR

2

n 0 a winding number. This

will help to avoid ambiguities.
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De�nition. The homogeneous polynomial B-spline basis functionN

0

i

:

f

IR

2

!

IR of degree 0 is the characteristic function of the interval [t

i

; t

i+1

), and the

homogeneous B-spline basis functions N

k

i

:

f

IR

2

! IR of degree k > 0 are

de�ned recursively by

N

k

i

(x) =

det(x; t

i

)

det(t

i+k

; t

i

)

N

k�1

i

(x) +

det(t

i+k+1

; x)

det(t

i+k

; t

i

)

N

k�1

i+1

(x): (2)

It is well known that the trigonometric B-spline functions of order k

can be expressed in terms of homogeneous B-spline functions of order k: For

u 2 IR, we de�ne the unit vector n(u) = (cosu; sinu) 2

f

IR

2

. The angle u

determines the appropriate winding number. To a knot angle sequence � with

multiplicities M we assign the knot vector sequence

n(�

0

=k); : : : ;

| {z }

k+1 times

n(�

1

=k); : : : ;

| {z }

m

1

times

n(�

2

=k); : : : ;

| {z }

m

2

times

: : : ; n(�

n�k

=k); : : :

| {z }

k+1 times

: (3)

Then the linear span of the restriction to the unit circle of the homogeneous

polynomial B-spline basis functions N

m

i

jS

1

equals the space of all functions

f(k � u), where f 2 T

k

(�;M) if the knot sequence ful�lls condition (1).

The functions T

k

i

(u) = N

k

i

(n(

u

k

)), i = 1; : : : ; n corresponding to the

homogeneous B-spline basis functions will be called trigonometric B-spline basis

functions. It is well known that they form a basis of T

k

(�;M).

Because we will need it later, we recall some facts about polar forms of

polynomial functions: The polar form of a homogeneous polynomial function

p : IR

2

! IR of degree n is the unique multilinear symmetric function in n

variables S

p

: (IR

2

)

n

! IR which has the property S

p

(t; : : : ; t) = p(t) for all

t 2 IR

2

. Further, the following is true: Let p =

P

c

i

(t)N

r

i

(t). If [t

j

; t

j+1

) is

nonempty, let S

j

be the polar form of the restriction pj[t

j

; t

j+1

). Then

c

i

= S

i

(t

i+1

; : : : t

i+r

) = S

i+1

(t

i+1

; : : : ; t

i+r

) = � � � = S

i+r

(t

i+1

; : : : ; t

i+r

); (4)

whenever the polar forms S

j

are de�ned. Thus the polar form can be used to

calculate the coe�cients c

i

.

Lemma. Let �

i

= (�

i+1

� �

i

)=2. The quadratic trigonometric spline func-

tions possess the following approximate convex hull property:

X

c

i

T

2

i

(u) 2 c:h:(

c

i�2

cos�

i�1

;

c

i�1

cos�

i

;

c

i

cos�

i+1

) (�

i

� u � �

i+1

): (5)

Here all unde�ned terms are tacitly assumed to be absent.

Proof: The bivariate polynomial function x

2

+y

2

is constant when restricted

to the unit circle. Its polar form is the euclidean scalar product. Thus (4)

implies that the constant function 1 can be represented as a quadratic trigono-

metric B-spline function by 1 =

P

ht

i+1

; t

i+2

iT

2

i

(u) =

P

cos�

i+1

T

2

i

(u); where

t = (t

1

; : : :) is the knot vector sequence corresponding to � and M according

to (3). If �

i+k

� �

i

< 2�, we always have 0 � T

k

i

(u); cos�

i

� 1. Therefore,

the sum

P

c

i

T

i

(u) =

P

c

i

cos�

i+1

cos�

i+1

T

2

i

(u) is a convex combination. The

assertion of the lemma now follows from the fact that for u 2 [�

i

; �

i+1

], at

most three terms in the above sum are nonzero.
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x2. A Generalized Multiresolution Analysis with Trigonometric

B-Splines

De�nition. Let I = [a; b] � IR. A generalized multiresolution analysis of L

2

(I)

is a nested sequence V

0

� V

1

� V

2

� � � � of closed linear subspaces of L

2

(I)

such that their union is dense in L

2

(I), together with Riesz bases of the spaces

V

i

and of complements W

i

of V

i

in V

i+1

. The basis functions of W

i

will be

called (pre-)wavelets.

We will show how to construct a generalized multiresolution analysis with

trigonometric B-spline functions of order two. Let (�

(0)

;M

(0)

) � (�

(1)

;M

(1)

)

� � � � ; be nested knot angle sequences. We choose the corresponding trigono-

metric B-spline functions as bases of V

i

= T

2

(�

(i)

;M

(i)

). Let the spaces W

i

be the orthogonal complements of V

i

in V

i+1

in the sense of L

2

.

Let t and t

0

be knot vector sequences such that t

0

is a re�nement of t. The

homogeneous B-spline basis functions corresponding to t and t

0

will be denoted

by N

i

and N

0

i

. Then there are coe�cients c

ij

such that N

i

(x) =

P

c

ij

N

0

j

(x).

Lemma. The coe�cients c

ij

are given by the following algorithm: Choose k

such that j � k � j+2 and [t

0

k

; t

0

k+1

) is not empty. This interval is contained

in an interval [t

l

; t

l+1

). Then we have t

0

j+1

= �t

l

+ �t

l+1

, t

0

j+2

= 
t

l

+ �t

l+1

and

c

ij

= �
N

i

(t

l

) + ��N

i

(t

l+1

) + (�� + �
)�

p;i�1

: (6)

Proof: Equation (4) implies that c

ij

equals S

0

k

(t

0

j+1

; t

0

j+2

), where S

0

k

is the

polar form of N

i

j[t

k

; t

k+1

). Because of the multilinearity and symmetry of the

polar form we have c

ij

= �
S

0

k

(t

l

; t

l

)+��S

0

k

(t

l+1

; t

l+1

)+(��+�
)S

0

k

(t

l

; t

l+1

):

Because of [t

0

k

; t

0

k+1

) � [t

l

; t

l+1

), the latter is not empty and we have S

l

= S

0

k

,

where S

l

is the polar form of N

i

j[t

l

; t

l+1

). It follows that S

0

k

(t

l

; t

l

) = N

i

(t

l

)

and S

0

k

(t

l+1

; t

l+1

) = N

i

(t

l+1

). Equation (4) implies that S

l

(t

l

; t

l+1

) equals 1

if i = l � 1 and 0 if not. The assertion follows.

Let �

(i)

max

= max

j

(�

(i)

j+1

��

(i)

j

) and �

(i)

min

= min

j

(�

(i)

j+1

��

(i)

j

). Assume that

lim

i!1

�

(i)

max

= 0. Then the union of the V

i

is dense in L

2

(I). This is proved

in [3], where it is derived from a more general theorem of [10]. In our special

case this also follows directly from the approximate convex hull property.

In [3] a basis of the space W

i

is constructed which consists of functions

 of the minimal possible support.

x4. Support Functions

4.1. (Locally) Convex Curves

For simplicity, we restrict ourselves to the case of piecewise C

2

curves. What

we are going to do in this section can be done for continuous curves as well, be-

cause the restriction of (local) convexity is strong enough to eliminate possible

degeneracies, but we use the curvature of the curve to simplify the discussion.
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De�nition. Assume that I = [a; b] and the curve c : I ! IR

2

is parametrized

by arc length. We call c piecewise C

k

if there is a discrete set T of parameter

values such that for all intervals (u; v) � I n T there is a C

k

extension of c to

an interval (u� �; v + �) with an � > 0.

De�nition. A piecewise C

2

curve is called locally convex and of nonnegative

curvature if for all t 2 I nT , the curvature is nonnegative, and for all t 2 T the

turning angle �( _c

�

; _c

+

) of the limit tangent vectors is nonnegative. A locally

convex curve of nonpositive curvature is de�ned in the obvious way.

A unit vector n is called oriented unit normal vector at u = u

0

62 T

if it is perpendicular to _c(u

0

) and points in the direction of �c(u

0

). If u =

u

1

2 T and the curve is of nonnegative curvature, we consider the left- and

right-handed limit normal vectors n

1

and n

2

and de�ne all vectors n with

�(n

1

; n) + �(n; n

2

) = �(n

1

; n

2

) as oriented unit normal vectors. After re-

parametrizing the curve such that for a whole interval the point c(u) rests

in a point of tangent discontinuity, we can de�ne the piecewise C

1

oriented

normal vector �eld n(u) and the function

d

c

: I ! IR; u 7! hc(u); n(u)i: (7)

At last we re-parametrize d

c

such that its argument is the polar angle of the

oriented normal vectors. We will always assume that d

c

is parametrized in

this way. The function d

c

is thus piecewise C

1

.

De�nition. The function d

c

, parametrized by the polar angle of the oriented

normal vectors, is called the support function of the (locally) convex curve c.

If the support function d

c

is given, the curve c can be reconstructed as

the envelope of the lines l(u) : hx; n(u)i = d

c

(u): If the envelope is not de�ned

because d

c

is not C

1

, this was necessarily caused by a straight line segment

contained in the curve c.

Not all piecewise C

1

functions, however, are support functions of piece-

wise C

2

locally convex curves. The following is well known:

Lemma. The function d is the support function of a (locally) convex curve,

if and only if the sign of d+ d

00

is constant.

4.2 Filter Bank Decomposition of Piecewise Circular Curves

A circle with center m = (m

1

;m

2

) can be parametrized by c : IR ! IR

2

,

c(u) = m � rn(u). Then n(u) is the oriented unit normal vector to c in the

point c(u). The circle's support function d

c

is given by d

c

(u) = hm;n(u)i�r =

m

1

cosu+m

2

sinu� r. This leads to the following de�nition and lemma:

De�nition. An arc spline curve is a C

1

curve which consists of discrete cir-

cular arcs.

Lemma. The locally convex curve c is an arc spline curve if and only if its

support function d

c

is a trigonometric B-spline function of order two whose

knot vector has only knots of multiplicity one.
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0

d(u)+d’’(u)

d(u)

c

Fig. 1. Approximation of a locally convex curve by arc splines. Left:

Curve and arc spline approximants. Right: Support functions d together

with the curvature radius functions d+ d

00

.

The �lter bank algorithm de�ned above can now be used to de�ne a

wavelet transform of the arc spline c. This is de�ned as the wavelet transform

of its support function, using the bases of the spaces W

i

as wavelet functions:

The orthogonal direct sum V

i+k

= V

i

� W

i

� W

i+1

� � � � � W

i+k�1

leads

in a natural way to projections �

i

: V

i+k

! V

i

and �

i

: V

i+k

! W

i

. We

will call the decomposition x = �

i

(x) +

P

k

j=0

�

i+j

(x) (x 2 V

i+k

) the �lter

bank decomposition of x, and the sequence of coe�cient vectors of the various

projections in the bases selected above, its wavelet transform.

x5. Approximation of Curves by Arc Splines

There are many ways to approximate and interpolate curves and discrete point

sets with arc splines. The interested reader is referred to [2,4,5,6,7,8] and the

literature cited therein.

5.1. Approximation of Locally Convex Curves

Let a locally convex curve c : I ! IR

2

be given. We can approximate its sup-

port function d

c

(u) by a trigonometric spline function of order two. An obvious

choice is the closest approximation in the sense of L

2

. Points of tangent dis-

continuity can be reproduced by choosing appropriate greater multiplicities.

Applying the wavelet transform to d and setting all coe�cients below

some threshold to zero gives an approximation

e

d of d and d

c

which is the
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support function of an arc spline ec, if the condition

e

d +

e

d

00

is ful�lled. The

points of curvature discontinuity of ec correspond to the points of curvature

discontinuity of

e

d and are contained the union of the points of curvature

discontinuity of all basis and wavelet functions which actually contribute to

e

d. The more coe�cients of higher index we set to zero, the fewer points of

curvature discontinuity the resulting arc spline will have, i.e., the fewer circular

arcs it will consist of. Fig. 1 shows an example. The small circles indicate the

points of curvature discontinuity.

5.2 Estimates

De�nition. The distance d(c

1

; c

2

) between locally convex curves c

i

: I ! IR

2

is the minimal � such that c

1

lies in a closed �-neighborhood of the union of

c

2

and its initial and �nal tangent ray, and vice versa.

Theorem. Let c : I ! IR

2

be a locally convex piecewise C

2

curve and

d

c

its support function, and let T

2

(�;M) be a trigonometric spline space.

Then there exists an arc spline curve ec with support function d

ec

2 T

2

(�;M)

such that d(c;ec) � C

1

�

3

max

kd

c

k

1

+ C

2

!

3

1

(d

c

; �

max

): If d

c

is in C

3

, we have

d(c;ec) � C

3

�

3

max

(kd

c

k

1

+ kD

3

d

c

k

1

): The constants C

i

depend on the pa-

rameter interval, but not on c, � or M . If �

max

=�

min

is bounded, for all

knot vectors � with �

max

small enough, the curve ec does not have points of

regression.

Proof: Let L be the di�erential operator of degree m which de�nes the

spaces T

m�1

(�;M). For m = 3, we have L = D(D

2

+ 1). Theorem 10.24 of

[10] implies that for j = 0; 1; : : : ;m � 1 there exists a constant C, such that

for all admissible (�;M) and all f 2 C

m

[a; b], the inequality

kD

j

(f �Qf)k

1

� CkLfk

1

� (�

m

max

=�

j

min

) (8)

holds. Q is a projection onto T

m�1

(�;M), which is introduced in [10]. By

Theorem 10.1 of [10], there is a constant C independent on f , such that

kLfk

1

� C(kfk

1

+ kD

m

fk

1

): Letting j = 0 in (8), this implies

kf �Qfk

1

� C�

m

max

(kfk

1

+ kD

m

fk

1

); (9)

with a constant independent of the knot sequence and of f . Because (9) holds

for all �

max

> 0, Theorem 2.68 of [10] allows us to conclude that there are

constants C

1

; C

2

such that for all f 2 C[a; b] and all admissible (�;M), there

is an f 2 T

m�1

(�;M) such that kf � fk

1

� C

1

�

m

max

kfk

1

+ C

2

!

m

1

(f; �

max

):

If f 2 C

m

[a; b], the modulus of smoothness can be replaced by �

m

max

kD

m

fk

1

.

Now assume that always �

min

� k�

max

. Letting j = 2 and m = 3 in (8), for

all f 2 C

3

([a; b]) we have

k(1 +D

2

)(f �Qf)k

1

� C�

max

(kfk

1

+ kD

3

fk

1

) (10)

for all knot sequences with �

max

small enough, with a constant C independent

on f and the knot sequence.
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0
d +d’’
d +d’’

0      0

1      1

d

d

0

1

c

c
1

0

Fig. 2. Left: Approximation of a developable surface by segments of

quadratic cones. Right: Support functions d

i

of contour curves c

i

with

their curvature radius functions d

i

+ d

00

i

.

5.3 Approximation of Curves with Interpolation of Line Elements

We want to approximate the given support function d

c

such that both d

c

(a)

and d

0

c

(a) are reproduced. This can be done as follows:

Assume that the spaces V

i

andW

i

are constructed as above on the interval

[a; b]. Fix an index i and denote the basis functions of V

i

by c

0i

; c

1i

; : : : ; c

n

i

i

.

Equation (2) shows that c

ki

(a) = 0 for j � 1 and c

0

ki

(a) = 0 for k � 2. Let

d

�

= d

c

� (d

c

(a)=c

00

(a))c

00

and d

��

= d

�

� (d

�0

(a)=c

0

10

(a))c

10

(11)

Let

e

V

i

= span(c

2i

; : : : ; c

n

i

i

) and let

f

W

i

equal the orthogonal complement of

e

V

i

in

e

V

i+1

. It is easy to �nd a basis of

f

W

i

The decomposition

e

V

n

=

e

V

0

�

f

W

0

�� � ��

f

W

n�1

de�nes a multiresolution analysis for functions f with f(a) = f

0

(a) = 0.

We therefore approximate d

��

by a trigonometric spline function in

e

V

n

,

apply the modi�ed wavelet transform and set all coe�cients below some

threshold to zero. This gives an approximation

�

d

�

to d

��

and

�

d =

�

d

�

+ (d

c

(a)=c

00

(a))c

00

+ (d

�0

(a)=c

0

10

(a))c

10

(12)

is an approximation to d

c

with the property that d

c

(a) =

�

d(a) and d

0

c

(a) =

�

d

0

(a). The algorithm can be modi�ed in an obvious way, if one wants to

reproduce the line element at the endpoint b of the interval also.

This can be used to approximate curves with in
ection points: Assume

that, after some pre-smoothing process, the curve has a discrete set of in-


ection points which we want to be reproduced after an approximation by

arc splines. Now approximate each of the curve's maximal (locally) convex

segments separately. In order to �t together, the single arc spline segments

have to approximated in such a way that the initial and �nal line elements

are reproduced exactly.

x6. Final Remarks

It should be remarked that the procedure can be applied to dual focal splines

as well, because they are de�ned in terms of trigonometric spline functions.



544 J. Wallner

This makes it possible to de�ne a multiresolution analysis for the special class

of rational curves with rational o�sets which is studied in [9].

There is also an application to surfaces: Two locally convex curves c

1

, c

2

in parallel (\horizontal") planes de�ne a developable surface if we join points

possessing parallel tangents with straight lines. The multiresolution analysis

de�ned in this paper can be applied to both curves separately and gives a mul-

tiresolution analysis for the surface. The approximant will be a developable

surface which consists of pieces of quadratic cones all of whose contour lines

in horizontal planes are circles. Fig. 2 shows an example.
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