
GLIDING SPLINE MOTIONS AND APPLICATIONS

JOHANNES WALLNER

Abstract. We consider the ICP (iterative closest point) algo-
rithm, which may in general be used for moving ‘active’ elements
such as curves and surfaces towards geometric objects whose dis-
tance field is computable. We show how it may be accelerated, and
how it can be applied to the design of near-Euclidean near-contact
spline motions. One particular application of this concept is the
modeling of milling tool paths in five-axis milling. The method
involves computing the distance from and footpoints in both the
Euclidean motion group and the configuration space of surface-
surface contact.

1. Introduction

Motion design is a topic which constantly attracts interest in the
CAGD community. Instead of detailed references to the literature, we
refer the interested reader to the survey article (Röschel, 1998). The
main source of problems which occur in motion design is that the geom-
etry of the set of Euclidean motions is not as simple as that of points,
say, of Euclidean space. For purposes of computation, coordinates have
to be introduced in that set, and experience has shown that each of
the methods which have been used so far has its own deficiencies, and
that the decision for a certain system of coordinates depends on the
application one has in mind.

Here we embed the set of Euclidean motions in the set of affine
transformations, where coordinates are found in a straight forward way.
The set of affine transformations is an affine space. What makes the
situation complicated is they way the Euclidean motions are embedded
in that space: They occur as a surface whose dimension is one half of
the dimension of the ambient space. Nevertheless, the distance from
this surface may be computed. This fact makes it possible to apply the
concept of active curves and surfaces to motion design: We produce
piecewise polynomial near-Euclidean and near-gliding one-parameter
and k-parameter motions.
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How to use near-Euclidean motions which are not Euclidean in prac-
tice is another question. Clearly we cannot expect that a rigid body
undergoes an affine transformation which is not Euclidean. But that
problem is easily solved: The transfer from a numerical representation
to the ‘real’ motion, has to be modified accordingly, e.g. by using the
footpoint map described by Th. 2.

2. Active elements in a distance field

2.1. Active curves and surfaces. In this paper motion design is
based on the principle of ‘active’ curves and surfaces and how to move
them closer to a target. More specifically, it is based on a variant of the
so-called iterative closest point (i.e., ICP) algorithm. The word ‘active’
has been given to geometric entities whose shapes change during an
iterative process, and especially it applies to shapes determined by
control points evolving with the ICP algorithm. The general concept
of ‘ICP’, as described in (Kass et al., 1988), (Pottmann Leopoldseder,
2002), and (Pottmann et al, 2002), is the following: Assume that r
feature points x1, . . . , xr in the Euclidean space R

d are determined by
control points b1, . . . , bk, and that this dependence is affine in each
argument. A prominent example is a spline curve

b(t) =
k∑

i=1

Ni(t)bi(1)

defined by the B-spline basis functions Ni(t) and the control points

b1, . . . , bk.(2)

We choose u1, . . . , ur ∈ R and let

xi(b1, . . . , bk) := b(ui).(3)

Further, we assume that a subset T ⊆ R
d (the target) allows compu-

tation of the distance from T and the footpoint FT (x) ∈ T of a point
x ∈ R

d.

FT : R
d → T, dist(x, T ) = ‖x − FT (x)‖.(4)

Then the ICP algorithm is given by the recursion algorithm No. 1. The
purpose of the algorithm is to bring the curve near the target.

Numerical evidence has shown that the ICP algorithm can be acceler-
ated by replacing the distance to the footpoints by better approximants
of the target’s distance function. (Pottmann and Leopoldseder, 2002)

proposed to use certain nonnegative quadratic approximants d̃ist2
p of

the function dist(·, T )2, which are derived from the second order Taylor
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The ICP algorithm:
input: b1, . . . , bk

repeat
for i = 1, . . . , r

evaluate feature points x0
i = xi(b1, . . . , bk)

compute footpoints yi = FT (x0
i )

choose control points b1, . . . , bk

such that w :=
∑r

i=1 ‖xi(b1, . . . , bk) − yi‖
2 → min

until w small enough.
result: current values of b1, . . . , bk

Algorithm 1

A refined ICP algorithm:
input: b1, . . . , bk

repeat
for i = 1, . . . , r

evaluate feature points x0
i = xi(b1, . . . , bk)

compute footpoints yi = FT (x0
i )

determine functions distx0

i

choose control points b1, . . . , bk

such that w :=
∑r

i=1 d̃istx0

i
(xi(b1, . . . , bk))

2 → min
until w small enough.
result: current values of b1, . . . , bk

Algorithm 2

polynomial of that function, and which are the topic of Sec. 2.3. This

leads to Algorithm 2. The approximants d̃ist2
p have the property that

d̃istp(x)2 = dist(x, T )2 if x ∈ [p, FT (p)],(5)

i.e., they agree with dist(·, T )2 along the entire line segment spanned
by p and its footpoint FT (p). So does the distance to the footpoint, but
it turned out that the behaviour of the approximant outside the line
segment [p, FT (p)] has an influence on the convergence of the algorithm.

Remark: It is not necessary that the coefficients which control the
feature points are arranged in the form of coefficients of control points.
The reason why the algorithms have been presented with control points
instead of control coefficients is that then they perhaps look more fa-
miliar.



4 JOHANNES WALLNER

Remark: The ICP algorithm tries to model curves as string with
limited elasticity (by the finite dimensionality of the underlying spline
space) which is attracted by the target and finally rests as close as
possible to it. The behaviour of the algorithm in the presence of dis-
connected or complicately shaped targets is similar to the behaviour
of its physical analogue (e.g., the resulting curve will not follow the
target’s boundary if it has holes). Another familiar phenomenon which
has an analogue in the real world is ‘folding’ of the result. The latter
can be avoided to some extent by adding a bending energy term to the
functional begin minimized.

2.2. Taylor expansion of the squared distance from a surface.

2.2.1. Principal curvatures with respect to a normal vector. If M is a
smooth m-surface in R

d, parametrized by a smooth R
d-valued function

g(u1, . . . , um), we consider the basis vector fields ∂jg and their scalar
products gij = 〈∂ig, ∂jg〉. The tangent vector space of M at p =
g(u1, . . . , um) is spanned by ∂1g, . . . , ∂mg and is denoted by TpM . Its
orthogonal complement is the normal space ⊥pM . If n is a unit normal
vector attached to the point p = g(u1, . . . , um), we consider

hn
ij = 〈n, ∂i∂jg〉 (i, j = 1, . . . ,m).(6)

Any eigenvector (λ1, . . . , λm) of the matrix (gij)
−1 · (hn

ij) defines a prin-
cipal curvature vector

v =
m∑

j=1

λj∂jg.(7)

It is well known that for all p ∈ M and n ∈ ⊥pM there is an orthonor-
mal basis e1, . . . , ed such that

e1, . . . , em are curvature vectors w.r.t. n and span TpM
em+1, . . . , ed span ⊥pM, and ed = n.

(8)

The eigenvalues corresponding to e1, . . . , em are denoted by κn
1 , . . . , κ

n
m.

They are the princpal curvatures at p with respect to n.

2.2.2. Taylor expansion of the squared distance. Here we use Cartesian
coordinates defined by the coordinate system (p; e1, . . . , ed), whose ori-
gin is p (cf. Equ. (8)). The quadratic Taylor expansion of dist2(x,M)
at the point

(0, . . . , 0, δ)(9)



GLIDING SPLINE MOTIONS AND APPLICATIONS 5

Figure 1. Graph of the squared distance from the oscu-
lating circle of a planar curve, and Taylor approximants.
Left: Taylor approximant in a point outside the osculat-
ing circle. Right: Taylor approximant in a point of the
curve (courtesy M. Hofer)

is given by the quadratic function

∑

i≤m

δ

δ − 1/κn
i

x2
i +

∑

i>m

x2
i ,(10)

if the line segment [(0, . . . , 0), (0, . . . , 0, δ)] does not contain any of the
points (0, . . . , 0, 1/κn

i ).
A proof of Equ. (10) and related results can be found in (Ambrosio

and Soner, 1996) and (Ambrosio and Mantegazza, 1998). A more ele-
mentary introduction into that topic is found in (Pottmann and Hofer,
2002). Fig. 1 shows graphs of two such Taylor expansions: M is a pla-
nar curve, the surface of revolution shown is the graph of the squared
distance from one of its osculating circles, and the other surfaces are
graphs of Taylor approximations in various points.

Remark: When computing approximantes which take into account
first and second derivatives, we can replace the distance from the curve
by the distance from its osculating circle. As the distance function of
the circle is much simpler, it is shown by Fig. 1 instead of the distance
function of the original curve.

2.2.3. Low-dimensional special cases. In the case that M is a 2-dimensional
surface in R

3, every surface point has two unit normal vectors ±n. The
principal curvatures have values κn

i = −κ−n
i , and coincide with the

usual principal curvatures.
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If M is a curve in R
3, whose Frenet frame is given by ẽ1, ẽ2, ẽ3, and

whose curvature is κ, then any unit normal vector can be written in
the form n = cosφ · ẽ2 +sin φ · ẽ3. It is easy to verify that κn

1 = κ cos φ.
A curve c(t) in Euclidean R

2 parametrizes a one-dimensional surface
(we have m = 1 and d = 2). If the unit normal vector n(t) points to
the same side of the curve as c′′(t), then κn

1 = |κ| is positive, with κ
being the curvature of the curve. For other normal vectors we use the
relation κ−n

1 = −κn
1 .

So the cases which are most relevant for curve and surface design
(d = 2, 3, m = 1, 2) are rather elementary.

2.3. Acceleration of the ICP algorithm and the choice of the

functions d̃istx. The functions d̃istx0

i
mentioned in Algorithm 2 of

Sec. 2.1 must be approximants of the squared distance from the target,
they should be quadratic (otherwise minimization is difficult), and pos-
itive semidefinite (otherwise minimizing does not make sense). Using
a quadratic approximant would suggest to use the second order Taylor
polynomial, but this won’t work in all cases: For small δ, the quadratic
Taylor approximants as given by Equ. (10) are never positive semidef-
inite in both cases δ > 0 and δ < 0, unless all principal curvatures
happen to vanish. However, for δ = 0 and also in the limit case δ → ∞
we always have positive semidefiniteness.

Algorithm 2 becomes Alg. 1, if the quadratic approximant d̃ist2
p of

dist(·, T )2 is chosen as

d̃ist2
(0,...,0,λ) =

∑
x2

i(11)

(in the coordinate system given by Equ. (8)), for all λ. This is the limit

case δ → ∞ of Equ. (10) — d̃ist is the Taylor expansion of dist(·, T )2

‘at infinity’. The second possibility wich is always positive semidefinite
is given by the Taylor expansion in the surface point (0, . . . , 0) itself:

d̃ist2
(0,...,0,λ) =

∑

i>m

x2
i ,(12)

for all λ. Note that Equ. (12) computes the squared distance from the
tangent space of the surface at the footpoint.

The positive semidefinite quadratic function which in some way is
‘closest’ to the Taylor approximant in the point (0, . . . , 0, δ) itself is
found if we cancel negative terms in Equ. (10):

d̃ist2
(0,...,0,δ) =

∑

i: coeff.of x2

i

is nonneg.

δ

δ − 1/κn
i

x2
i +

∑

i>m

x2
i ,(13)
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A refined ICP algorithm, second version:
input: b1, . . . , bk

choose λ such that 0 ≤ λ ≤ 1, preferably small.
repeat

for i = 1, . . . , r
evaluate feature points x0

i = xi(b1, . . . , bk)
compute footpoints yi = FT (x0

i )
compute T ’s tangent planes Ti at yi.

choose control points b1, . . . , bk

such that w :=
∑r

i=1(λ‖xi − yi‖
2 + (1 − λ)dist(xi, Ti)

2)
is minimized, where xi = xi(b1, . . . , bk).

until w small enough.
result: current value of b1, . . . , bk.

Algorithm 3

Depending on the circumstances, the computation of the principal cur-
vatures may be computationally expensive.

Numerical evidence shows that using Equ. (12) in Algorithm 2 leads
to much faster convergence, but introduces instability. It turns out
that a convex combination of Equ. (11) and Equ. (12) results in an
algorithm which is both fast and stable (Algorithm 3). An additional
feature which is computationally attractive is that it does not require
the computation of principal curvatures.

2.4. Computation of the distance field. Numerical computation
of the distance field of the target T means collecting data which are
sufficient for evaluating the distance from T for any point of space (with
varying accuracy, depending on the application), or even computing
quadratic approximants of the squared distace, as described above.

For the purposes of the ICP algorithm fast methods for solving the
eikonal equation ‖gradf(x)‖ = 1 offer an approach to this problem.
(Pottmann and Leopoldseder, 2003) present a data collecting strategy
based on a linear-complexity sweeping method of (Zhao, 2002) which

allows computing the functions d̃istx0

i
if the target is a polyhedral sur-

face or a point cloud.
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3. Near-Euclidean spline motions

3.1. Motions as curves. An affine motion is a curve (A(t), a(t)) in
the affine space of affine transformations: The affine mapping charac-
terized by the pair (A, a) is defined by

(A, a) ∈ Affd : x 7→ Ax + a (A ∈ R
d×d, a ∈ R

d).(14)

It is easy to construct and control affine motions by control positions,
but not so easy to do the same for Euclidean motions: Affd = R

d×d+d

contains the group G of Euclidean congruence transformations as a
d(d+1)/2-dimensional submanifold. The elements of G are defined by
the condition that A is an orthogonal matrix, i.e.,

(A, a) ∈ G ⇐⇒ AT A = Ed,(15)

with Ed being the d×d identity matrix. G consists of two components,
namely the subgroup G0 of orientation-preserving Euclidean congru-
ence transformations (the Euclidean motions), and a second component
whose elements reverse orientation:

(A, a) ∈ G0 ⇐⇒ AT A = Ed, det A > 0.(16)

By actively moving a spline curve (A(t), a(t)) in R
d×d+d towards G

or G0 we get near-Euclidean spline motions. An example of such a
motion is given by Fig. 2, right.

3.2. The distance field of the Euclidean motion group. In order
to be able to use the ICP algorithm and its variants for motion design,
we have to introduce a Euclidean metric in R

d×d+d and to compute
footpoints on G and G0. It makes sense to choose a left-invariant
metric, as the approximant should be independent of the choice of
coordinate system. The distance field of the groups G and G0 with
respect to appropriate invariant metrics has been considered in (Horn,
1987), (Higham 1989), (Shoemake and Duff, 1992), (Belta and Kumar,
2002), and (Wallner, 2002). One particular definition of a distance
d(f, g) between mappings f and g is to choose points w1, . . . , wr in the
domain of f, g and let

d(f, g)2 =
r∑

i=1

‖f(wi) − g(wi)‖
2.(17)

This definition gives us a metric of the desired type. More generally, we
could choose a mass distribution µ and instad of a sum use the integral

d(f, g)2 =

∫
‖f(x) − g(x)‖2 dµ(x).(18)
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Figure 2. Left: Affine planar spline motion with con-
trol points of three point paths (initial value for Ex. 3.4).
Right: Near-Euclidean spline motion.

The previous definition is the special case of unit point masses at lo-
cations w1, . . . , wr. It turns out that all left invariant metrics on On

can be written in this way. We summarize the results as presented in
(Wallner, 2002): For a given mass distribution (i.e., a positive Borel
measure) µ ∈ R

d we consider the L2 space of mappings f of R
d into

R
d:

f ∈ L2
µ(Rd, Rd) ⇐⇒

∫
‖f(x)‖2 dµ < ∞,(19)

with the usual identification of functions which are equal µ-almost ev-
erywhere. We assume that µ is such that

G0 ⊂ G ⊂ Affd ⊂ L2
µ(Rd, Rd).(20)

Total mass |µ| and the inertia tensor J are defined by

|µ| = ∫ 1 dµ, 〈a, Jb〉 = ∫〈a, x〉〈b, x〉 dµ(x), Jkl = ∫ xkxl dµ(x).(21)

Without loss of generality we assume a coordinate system such that
the barycenter of µ is located in the origin:

∫ x dµ(x) = 0.(22)
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Then the restriction of the L2 scalar product to the linear subspace
Affd = R

d×d+d of L2 is given by

〈(A, a), (B, b)〉 = tr(AT BJ) + |µ|〈a, b〉,(23)

where 〈a, b〉 denotes the canonical scalar product in R
d. The distance

d(f, g) of L2 functions is given by d(f, g)2 = 〈f − g, f − g〉. Obvi-
ously the inertia tensor J and the total mass µ determine the distance
function. The computation of footpoints and related results are sum-
marized in the following theorems. We use the symbols Od and SOd

for the orthogonal group and the special orthogonal group in R
d, re-

spectively.

Theorem 1. The vector (X,x) ∈ R
d×d+d is tangent (orthogonal, resp.)

to G or G0 in the point (P, p), if P T X is skew-symmetric (if P T XJ is
symmetric and x = 0, resp.).

Theorem 2. Assume that (A, a) is an affine transformation, and that

AJ = Q1DQ2(24)

is a singular value decomposition with Q1, Q2 ∈ Od and a nonnegative
diagonal matrix D. Then (Q1Q2, a) is a footpoint of (A, a) in G, and
vice versa. The footpoint is unique if and only if det A 6= 0.

Theorem 3. Assume that (A, a) is an affine transformation, and that

AJ = Q′
1D

′Q′
2(25)

is an SVD-type decomposition as follows: If det A > 0 it is the ordinary
SVD. If det A = 0, it is an ordinary SVD such that det Q′

1 det Q′
2 > 0.

If det A < 0, then it is such that Q′
1, Q

′
2 ∈ Od, det Q′

1 det Q′
2 > 0, and

D′ = diag(w1, . . . , wd−1,−wd) with w1 ≥ · · · ≥ wd ≥ 0(26)

(w1, . . . , wd are the singular values of AJ). Then in all three cases,
(Q′

1Q
′
2, a) is a footpoint of (A, a) on G0 and vice versa. The footpoint

is unique if det A > 0. In the case det A ≤ 0 it is unique if and only if
the smallest eigenvalue of JAT AJ has multiplicity one.

Theorem 4. The footpoint in G of (A, a) ∈ Affd depends smoothly
(indeed, analytically) on (A, a) if det A 6= 0. The same holds true for
G0 if det A 6= 0 and the footpoint is unique.

Proofs can be found in (Wallner, 2002).
Remark: Theorems 2 and 3 show how to compute, for a given affine

transformation, the nearest Euclidean motion. This is useful if we are
given an affine transformation (A, a), which is already near-Euclidean,
and which is to be applied to an actual rigid body. Within tolerance,
we may apply the footpoint of (A, a) in the motion group. By Th. 4,
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the dependence of the footpoint on (A, a) is smooth in a certain (big)
neighbourhood of the motion group.

3.3. Differential geometry of the motion group. It is well known
that in a (by no means ‘small’) neighbourhood of Ed, the group Od

can be regularly parametrized by the exponential of skew-symmetric
matrices. Thus we parametrize the group G in the neighbourhood of a
point (P, p) by

R
d×d
skew × R

d → Affd, (X,x) 7→ (P · exp(X), x)(27)

Surface parameters uij (1 ≤ i < j ≤ d) and uk (1 ≤ k ≤ d) are defined
by

X =
∑

i<j

uij(Eij − Eji) =




0 u12 . . . u1d
−u12 0 . . . u2d...

. . .


 , x = (u1, . . . , ud).

(28)

where Eij is a matrix whose only nonzero entry is in the i-th row and
the j-th column. Thus we get the parametrization

g : R
d(d+1)/2 → R

d×d+d, (u12, . . . , ud−1,d, u1, . . . , ud) 7→

(P · exp




0 u12 . . . u1d
−u12 0 . . . u2d...

. . .


 , u1, . . . , ud).

First partial derivatives at u = 0 are

∂g

∂uij
= (P (Eij − Eji), 0),

∂g

∂uk
= (0, δ1k, . . . , δdk).

Most of the second order partial derivatives
∂2g

∂uij∂ukl
at u = 0 are zero.

The nonzero ones are given by

(−P (Eik + Eki), 0) if j = l ; (−P (Ejl + Elj), 0) if i = k ;

(P (Eil + Eli), 0) if j = k ; (P (Ejk + Ekj), 0) if i = l ;

(−2P (Eii + Ejj), 0) if (i, j) = (k, l).

(29)

From here the computation of principal curvatures with respect to a
unit normal vector (N,n) runs as described in Sec. 2.2.

Remark: A geometric interpretation of these principal curvatures or
the principal curvature vectors which does not involve the L2 distance
is not apparent to the author.
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3.4. Numerical example. Fig. 2 shows the result of actively moving
an affine cubic B-spline motion

(B(t), b(t)) =
k∑

i=0

N3
i (t)(Bi, bi)(30)

towards the Euclidean motion group. Here N3
i (t) are the cubic B-spline

basis functions defined by the knot list (0, 0, 0, 0, 1/2, 2/3, 1, 1, 1, 1).
The linear parts Bi of the spline coefficients (Bi, bi) ∈ R

2×2+2 (i =
1, . . . , 7) are listed below; the vectors bi determine the translational
part of the resulting motion, but have no influence on its euclidicity.

B1 =

[
1.005 0.033

−0.034 1.005

]
, B2 =

[
1.080−0.716
0.716 1.080

]
,

B3 =

[
−0.449 −1.12

1.122−0.449

]
, B4 =

[
−0.641−0.806

0.806−0.641

]
,

B5 =

[
−1.260 0.212
−0.212−1.260

]
, B6 =

[
−0.511 1.037
−1.037−0.511

]
,

B7 =

[
−0.057 0.987
−0.987−0.057

]
.

(31)

We used Algorithm 3 with k = 7, r = 50, xi =
∑k

i=0 N3
i ( i

k
)(Bi, bi),

λ = 0.01, and the footpoint map given by Th. 2, with d = 2, |µ| = 1,
J = diag(1.3, 1.0). The average squared distance of the points xi from
the Euclidean motion group during the iteration was 0.3983, 0.00538,
0.00538, . . . (i.e., constant after the second iteration step).

This good behaviour of the iteration procedure is apparently due to
the ‘good shape’ of the Euclidean motion group as a surface in R

d×d+d.

4. Gliding motions

4.1. The configuration space. A gliding motion defined by a surface
pair M,M ′ is a path (A(t), a(t)) in the Euclidean motion group G0

which has the property that for all parameter values t the surface A(t) ·
M + a(t) is in contact with the surface M ′. This means that there is
p(t) ∈ M and p′(t) ∈ M ′, a normal vector n(t) of M at p(t) and a
normal vector n′(t) of M ′ at p′(t) such that

A(t)p(t) + a(t) = p′(t), A(t)n(t) = n′(t).(32)

Actually we modify this definition by an additional requirement: We
assume that n and n′ are unit normal vector fields of M and M ′, and
that both M,M ′ are (part of) boundaries of solids. We write n(p) and
n′(p′) for the normal vectors attached to points. We imagine that n



GLIDING SPLINE MOTIONS AND APPLICATIONS 13

is pointing outward, and n′ is pointing inwards. Then the contact of
A(t) · M + a(t) with M ′ is required to happen in a way such that

A(t) · n(p(t)) = n′(p′(t))(33)

We say that M and M ′ are in oriented contact (with respect to previ-
ously defined unit normal vector fields).

The set of motions (A, a) such that AM+a is in oriented contact with
M ′ is called the configuration space or configuration manifold of surface-
surface-contact, and will be abbreviated by the letter C. Properties of
C relevant for motion design have been investigated in (Pottmann and
Ravani, 2000), (Wallner, 1999), and (Wallner, 2000).

4.2. Differential geometry of the configuration space. We will
describe how the configuration space can be parametrized. This pa-
rametrization can be used to compute tangent spaces and principal
curvatures.

4.2.1. Preparations. We write u short for (u1, . . . , ud−1). Assume that
g(u) and g′(u) parametrize M and M ′, resp., and that n(u), n′(u) are
normal vector fields. We apply Gram-Schmidt orthonormalization to
the first d − 1 vectors of the basis

B(u) = (n(u), ∂1g(u), . . . , ∂d−1g(u)),(34)

and get (b0(u), . . . , bd−2(u)). The vector bd−1(u) is uniquely determined
by the requirement that

B(u) = (b0(u), . . . , bd−1(u))(35)

is an orthonormal basis with positive determinant. The same we do
for M ′ and get B′. By the nature of the Gram-Schmidt process, the
tangent space of M at p = g(u) is given by

TpM = g(u) + [b1(u), . . . , bd−1(u)],(36)

and analogously for M ′. Further,

b0 = n/‖n‖, b1 = ∂1g/‖∂1g‖ b′0 = n′/‖n′‖, b′1 = ∂1g
′/‖∂1g

′‖.(37)

Now assume that (A, a) is a Euclidean motion such that A · M + a
touches M ′ in A · g(u) + a = g′(u′) in such a way that the normal
vectors of M and M ′ are mapped onto each other by A:

Ab0 = b′0.(38)

The linear mapping L = L(A, u, u′) ∈ SOd is defined by

AB(u) = B′(u′)L.(39)

Conversely, if u, u′, L are given, Equ. (39) defines A.
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In the Euclidean plane (d = 2), the tangent space of both M and M ′

is one-dimensional. We required that Ab0 = b′0, so it follows that either
Ab1 = b′1 or Ab1 = −b′1. As A was supposed to be a motion, we have
Ab1 = b′1, and L is the identity. The fact that there is no freedom left
for L is in accordance with the result that in the Euclidean plane the
position AM + a of a 1-surface (i.e., curve) M is uniquely determined
if we know which point of AM + a is in contact with with point of M ′.

In Euclidean three-space (d = 3), the tangent spaces of both M and
M ′ are two-dimensional. As Ab0 = b′0, L necessarily has the form

L =

[
1

cos φ − sin φ

sinφ cos φ

]
, φ = ∢(Ab1, b

′
1) = ∢(A · ∂1g, ∂1g

′).(40)

In general L has the block matrix structure

L =

[
1 0
0 L1

]
with L1 ∈ SOd−1.(41)

4.2.2. Parametrization of C. Having set up parametrizations g, g′, nor-
mal vector fields n, n′, frame fields B,B′, and the correspondence be-
tween A, B, B′, and L, we may parametrize the configuration space de-
fined by M,M ′ and the normal vector fields n, n′ as follows: We param-
etrize M with d−1 parameters u1, . . . , ud−1, and M ′ with u′

1, . . . , u
′
d−1.

Further, we parametrize the set of possible matrices L. According to
the discussion in Sec. 4.2.1, there is nothing to do if d = 2; for d = 3 a
parametrization is given by Equ. (40). In higher dimensions, the set of
possible L’s is given by Equ. (41), and we may parametrize SOd−1 in a
way analogous to Equ. (27).

In any case, we write ‘L(φ)’ symbolically for these parameters (their
number equals (d− 1)(d− 2)/2). Then the points (A, a) of the config-
uration space are parametrized by

(A, a)(u, u′, φ) = (B′(u′)L(φ)BT (u), g′(u′) − Ag(u)).(42)

The total number of parameters equals 2(d − 1) + (d − 1)(d − 2)/2 =
(d + 2)(d − 1)/2 = dim C = dim G − 1.

4.2.3. Tangent space and orthogonal space of C. The tangent space of
the configuration manifold might be computed via a parametrization.
It turns out that the singularities of the parametrization (42) are actual
singularities of C if both g and g′ are regular. The singularities can
be characterized by the result of (Wallner, 2000), which is given below
as Th. 5, and which uses the notion of second order line contact: It
may happen that M,M ′ touch each other in the points of a curve, not
only in one point. This is called line contact of M,M ′. Second order
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line contact means that there is a surface M ′′ which is in second order
contact with M and in line contact with M ′. This is equivalent to
the difference of second fundamental forms being singular. For this
concept, see also (Pottmann and Wallner, 2001), p. 458.

Theorem 5. Assume that AM + a touches M ′ in Ap + a = p′. The
configuration space defined by M,M ′ is a regular (d + 2)(d − 1)/2-
dimensional surface in Affd in a neighbourhood of (A, a) if AM +a and
M ′ are not in second order line contact.

In the regular case, however, the tangent space is easily described
without reference to curvature:

Theorem 6. Assume that AM +a touches M ′ at Ap+a = p′, and that
the unit surface normals of M and M ′ at p and p′ are given by vectors
n and n′, respectively. Assume further that the conditions of Th. 5 on
the regularity of the configuration manifold are fulfilled. Then

(X,x) ∈ T(A,a)C ⇐⇒ AT X skew-symmetric, x + Xp ∈ Tp′M
′(43)

The orthogonal space ⊥(A,a)C is spanned by ⊥(A,a)G, which according to
Th. 1 consists of the pairs (X, 0) with AT XJ symmetric, and by either

(−|µ| · ApnT J−1, n′) or (|µ| · n′pT J−1, n′).(44)

Proof. Equ. (43) is well known, a proof can be found in (Wallner, 2000)
and (Pottmann and Wallner, 2001), pp. 454ff. It means that T(A,a)C
is spanned by infinitesimal rotations (X,−Xp) which assign the ve-
locity Xp + (−Xp) = 0 to the point of contact; and by infinitesimal
translations (0, x) with x tangent to M ′ at the contact point.

As T(A,a)C ⊂ T(A,a)G, for their orthogonal complements the reverse
inclusion holds true. The difference in dimension between both spaces
equals one. It remains to show that the two vectors given by Equ. (44)
are contained in⊥(A,a)C, but not in⊥(A,a)G. The latter is clear because
of Th. 1 and n 6= 0. In order to establish the former, we compute scalar
products with (X,x) ∈ T(A,a)C.

〈(X,x), (−|µ|ApnT J−1, n′)〉 = −|µ| · tr(XT ApnT J−1J) + |µ|〈x, n′〉.

(45)

We let X̃ = AT X, which implies X̃TAT = XT , and use 〈a, b〉 = tr(abT )
to modify the expression in Equ. (45) involving trace:

− tr(X̃TATApnT ) = tr(X̃p nT ) = 〈X̃p, n〉 = 〈AX̃p,An〉 = 〈Xp, n′〉.

(46)

Thus the scalar product of Equ. (45) reduces to |µ|〈Xp + x, n′〉. As
Xp + x is tangent to M ′ in p′, it equals zero. As to the second vector



16 JOHANNES WALLNER

mentioned in Equ. (44), we compute

〈(X,x), (|µ| · n′pT J−1, n′)〉 = |µ| · tr(XTn′pT J−1J) + |µ|〈x, n′〉.(47)

In a way analogous to above, we express the trace in terms of a scalar
product:

tr(X̃T AT AnpT ) = tr(X̃Tn pT ) = tr(npT X̃T ) = tr(n(X̃p)T )

= 〈n, X̃p〉 = 〈n′, Xp〉.

It follows that also in the second case the scalar product is zero. The
theorem is proved. ¤

4.2.4. Curvatures. By using the procedure described in Sec. 2.2.1, it is
possible to compute principal curvatures from the parametrizion of C
given by Sec. 4.2.2

4.3. Footpoints on the configuration manifold. Computing the
footpoint of an element (A, a) ∈ Affd on the configuration space is not
as easy as computing footpoints on the Euclidean motion group itself:
In contrast to Th. 1 (which enables to derive Th. 2 and 3), Th. 6 does
not provide an explicit formula for computing footpoints.

The method of (Pottmann and Leopoldseder, 2003) mentioned in
Sec. 2.4 cannot be used directly, with the configuration manifold as a
target, because the amount of data handled by it grows exponentially
with the dimension of the space it works in. It is however useful in
another way, see Sec. 4.3.2.

4.3.1. An iterative algorithm: Overview. A rough approximation of
such a footpoint is found in the following way: For given (A, a) ∈
R

n×n+n, we first compute the footpoint (B, b) in G or G0. Next we as-

sume that M ′ is endowed with an oriented distance
−→
dist(·,M ′), which

is zero on M ′, positive outside M ′ and negative inside M ′. Then we
look for points p, p′ such that

−→
dist(Bp + b,M ′) → min (p ∈ M)(48)

dist(p′, Bp + b) → min (p′ ∈ M ′).

It follows that the line segment p, p′ is orthogonal to both surfaces
BM + b and M ′. The Euclidean congruence transformation

(Q, q) = (B, b + (Bp − p′))(49)

will be contained in G or G0, and is also contained in the configuration
space. There is of course no reason why (Q, q) should be (A, a)’s foot-
point in C, but if (A, a) is in C, it certainly is. As both the mapping
(A, a) → (Q, q) and the footpoint mapping are smooth if we stay away



GLIDING SPLINE MOTIONS AND APPLICATIONS 17

Footpoints on the configuration space:
input: (A, a)
compute footpoint (B, b) of (A, a) on G
repeat

compute (Q, q) from (B, b) according to Equ. (49)
compute tangent space T(Q,q)C
compute orthogonal projection (Q, q) + (V, v) of (A, a) onto

T(Q,q)C
choose path (Q(t), q(t)) in group:

such that (Q(0), q(0) = (Q, q) and (Q̇(0), q̇(0)) = (V, v)
choose parameter value τ ≤ 1
(B, b) := (Q(τ), q(τ))

until (V, v) is small enough.
result: footpoint is (B, b).

Algorithm 4

from medial axes, it is clear that (Q, q) converges to the footpoint if
(A, a) converges towards C. This is the basis of an iterative algorithm
(Alg. 4) for computing footpoints on the configuration space, the de-
tails of which are explained in §§ 4.3.3 and 4.3.4. It works by iterately
computing an approximate footpoint according to Equ. (49), and by
performing an additional Newton-type shooting step.

4.3.2. Computation of shortest distance. Algorithm 4 requires comput-
ing the shortest distance between two surfaces. This is a very general
problem and efficient solutions often depend on more specific informa-
tion on the surfaces involved. From the many contributions to this
subject we mention only (Sun et al., 2002). In the case of Algorithm 4
one of the two surfaces remains the same for all instances of this prob-
lem, so it is useful to employ the approach proposed by (Pottmann
and Leopoldseder, 2003), which allows evaluation of the distance from
a surface after a certain data structure representing the distance field
has been initialized. We do not go into details here.

4.3.3. Projection onto the tangent space. Algorithm 4 requires comput-
ing the orthogonal projection of a point onto the tangent space T(Q,q)C

of the configuration manifold C: Assume that QM + q touches M ′ in
the point Qp + q = p′. By Th. 6 and especially Equ. (43), the linear
space parallel to T(Q,q)C is spanned by the following (d + 2)(d − 1)/2
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elements of R
d×d+d:

(Q(Eij − Eji),−Q(Eij − Eji)p) (1 ≤ i < j ≤ d),

(0, vi) (1 ≤ i < d, vi ∈ Tp′M
′)

(50)

We number them in the form

(W1, w1), . . . , (Ws, ws).(51)

Then the orthogonal projection (Q, q)+(V, v) of (A, a) = (Q, q)+(X,x)
onto the tangent space is uniquely determined by coefficients λ1, . . . , λs

such that

(V, v) =
s∑

i=1

λi(Wi, wi).(52)

It is well known that λ1, . . . , λs are solutions of the following linear
system of equations

s∑

j=1

〈(Wi, wi), (Wj, wj)〉λj = 〈(X,x), (Wi, wi) (i = 1, . . . , s).(53)

4.3.4. Paths in the motion group. Algorithm 4 further requires a path
(Q(t), q(t)) in the group G which emanates from a given point (Q, q) =
(Q(0), q(0)) and which has (V, v) has an initial tangent vector. There
are many curves which satisfy this condition. One particular choice
which is not subject to non-invariant arbitrariness is the stationary
motion starting in (Q, q) and having x 7→ V x+v as stationary velocity
field: It is well known that it is parametrized by

(Q(t), q(t)) = (QetY , Q
etY − 1

tY
(tY ) + q), with Y = Q−1V(54)

Here eY and (eY − 1)/Y are matrix functions defined by the power
series

∑∞

k=0 Y k/k! and
∑∞

k=0 Y k/(k + 1)!, respectively.
Other paths with tangent vector (V, v) are given by (Q(t), q(t) =

(Q exp(QT (tV )), tv + q) or (Q(t), q(t) = FG((Q, q) + t(V, v)), where
FG means the footpoint map onto the group G.

4.3.5. The medial axis of the configuration manifold. The projection of
an affine position (A, a) ∈ Affd onto the configuration manifold C is not
well defined if (A, a) is contained in C’s medial axis. One particular
instance of this case is that (A, a) is Euclidean and AM ′+a touches M
in two points. (A, a) has distance zero from two different branches of
C, and C’s medial axis passes through (A, a). In an actual application,
if M and M ′ are thought to be the boundaries of solids, this situation
means that an umwanted collision of M ′ and M is imminent.



GLIDING SPLINE MOTIONS AND APPLICATIONS 19

The general case of (A, a) being on C’s medial axis means that M ′

does not know in which direction to move in order to come closer to
M . This is a problem of the input data rather than a problem of the
algorithm. Part of this problem is adressed in Th. 6 of (Wallner, 2000),
which gives conditions where C has no self-intersections.

Figure 3. Gliding motion: Left: Initial affine motion.
Center: after 1 step of Alg. 3. Right: after 5 iterations.

4.4. Numerical examples. Fig. 3 shows the result of applying Algo-
rithm 3 to an affine spline motion. From left to right the initial affine
spline motion, then the motion after one iteration step, and finally the
motion after five iteration steps are shown.

We used a cubic B-spline motion (Q(t), q(t)) defined by control el-
ements (B1, b1), . . . , (B6, b6) ∈ R

3×3+3, so r = 6. We let k = 50,
xi = (Q( i

k
), Q( i

k
)), and λ = 0.01. The footpoint map FT is the one

described in Sec. 4.3. The surface M is a thin torus, and M ′ is a sphere.
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The following table shows average squared distance δG from the Eu-
clidean motion group, the average squared distance δC from the config-
uration manifold, and the average weighted distance w which is mini-
mized by Algorithm 3, during the first steps of the iteration.

No. of iterations δG δC w

0 4.39 · 10−1 9.11 · 10−0 8.48 · 10−0

1 2.57 · 10−1 2.90 · 10−1 2.86 · 10−1

2 5.25 · 10−3 7.71 · 10−3 7.44 · 10−3

3 4.14 · 10−4 1.31 · 10−3 1.18 · 10−3

4 2.84 · 10−4 9.40 · 10−4 8.44 · 10−4

(55)

Gliding motions on polyhedral surfaces are to be modeled over an
appropriate knot vector — smooth motions will not be able to glide on
non-smooth objects.

5. Extensions and Applications

5.1. More-parameter motions. A Euclidean l-parameter motion of
a rigid body is an l-dimensional surface contained in the Euclidean
motion group G0. An affine l-parameter motion is an l-dimensional
surface contained in the space Affd = R

d×d+d of affine transformations.
Actively moving such a surface towards G or G0 is possible with the
algorithms described earlier in this paper. The only modification con-
cerns the way feature points are computed from control points. For
example, we may choose control points (Bij, bij) ∈ Affd, knot lists

t0 ≤ t1 ≤ . . . , t̃0 ≤ t̃1 ≤ . . . , and define a bicubic B-spline surface by
letting

(B(u, v), b(u, v)) =

k1∑

i=0

k2∑

j=0

N3
i (u)Ñ3

j (v)(Bij, bij),(56)

with N3
i and Ñ3

j being the B-spline basis functions defined by the knot

lists ti and t̃i.

5.2. Hermite-like interpolation of contact positions. Assume that
(A0, a0), . . . , (Ak, ak) are positions of a rigid body B such that Ai(B)+ai

touches a given surface O. A one-parameter near-Euclidean motion in-
terpolating (Ai, ai) is an interpolating curve in R

d×d+d, which lies as
close as possible to the contact manifold C defined by B and O.

If we use a spline curve defined by the derivative vectors (Vi, vi)
at (Ai, ai) (such as the cubic spline in Hermite form), the parameters
determined by the minimization process are the coefficients of linear
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combination of the (Vi, vi) in bases of T(Ai,ai)C (i = 1, . . . , l). More
explicitly assume that

(A1, a1), . . . , (Al, al)(57)

are contact positions such that AiM+ai touches M ′ in points Aipi+ai =
p′i. Then a basis of the tangent space T(Ak,ak)C (k = 1, . . . , l) is given
by Equ. (50) with (Ak, ak) instead of (Q, q). A curve (B(t), b(t)) in
the configuration manifold with (B(tk), b(tk)) = (Ak, ak) has a tangent
vector (Vk, vk) which is a linear combination of this basis:

(Vk, vk) =
∑

1≤i<j<d

λ
(k)
ij Ak(Eij − Eji) +

∑

1≤i<n

λ
(k)
i vi.(58)

The coefficients λ
(k)
ij (together with possible additional control points,

depending on the spline scheme) then are the control coefficients which
the curve and its feature points depend on. The control coefficients
may be determined using the ICP algorithm or one of its variants (cf.
the remark at the end of Sec. 2.1).

5.3. Applications in NC milling. An important example of a two-
parameter gliding motion is the motion of a milling tool along the
surface to be manufactured. We take the active part of the tool as
surface M and the final shape of the workpiece as surface M ′. Possibly
not all positions of M ′ which are contained in the configuration space
are admissible as positions of an actual milling tool — it may happen
that the tool intersects the interior of M somewhere. Such problems
of collision avoidance have been studied in (Wallner and Pottmann,
2000).

A series of one-parameter tool paths can be seen as the u parameter
lines in a surface b(u, v) contained in the configuration space. How to
construct such a surface has been described in Sec. 5.1.

5.3.1. Footpoint on the configuration space. The computation of points
p and p′ according to Equ. (48) can take advantage of the fact that
the milling tool is, geometrically, a surface of revolution, and it surface
normals intersect the axis of the tool. The computation of Equ. (48) can
be simplified, if the milling tool happens to be a spherical, cylindrical,
or toroidal one: In that case the tool has a degenerate inner offset
which is a curve or even a point. We may replace the tool by its inner
offset and the workpiece by its outer offset at the same distance.

5.3.2. Collision avoidance. Other constraints can be incorporated into
the framework of active milling paths. One particular example which is
important for collision avoidance is that the axis positions of the milling
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tool during the motion have to be contained in a certain congruence
of lines (i.e., a 2-parameter manifold of lines). After choosing an ap-
propriate distance function in line space (cf. (Pottmann and Wallner,
2001), pp. 195ff), the ICP algorithm which moves affine spline motions
towards the configuration space is easy augmented by an additional
function measuring the sum of squared distances of a certain number
of tool axes to the given line congruence.
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