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Discrete Line Congruences for Shading and Lighting
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Figure 1: Line congruences constitute a basic geometric object in the computation of freeform shading and lighting systems for
architecture. Our objects of study are discrete 2D systems of straight lines which undergo optimization according to geometric
requirements, followed by conversion to a non-manifold quad mesh with planar faces which is capable of blocking light, creating
reflection patterns, or serving as part of the structure. In these two examples, all three of these optimization goals occur. Dark
shadows are no error of rendering but the intended result of optimization; likewise the optimal placement of shading fins relative
to light implies that the entire shading system can be shallow and transparent. For details see Figures 11 and 13.

Abstract
Two-parameter families of straight lines (line congruences) are implicitly present in graphics and geometry pro-
cessing in several important ways including lighting and shape analysis. In this paper we make them accessible
to optimization and geometric computing, by introducing a general discrete version of congruences based on
piecewise-linear correspondences between triangle meshes. Our applications of congruences are based on the
extraction of a so-called torsion-free support structure, which is a procedure analogous to remeshing a surface
along its principal curvature lines. A particular application of such structures are freeform shading and lighting
systems for architecture. We combine interactive design of such systems with global optimization in order to satisfy
geometric constraints. In this way we explore a new area where architecture can greatly benefit from graphics.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction

This paper studies objects which implicitly are important
parts of graphics and geometry processing in several ways,
namely line congruences. These are 2-parameter families of
straight lines, of which the light rays emanating from a point

source are an example. Another example of much richer ge-
ometry is the system of lines which intersect a surface or-
thogonally, and which is closely tied to the curvature be-
haviour of that surface [Por94]. The geometry of smooth line
congruences and their many relations to surfaces are well un-
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derstood. However there are only very few contributions to
the topic of the present paper, which is discrete line congru-
ences and their relations to discrete surfaces. We here pro-
pose a discrete version of line congruences and discuss their
fundamentals as well as applications in shading and lighting
systems in architecture.

Contributions. These include discrete line congruences
based on triangle meshes (§2) and the important case of
discrete normal congruences (§3). Hitherto discrete congru-
ences have mostly been studied in the form of their quad-
based torsal parametrizations which could be interpreted
as special quad-remeshings of triangle-based congruences.
Both kinds are relevant for our paper, since our main ap-
plication – shading systems – essentially is the same as a
torsal parametrization. Our algorithmic contribution is a 2-
stage optimization procedure: We optimize a triangle-based
congruence (§4.1) such that quad-remeshing (§4.2) yields
the desired shading system, up to a bit of final optimization.
Results (§4.3) and discussion (§5) conclude the paper.

Previous work. For an overview on line congruences with
an emphasis on computing we refer to [PW01]. Design of
congruences (with applications in mechanical engineering)
has been studied by [GR98], who consider Bézier surfaces
in an appropriate space of lines, thus modeling smooth con-
gruences via a discrete control structure. Discrete normal
congruences, with a computational framework for estimat-
ing focal surfaces of meshes with known or estimated nor-
mals, have been presented by [YYG∗07]. There are some
contributions to discrete line congruences in connection with
special quad meshes (integrable systems), for which we re-
fer to the monograph by [BS09]. They do not consider dis-
crete versions of congruences, but rather discrete versions
of the torsal parametrizations of congruences, which are
also an important topic in the present paper. This theory
has been first elaborated by [DSM00]. Of particular inter-
est is the special case of discrete normal congruences, which
lead to torsion-free support structures in architectural geom-
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Figure 2: (a) A congruence L of lines L(u,v) is described by
a surface A, parametrized by a(u,v), and direction vectors
e(u,v). (b) Developables R1, R2 contained in L. The set of
all regression curves ci of these developables makes up the
focal sheets F1,F2 of the congruence (here only F1 is shown).

etry, special cases of which have already been considered
in connection with meshes with specific offset properties
[LPW∗06, PLW∗07, PW08]. We should mention that also
semidiscrete versions of these constructions are of impor-
tance in architecture [PSB∗08]. Finally refer to [KEN∗12]
and the references therein for light control in architecture.

2. Line Congruences

2.1. Smooth line congruences

We here recall a few facts from differential geometry. A line
congruence L is a smooth 2D manifold of lines described
locally by lines L(u,v) which connect corresponding points
a(u,v) and b(u,v) of two surfaces A,B. The vector e(u,v) =
b(u,v)−a(u,v) indicates the direction of the line L(u,v). L
is equivalently described by the volume parametrization

x(u,v,λ) = a(u,v)+λe(u,v) = (1−λ)a(u,v)+λb(u,v).

A ruled surface R ⊂ L is described by functions u(t),v(t):
A parametrization of such a ruled surface via parameters t,λ
is given by x(u(t),v(t),λ).

Torsal directions. In view of our applications we are espe-
cially interested in the developable ruled surfaces R con-
tained in the congruence L. Using subscripts for partial
derivatives, and the symbol [·,·,·] for the determinant, the
condition thatR is developable reads [e,bt,at ] = 0 or equiv-
alently [e,et,at ] = 0 [PW01]. It expands to

u2
t [eu,au,e]︸ ︷︷ ︸

=:γ0(u,v)

+utvt ([eu,av,e]+ [ev,au,e])︸ ︷︷ ︸
=:2γ1(u,v)

+v2
t [ev,av,e]︸ ︷︷ ︸

=:γ2(u,v)

= 0.

(1)

For any fixed line L(u,v) of the congruence, Equation (1) has
up to 2 solutions ut : vt , which are called torsal directions. By
integrating torsal directions one creates functions u(t), v(t)
which fulfill (1) and which describe developable surfacesR
contained in L (see Fig. 2).

Example: Normal Congruences (see also §3). A classical
example of a congruence is formed by the lines orthogonal
to a surface A. In this case the normals along a principal cur-
vature line constitute a developable ruled surface [Por94].
Thus such normal congruences always have torsal direc-
tions, namely the principal directions of A (see Fig. 2).

REMARK (Undefined torsal directions). In the special case
that L consists of the bundle of lines incident with a center,
all ruled surfaces R ⊂ L are cones (and thus developable)
and all directions are torsal. It is important for us to know
that such cases can occur, since optimization of congruences
later in this paper may yield congruences close to a bundle,
and defining a smooth frame field of torsal directions has to
be assisted e.g. by a smoothness energy.

Focal points. We are especially interested in hyperbolic
congruences where two torsal directions exist everywhere.

c© 2013 The Author(s)
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Any line L(u,v) ∈ L is then contained in two developables
R1,R2. It is known that this happens if and only if

([au,ev,e]+ [eu,av,e])2 ≥ 4[eu,ev,e][au,av,e]. (2)

To understand (2) we observe that among ruled surfaces, de-
velopables are characterized by having singular points on
otherwise regular rulings (the curves of regression of Fig. 2).
Thus, hyperbolicity implies that there exist singularities (fo-
cal points) x(u,v,λ), where [xu,xv,xλ] = 0, i.e.,

[eu,ev,e]λ2 +
(
[au,ev,e]+ [eu,av,e]

)
λ+[au,av,e] = 0. (3)

(3). This equation has solutions if and only if its discriminant
is nonnegative, whence (2). For the converse statement and
“singularities at infinity” we refer to [PW01]. Summing up,
(2) holds ⇐⇒ (3) has solutions ⇐⇒ (1) has solutions.

Example: Congruences defined by affine mappings. Con-
gruences defined by parametrizations of the form

x(u,v,λ) = a0 +a10u+a20v+λ(e0 + e10u+ e20v)

play an important in this paper. For fixed λ = λ0, the map-
ping x(u,v,λ0) parametrizes a plane Pλ0

. The affine mapping
from Pα to Pβ,

x(u,v,α) 7−→ x(u,v,β),

connects points which span the lines of the congruence. Fo-
cal points can be computed by (3). The following properties
(see [PW01, Ex. 7.1.2] and Fig. 3) are important for us:

x(1,0,0)

x(0,0,0)
x(0,1,0)

x(0,0,1)
x(1,0,1)

Pλ1
( 1

3 , 1
3 )

Figure 3: Congruence L de-
fined by a “linear” volumet-
ric parametrization x(u,v,λ).
Planes Pλ defined by λ =
const. are visualized as trian-
gles. The red triangle Pλ1

con-
tains the ruling L( 1

3 , 1
3 ) and so

the set of lines Pλ1
∩ Pβ, β ∈

R, constitutes a developable
R⊂L through that ruling.

1. Each line L = Pα∩Pβ is contained in L
2. The lines Pα ∩Pβ with α fixed, constitute a developable

surface R ⊂ L which is planar and contained in Pα (in
general, it is the tangent surface of a parabola).

We are going to make use of these congruences in the next
subsection, when we consider discrete congruences defined
by a correspondence between triangle meshes.

2.2. Congruences defined over triangle meshes

Let us define discrete congruences by means of two combi-
natorially equivalent triangle meshes A,B with vertices {ai}

B

A

R∩B

R∩A

(a) (b)

R

Figure 4: Piecewise-linear correspondence of meshes A, B
defining a piecewise-smooth congruence L. (a) Integrating
torsal directions yields corresponding polylines A and B. (b)
Connecting corresponding points of those polylines yields a
piecewise-flat (and thus developable) surfaceR⊂L.

and {bi}. The correspondence ai ←→ bi defines, via linear
interpolation, correspondences between corresponding faces
aia jak and bib jbk. Connecting corresponding points then
yields a congruence L which is composed of pieces of the
congruences studied in the example above. For each pair of
corresponding triangles we let

ei = bi−ai, ai j = ai−a j, ei j = ei− e j

and obtain a volumetric parametrization of the type de-
scribed in the example above:

x(u,v,λ) = a(u,v)+λe(u,v), (4)

a(u,v) = ai +ua ji + vaki, e(u,v) = ei +ue ji + veki.

Here u,v run in the triangular domain u,v,1− u− v ≥ 0. In
each point of a triangle we may now use Equations (1) and
(3) to compute torsal directions and focal points.

In order to get a developable R contained in the congru-
ence L, we pick an initial point in a face and integrate the
torsal directions from there. Property 2 above shows that as
long as we stay within a face, the torsal directions integrate
along straight lines (see Figure 4). When stepping over an
edge from one triangle into the next one there are up to two
possible torsal directions to continue, and we choose the one
which has minimal deviation from the previous one. This
procedure yields polylines R∩A and R∩B, which subse-
quently span the developableR, and which are considered a
discrete representation of the developableR.

2.3. Congruences defined over quad meshes

Algorithms on meshes frequently have the aim that their
results depend as little as possible on the meshing but
rather on geometric properties of the underlying assumed
smooth shape which is approximated by the mesh. Some-
times however the mesh has regular combinatorics and the
actual mesh polylines play an important role. This section,
changing from triangle-based congruences to quad-based
ones, performs exactly this change of viewpoint. Similar
to §2.2, assume combinatorially equivalent quad meshes

c© 2013 The Author(s)
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Figure 5: A torsal discrete congruence L is defined by con-
necting corresponding vertices of quad meshes A,B where
corresponding edges are co-planar; creating discrete devel-
opables (red and yellow) along mesh polylines. This con-
gruence has been used for the Yas Marina hotel, Abu Dhabi
(right) to create a torsion-free support structure.

A,B. We could imitate the construction of §2.2 and de-
fine a piecewise-smooth congruence by bilinear interpola-
tion within faces, but this does not lead to new insights.
We therefore do not pursue this direction and reserve quad
combinatorics for the treatment of torsal parametrizations
of congruences:

DEFINITION 1. A parametrization L(u,v) of a congruence
is torsal, if the ruled surfaces defined by u = const. are de-
velopable, and so are the ones defined by v = const.

A discrete torsal parametrization is defined by a direct
analogy: A discrete ruled surface (a sequence of lines) is de-
velopable if successive lines are co-planar (see colored ruled
surfaces in Figure 5). Using this notion, we define:

DEFINITION 2. A line congruence {Li, j} of regular quad
combinatorics is a torsal parametrization, if the ruled sur-
faces defined by i = const. are developable, and so are those
defined by j = const.

Application: Torsion-Free Support Structures. Figure 5
shows a steel construction where prismatic beams follow the
edges of a mesh, denoted by A, with regular quad combina-
torics. A has the additional property that each vertex ai, j is
equipped with a straight line Li, j such that for each beam ad-
jacent to that vertex, the central symmetry plane of the beam
contains Li, j. Obviously this happens if and only if the lines
Li, j constitute a discrete torsal parametrization.

Such constructions play an important part in the geome-
try of freeform architecture. We give them the name under
which they are usually referred to in this context:

DEFINITION 3. A torsion-free support structure consists of
combinatorially equivalent meshes A, B such that corre-
sponding edges are co-planar but do not coincide (in case of
regular quad combinatorics, lines connecting corresponding
vertices of A, B constitute a torsal parametrization).

Doliwa et al. [DSM00], who first studied discrete torsal
parametrizations in depth, use the word conjugacy for the

relation between the mesh A and the congruence L. Previous
work on torsion-free support structures was in the context of
meshes with planar faces: [PLW∗07] treat support structures
in the context of architectural geometry. Actually planarity
of faces of A is an unnecessary restriction, see Fig. 5. It is
an aim of the present paper to study and compute support
structures consisting of meshes A,B with non-planar faces,
and to use them for new purposes.

3. Normal congruences

3.1. Smooth normal congruences

We already mentioned normal congruences, which are
formed by the surface normals of a smooth surface A (see
Figure 2). The volume parametrization corresponding to
such a congruence L reads x(u,v,λ) = a(u,v) + λe(u,v),
where a(u,v) parametrizes the surface A, and e(u,v) is the
unit normal vector field. Note that any constant-distance off-
set Ad of A defines the same congruence, with ad = a + de,
ed = e, and xd(u,v,λ) = x(u,v,λ+d).

REMARK (Relation to Surfaces). Properties of normal con-
gruences correspond directly to properties of surfaces: Tor-
sal directions of L correspond to principal directions of A
(=⇒ torsal directions exist everywhere). A developable sur-
face in L consists of the surface normals along a principal
curvature line of A (=⇒ there are two families of devel-
opables which intersect at right angles; actually this char-
acterizes normal congruences). The focal surfaces of L con-
sist of principal curvature centers of A, so they are a surface
analogue of the evolute of a curve [Por94].

A general congruence x(u,v,λ) = a(u,v)+λe(u,v) might
be the normal congruence of an as yet unknown surface
a∗(u,v) with normal vectors e(u,v). In order to find out if
this is the case, we write a∗(u,v) = a(u,v) + λ(u,v)e(u,v)
and solve for λ(u,v). If we restrict ourselves to ‖e‖ = 1 we
get 〈e,eu〉 = 〈e,ev〉 = 0, and the orthogonality conditions
〈e,a∗u 〉 = 〈e,a∗v 〉 = 0 are equivalent to λu = −〈au,e〉, λv =
−〈av,e〉. This PDE has a solution if and only if the integra-
bility condition λuv = λvu holds, i.e.,

〈au,ev〉= 〈av,eu〉. (5)

3.2. Discrete normal congruences

The following definition takes up a property characterizing
smooth normal congruences:

DEFINITION 4. A congruence L defined by a piecewise-lin-
ear correspondence of triangle meshes A,B is called normal,
if torsal planes (spanned by ruling and torsal direction) in
the barycenters of faces are orthogonal.

We consider corresponding faces a1a2a3 and b1b2b3 of A,B,
with difference vectors ei = bi− ai and project them onto
a plane orthogonal to the line connecting their barycenters.

c© 2013 The Author(s)
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This yields triangles ā1ā2ā3 and b̄1b̄2b̄3 and vectors ēi =
b̄i− āi (see Figure 6). A discrete analogue of (5) now is the
following:

a1

a2

a3

b1
b2

b3

ā1

ā3

b̄1

b̄2

b̄3 Figure 6: Congruences defined
by corresponding meshes A,B
are normal if torsal planes in
the barycenters of faces are or-
thogonal (here we show also
the projection used by Prop. 1).

PROPOSITION 1. In the notation of the previous paragraph,
meshes A,B define a normal congruence ⇐⇒ for each pair
of corresponding faces, we have

〈āi j, b̄ik〉= 〈āik, b̄i j〉, (6)

where āi j = ā j− āi, b̄i j = b̄ j− b̄i. This is equivalent to

〈āi j, ēik〉= 〈āik, ēi j〉,

where ēi j = ē j− ēi. It is sufficient that these equations hold
for at least one choice of indices i 6= j 6= k.

Proof. Corresponding points a ∈ A, b ∈ B move in corre-
sponding torsal directions at , bt , resp., if and only if b− a,
at , bt are coplanar, cf. the text above (1). With a,b as
barycenters of corresponding faces, this is obviously equiv-
alent to linear dependence of āt , b̄t . When using the projec-
tion ā = b̄ of barycenters as the origin of the coordinate sys-
tem, there is a linear mapping α which maps corresponding
points āi 7→ b̄i (i = 1,2,3) as well as vectors āt 7→ b̄t (which
are thus seen as eigenvectors of α). This implies that normal-
ity is characterized by orthogonality of α’s eigenvectors, i.e.,
symmetry 〈x,α(y)〉= 〈α(x),y〉 for at least 1 pair of linearly
independent vectors x,y. This is exactly what is stated.

REMARK. It is easy to find conditions equivalent to (6). The
following ones involve the difference of face centers,

ec = 1
3 (b1 +b2 +b3)− 1

3 (a1 +a2 +a3),

which indicates the direction of projection. We have

(6) ⇐⇒ 〈ai j× ec,bik× ec〉= 〈aik× ec,bi j× ec〉
⇐⇒ 〈ai j× ec, eik× ec〉= 〈aik× ec, ei j× ec〉. (7)

4. Applications and Algorithms

The importance of torsion-free support structures for steel
constructions has already been emphasized, see Fig. 5 and
[PLW∗07]. We therefore demonstrate the capabilities of
modeling with line congruences by means of another appli-
cation, namely freeform shading and lighting systems.

Torsion-free support structures, which exhibit many pla-
nar quads, are well suited to function as shading elements
themselves — see Figure 7. Their design is based on opti-
mization of a line congruence L, and subsequent extraction
of a torsion-free support structure from L whose planes (i.e.,

torsal planes of L) have the function of blocking light. It is
very important that the combinatorics of the shading system
is determined only in the second step, after optimization of
the congruence has been performed.

A typical design objective for shading systems applica-
tions is the blocking of light by shading fins which corre-
spond to torsal planes. We could require

(A) One family of L’s torsal planes is as orthogonal to in-
coming light as possible (so that those planes can func-
tion as shading fins of minimal possible width).

(B) As an alternative, the lines of L are as orthogonal as
possible to the incoming light rays.

(A) achieves the goal of blocking light in a more obvious
manner than (B), which indiscriminately moves all quads in
the support structure in a position generally transverse to the
light rays. Numerical experiments suggest that requiring (B)
has the same effect as (A). Since it is simpler to implement
we therefore employed (B) in most examples. The founda-
tion of this observation is

PROPOSITION 2. For parallel light, generically (B)=⇒(A).

Proof. (B) =⇒ rulings of developablesR⊂L are orthogo-
nal to light. Such developables can only be cylinders or pla-
nar. Generically not both families of developables in L are
cylinders since then all rulings would be parallel. So at least
one family of developables is planar, and torsal planes (being
tangent planes ofR) are orthogonal to light rays.

This proof shows that congruences fulfilling (A) or (B) in an
exact manner are rather special and will not occur in prac-
tice. Accordingly our examples achieve (A) or (B) only in a
least squares sense. Further design objectives are:

(C) The user might prescribe individual lines of L. Fitting
a congruence to these data is not difficult [PW01], but
in view of applications we want to do it such that L is
hyperbolic and convertible to a torsal parametrization.

(D) Hyperbolicity is achieved by incorporating (6) into the
optimization, making L more “normal”.

(E) A user may prescribe torsal directions at selected loca-
tions of the mesh, in order to guide the appearance of
the support structure later extracted from L.

(F) A similar design objective is that incoming light is re-
flected in torsal planes in a prescribed way.

4.1. Optimization of Mesh-based Congruences

Most of the design objectives formulated above involve
global optimization, and the following paragraphs show how
to do that. We discuss how to optimize a congruence L de-
fined by a fixed triangle mesh A = (V,E,F) and a variable
triangle mesh B (we keep A fixed since we are later remesh-
ing anyway). Throughout this text, corresponding vertices of
meshes A,B are given by

ai and bi = ai + ei with ‖ei‖ ≈ 1.

c© 2013 The Author(s)
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(a)

designer’s
input

sun pathlight is
blocked →

(b) (c)

see-through
constraints
↓

O1

O2

O1

O2

(d)

9 a.m.

noon 3 p.m.

9 12 3

Figure 7: Shading systems with multiple constraints, computed by optimizing a line congruence (selected lines shown in red),
subsequent conversion to torsal form and optimization towards planarity of shading fins. (a) Light is to be blocked, and and the
boundary, torsal directions are to be aligned with the boundary. (b) Light is to be blocked, torsal directions are to be aligned
with a user’s design strokes. (c) Light is to be blocked, and in two selected areas of the facade, specified objects are to be visible
(see inset figures at right for fish-eye views from O1 and O2 which verify this see-through constraint). (d) Here a truly flat facade
is equipped with a shading system whose different parts block light emitted from different sun positions.

The lines Li of the congruence connect vertices ai and bi.
Restriction to unit vectors ei yields simpler expressions for
target functionals, at the cost of some degrees of freedom.

Contributions to target functionals. Below we list the
components used to build the various target functionals for
optimization which are employed in individual examples.
Using an average edge length δ, we appropriately normal-
ize each term in order to make it scale invariant.

• Fairness. Assuming that A is fair, we express fairness of
the congruence in terms of the Laplacian of vectors ei inter-
preted as a vector-valued function “e” on the mesh A:

ffair =
1
|V | ∑

ai∈V
‖∆ei‖2, where ∆ei = ei−

1
degai

∑
a j∼ai

e j.

• The normal congruence property. In the notation of (7), we
penalize deviation from that property by

fnorm =
1

δ2|F| ∑
aia jak∈F

(
〈ai j×ec,eik×ec〉−〈aik×ec,ei j×ec〉

)2
.

• Hyperbolicity constraint. If our congruence is to have tor-
sal planes, the discriminant condition (2) must hold every-
where. For practical purposes we require it for the barycen-
ters of each face4= aia jak. Using (4), it expands to

chyp(4) = ([ai j,eik,ec]+ [ei j,aik,ec])2

−4[ei j,eik,ec][ai j,aik,ec]≥ 0.

• User-defined constraints. If the user specifies that the line
Li ∈ L should be parallel (resp., orthogonal) to a certain di-
rection di, we add appropriate linear combinations of

fpar,i = ‖ei×di‖2, resp., fperp,i = 〈ei,di〉2

to the target functional, depending on the application. The
constraint that the angle between Li and a user-specified vec-
tor di does not exceed a certain threshold is expressed as
〈ei,di〉− const.≥ 0 (here ‖ei‖= 1 is needed).

• Prescribing torsal directions and planes. If a user pre-

scribes torsal directions in some part of the mesh, then we
try to fulfill this wish for all faces 4 = aia jak which inter-
sect that area of interest. We represent the required direc-
tion via a line segment p1p2 ⊂ 4 containing the barycen-
ter c = ai+a j+ak

3 . Fig. 4 makes it clear that p1p2 is torsal if
and only if the lines of L passing through
the points p1,p2,c (indicated by vectors
ep1 ,ep2 ,ec) are coplanar. A user wishing
to prescribe an entire torsal plane must in
addition specify its normal vector n which
in particular is then orthogonal to ec. Sum-
ming up, for penalizing deviation from a
desired torsal direction and plane, we use

ai

a j

ak

b j

bi

b j

p1
p2

ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1ep1

ececececececececececececececececec
ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2ep2

fdir(4) = [ep1,ep2,ec]2, fplane(4) = fdir(4)+ 〈ec,n〉2.

• Transversality of torsal planes. For applications it is often
desirable that torsal planes intersect at right angles or nearly
so. If we are optimizing towards a normal congruence, this
property is automatic. Otherwise we use a condition of the
form cang(4) > 0 which holds true if and only if the angle
between torsal directions in the face 4 = aia jak does not
fall below α (cang is a function taking arguments ai j, aik, ei,
e j, ek, α and is not printed here).

L

bi

b j
bk

bl

ai a j

āi

ā jāk

āl

• Fairness of torsal directions is ex-
pressed in the smallness of jump
in torsal planes when crossing an
edge. Consider the line L ∈ L pass-
ing through the midpoint of an edge
aia j of the mesh A and project the
adjacent triangles aia jak and aia jal
orthogonally in direction L. This re-
sults in vertices āi, . . . “No jump” is expressed by the con-
dition that torsal directions in the adjacent triangles project
onto the same straight line. The same procedure can be ap-
plied to the mesh B. It is not difficult to verify that “no jump”
is equivalently expressed by āl having the same barycentric
coordinates w.r.t. āiā jāk as b̄l has w.r.t. b̄ib̄ jb̄k. An appro-
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(a)
L

(b)

0 0.02
δpl

L̃

(c)
L̃opt

Optimize discrete line
congruence L (red)

defined by meshes A,B
(variables are vertices
of A,B) and compute

torsal directions in
the faces of A (blue)

Extract a quad-based
support structure L̃

(an almost-torsal
parametrization of
L) which follows the
torsal directions of L.

Optimize the quads
of L̃ for planarity.

Figure 8: Flowchart of
algorithm. For planarity
measure δpl see Fig. 12.

priate sum of squares constitutes a fairness energy ffair/t and
is added to the target functional as a regularizer.

Unconstrained and constrained optimization. We initial-
ize optimization with vectors ei which are estimates for
normal vectors in vertices of A. We employ both uncon-
strained and constrained optimization. In the unconstrained
case we minimize a combination of ffair, fnorm, together
with terms fdir(4), fplane(4) and other terms which cor-
respond to design specifications. This optimization problem
is solved by a quasi-Newton method (limited-memory BFGS
method [LN89]). The constraint ‖ei‖= 1 is enforced by sim-
ply re-normalizing all ei’s after each round of iteration.

We also perform constrained optimization of the same
kind of target functional, by adding user-defined constraints
like chyp(4)≥ 0 or cang(4)≥ 0. We employ an augmented
Lagrangian method to solve this constrained optimization
problem. Again ‖ei‖= 1 is enforced by re-normalization.

4.2. Conversion to Quad-based Torsal Form

Converting the congruence L (defined by triangle meshes
A,B) to torsal form means finding a discrete torsal parame-
trization L̃ (defined by quad meshes Ã, B̃) whose lines fit in
the original congruence L. The easiest method of conversion
is to choose Ã, B̃ as respective remeshings of A, B, because
then the edges of Ã follow the torsal directions of L in A.
The actual construction of L̃ requires the two steps remesh-
ing and optimization (see Figure 8).

Torsal Remeshing of Congruences. Still using the notation

from above, we first compute the frame field in A which in-
dicates the torsal directions of the congruence L (Fig. 8a). It
is sufficient to compute the torsal directions by solving (1)
for the barycenter of each face. We subsequently remesh A
to gain a mesh Ã whose edges follow the frame field. This
is a nontrivial task which we however do not consider a
contribution of the present paper. We employed the method
of [LXW∗11], which is a version of mixed-integer quadran-
gulation [BZK09]. Once Ã is known, we remesh B by ap-
plying the correspondence A←→ B to vertices of Ã, which
yields vertices of B̃ (Fig. 8b).

Optimization of Support Structures. The preceding para-
graphs show how to find corresponding meshes Ã = (Ṽ , Ẽ,
F̃) and B̃ which represent an almost-torsal parametrization
L̃ of the congruence L (Fig. 8b). We optimize Ã, B̃ such that
corresponding edges become co-planar:

ãi, ã j, b̃i, b̃ j, co-planar, whenever ãiã j ∈ Ẽ.

We wish to achieve this while retaining proximity of Ã to the
reference surface A, and likewise retaining proximity of L̃ to
the reference congruence L. We therefore minimize

f̃ = w̃plnr
1

δ2|Ẽ|∑aia j∈Ẽ dist(ãi∨ b̃ j, ã j ∨ b̃i)
2

+ w̃prox
1
|Ṽ |∑ãi∈Ṽ

(
‖ẽi− ẽi,0‖2 +( dist(ãi,A)

δ̃
)2
)

,

+ w̃fair
1

δ̃2|Ṽ |∑ãi∈Ṽ ‖∆ãi‖2. (8)

Here the first summand (with weight w̃plnr ≥ 0, normalized
by an average edge length δ̃) penalizes deviation of quadri-
laterals ãiã jb̃ib̃ j from planarity by computing the sum of
squares of distances of their diagonals.

The second summand (weighted with w̃prox) penalizes de-
viation of the vectors ẽi (indicating lines of L̃) from their
initial values ẽi,0; and deviation of vertices ã j from the ref-
erence surface A. Here the symbol dist(ai,A) does not really
mean the distance from A (which is hardly efficiently com-
putable), but an approximation of that distance by dist(ai,
Ti)2, where Ti is an estimated tangent plane of A in the point
which arises by closest-point projection onto A of the posi-
tion of ai in the previous round of iteration. See Fig. 8c, and
see Figure 12 for details on the choice of weights.

4.3. Results

We apply §4.1, §4.2 to shading systems with both planar and
developable elements, and also to indirect lighting.

Shading Systems for Facades (Figure 7). In each of these
examples a congruence L is optimized so that a torsion-
free support structure extracted from it blocks the rays of
the sun during the hottest parts of the day. The astronomical
information necessary to perform such computations is eas-
ily obtainable, since the path of the sun throughout the year
is known. For optimization we simply employ directions of
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10:00 12:00 14:00

Figure 9: Selective Shading:
Moving patterns generated
by shading system optimized
for blocking light at 12:00
except at designated areas.

light which correspond to the location of the sun during
“hot” times like early afternoon in summer. If the depth of
shading fins is made minimal, then obviously at other times
the sun is not completely blocked. Note that these shading
systems are “freeform” even if the underlying reference sur-
face is not, such as in Figure 7d.

For Figure 7 in general, a design surface (referred to as
“mesh A” in our description of the optimization procedure)
is equipped with a line congruence L, which is initialized
from surface normals of A and is subsequently optimized us-
ing a target functional composed of fnorm, ffair, and a linear
combination of terms fperp,i (among other terms). The lat-
ter make lines of L orthogonal to the vector di = d = const.
which indicates the direction of light. Having computed L,
we perform quad remeshing guided byL’s torsal frame field,
and subsequently optimize a torsion-free support structure.

For Figures 7a, 7b the support structure is to be aligned
with the boundary and a user’s design strokes, so optimiza-
tion uses terms fdir(4) to achieve prescribed torsal direc-
tions for faces contained in a certain subset F ′ ⊆ F (F ′ is
marked in red in small inset figures). In a similar manner the
shading system of 7d has been optimized. As an alternative
to fperp,i, here sun blocking is achieved using a linear com-
bination of terms fplane(4) which position torsal planes of
the congruence directly orthogonal to incoming light.

Finally Figure 7c exhibits a shading system with the prop-
erty that certain objects are visible through the shading sys-
tem in designated areas (blue rectangles in inset figure). Op-
timization therefore has to make sure that for vertices in a
subset V ′ ⊆ V the lines of L pass through prescribed target
points Oi. This constraint is incorporated into our optimiza-

Figure 10: Creating full shade by thin developable strips,
created by the application of subdivision+optimization to a
shading system with planar faces.

tion by augmenting the target functional with linear combi-
nations of fpar,i, for vertices in V ′. Such constraints could be
used e.g. for ensuring that people in offices see a portion of
the sky. |newFor optimizing the congruences L correspond-
ing to Figure 7, we use the target functional

f = wnorm fnorm +wfair ffair +wfair/t ffair/t (9)

+wperp
1
|V |∑ai

fperp,i +wdir
1
|F ′|∑4∈F′ fdir(4)

+wpar
1
|V ′|∑ai∈V ′ fpar,i +wplane

1
|F|∑4∈F fplnr(4).

For constraints and the choice of weights see Figure 12.

Selective Blocking of Light (Figure 9). This architectural
design is to give shade except for a designated area where
shading fins are to be parallel to incoming rays. To create
this example we proceed similar to Figure 7c: The base mesh
represents the design surface, its normals initialize L. A sub-
set V ′ ⊂ V of vertices specifies the area where light should
come through. The optimization uses the target functional
(9), with the ‘parallel’ and ‘perpendicular’ terms given as

wpar

|V ′| ∑ai∈V ′ fpar,i +
wperp

|V \V ′|∑ai∈V\V ′ fperp,i.

( fpar,i, fperp,i involve the direction di = d = const. of light).

Shading by Single-Curved Elements (Figure 10). A se-
quence of planar quadrilaterals is a discrete developable sur-
face (see e.g. the red and yellow developables of Figure 5).
This interpretation motivates us to apply a refinement proce-
dure according to [LPW∗06] to a torsion-free support struc-
ture in order to convert it into a system of smooth devel-
opables: we iteratively apply splitting, smoothing, and op-
timization towards planar faces. Applications are structures
built from plywood or sheet metal, whose manufacturing de-
pends on the developability property.

Indirect Lighting by Reflection (Figures 1, 11, 13). We ex-
tend our methods to indirect lighting by reflection. To guide
a ray of light towards a prescribed direction, a bisector plane
of the original ray and the reflected ray has to be used as a
mirror surface. We therefore optimize a congruence L such
that precomputed mirror planes become torsal planes. Fig-
ure 11 actually exhibits a 2nd torsion-free supporting struc-
ture, which does have the function indicated by its name,
namely a steel substructure aligned with the shading system
(Fig. 11(d3)). It is based on a congruence L′ which is op-
timized simultaneously with L. Alignment of L,L′ means
that torsal directions of L,L′ coincide which is achieved by

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



J. Wang, C. Jiang, P. Bompas, J. Wallner, H. Pottmann / Discrete Line Congruences for Shading and Lighting

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d3)

(e3)

(e4)

Figure 11: Shading and lighting systems for a subway en-
trance in London at noon, June 21. Rows a–d represent top
view, front view, cross-section, and interior view, respectively.
Columns 1–4 correspond to different shading systems ex-
tracted from a congruence L: In (a1)–(c1) L consists of
the normals of the mesh A which represents the roof, so the
support structure follows the principal curvature lines of A.
There is no effective shading. In (a2)–(c2) L is optimized for
blocking sunlight. In (a3)–(e3) L is optimized such that shad-
ing fins reflect sunlight towards the interior at an angle of 45
degrees, with (e3) illustrating reflected light rays. In (a4)–
(e4) the front part of the roof is optimized for shading, the
rest for reflection.

augmenting the target function (9) by

wextra ·
1
|F|∑4∈F

( 1
δ2

∥∥∥( γ0
2γ1
γ2

)
L
×
(

γ0
2γ1
γ2

)
L′

∥∥∥)2

(γi are the coefficients of (1), evaluated in face barycenters).

5. Discussion

Implementation Details. Details on optimization for the ex-
amples contained in this paper are given in Figure 12. In
particular we give the quality of planarity for each occur-
ring torsion-free support structure. We found that planarity
is mostly sufficient already after the extraction procedure of
§4.2 so no further optimization is needed. Timings are for a
2.4GHz dual core desktop with 6GB RAM.

Limitations. We generally found in our examples that we
could successfully optimize congruences as desired. How-
ever it is not possible to fulfill our kind of geometric side-
conditions for normal congruences. As a consequence, the
contribution fnorm to the target functional works as a regu-
larizer and more importantly, it makes congruences hyper-
bolic and therefore usable for support structures. A general
limitation of static systems which block or guide light from
moving sources is, of course, that they are optimal only for

the few positions of the light source they have been opti-
mized for; see Figures 7d and 9.

Robustness. We take as evidence for robustness of our non-
linear optimizaton procedures that we could initialize con-
gruences from lines orthogonal to the reference surface, even
if the result of optimization is far from orthogonal. Experi-
ments show that adding noise (uniformly distributed, up to
maximum ≈ 50◦) does not visibly influence the result.

Alternative Routes. We employ a two-step procedure: op-
timization of a congruence and subsequent extraction of a
torsion-free support structure (which determines the combi-
natorics of the shading system). The separation into these
two steps is essential: we found that the simpler method of
directly optimizing vertex positions of a non-optimal shad-
ing system does not work. An alternative approach is to de-
termine the orientation of torsal planes from the desired light
pattern. For smooth congruences 1 family of torsal planes
determines the congruence including the 2nd family of tor-
sal planes (by differentiating twice). This method works in
principle, but we found it not very robust.

Conclusion and Future Research. This paper demonstrates
geometric basics and applications of discrete congruences,
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Fig. optimization of congruence L and meshes A,B, cf. Equ. (9) extracting Ã, B̃ optim. Ã,B̃, cf. (8)

|V | |F| T wextrawnormwfairwfair/twperpwparwplane wdir chyp cang |F̃| |Ẽ| δpl w̃plnr w̃fair w̃prox T δpl

7a 1073 2048 0.4 2 1 10 .1 no 870 1799 .0004 .0004
7b ′′ ′′ 1.4 2 1 1 .4 no 845 1752 .0003 .0003
7c ′′ ′′ 3.7 1 10 10 .2 .05 yes 40◦ 767 1602 .01 20 1 1 .2 .006
7d 561 1024 1.0 1 10 20 .1 yes 40◦ 767 1602 .001 .001

11.2 5087 9182 11 200 2 1 10 1 .01 no 4332 9276 .01 .01
11.3 ′′ ′′ 7 200 2 1 10 1 .01 no 4530 9276 .01 .01
11.4 ′′ ′′ 8 200 2 1 10 1 .01 no 4461 9152 .01 .01

9 2633 5120 29 1 10 1 .1 yes 60◦ 4208 8561 .03 20 1 1 2 .017
13 4290 8282 17 2 1 10 .1 5000 no 55502 111653 .002 .002

Figure 12: Optimization details for our examples: time T in seconds, number of variables, weights, information if constraints
chyp,cang are used, quality of torsion-free support structure after remeshing, and quality after optimization. The measure of

planarity δpl of the support structure ÃB̃ used here is defined as δpl = maxãiã j∈Ẽ
dist. of diagonals ãib̃ j , ã j b̃i.
average length of diagonals .

(a)
S
S

�
�
�
��

(b)

Figure 13: (a) A surface equipped with
a torsion-free support structure effect-
ing indirect lighting by reflecting sunlight
onto the ceiling (Fig. 1, left). (b) If made
from a non-reflecting material, shading
and diffuse reflecting lighting is achieved.
The screen is almost transparent when
viewed from the inside (“veil of light”).

with a focus on shading and lighting systems. Our proce-
dures can be applied to any kind of geometry, from flat to
double-curved. We thus combine an area deeply rooted in
graphics (i.e., shading and lighting) with geometric com-
puting and optimization in architectural design. Directions
for future research are many: discrete curvatures defined in
terms of normal congruences are a topic of discrete differ-
ential geometry. Other topics have to do with manufacturing
and assembly, e.g. beams of constant height, more general
shapes as shading elements etc.
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