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The present paper deals with local and global condi-

tions for collision-free 3-axis milling of sculptured sur-

faces and the selection of cutting-tools for a given sur-

face. We describe local and global millability results

whose proofs have been published in a previous pa-

per. The theoretical background involves general o�-

set surfaces. Here an algorithm is presented which after

evaluation of the surface curvature yields a di�erential

inequality for the meridian curve of the cutting-tool,

which is ful�lled if and only if the cutting-tool is able

to mill the entire surface. The choice or even design of

the optimal tool then besides this inequality involves

further characteristics of the tools, such as its shape

and its size.
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eral o�sets, indicatrix, isophotic line, global millability

Recently we have studied the problem of locally and

globally collision-free milling of sculptured surfaces

9

.

It turns out that if some conditions on the curvature

of the surfaces involved are ful�lled, we can show that

locally, and in certain cases also globally, no unwanted

collision of the cutting-tool with the surface occurs.

The present paper deals with the optimal selection

(or even design) of cutting tools in order to mill a given

surface. We will present algorithms which allow to

(i) test whether or not a given cutter is able to mill

a given surface,

(ii) select a given number of optimal cutters from a

given set of available cutting-tools.
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(iii) calculate the shape of an `optimal' cutting-tool

which will be able to mill the surface.

The third problem, however hypothetical its engineer-

ing applications, is included here because the math-

ematics which is necessary to solve it will be needed

anyway, and also because it is an interesting geometric

problem which independently deserves interest.

Local Properties of Smooth Surfaces

We are going to describe the background and mathe-

matical foundations of the local millability test when

restricted to smooth surfaces, which consist of C

2

patches with C

1

join. Non-smooth surfaces will be con-

sidered in the next section.

We denote the surface by X and the cutter by �. X

is the boundary of a solid, and we speak of the solid

as of the interior of X and will call the ambient space

the exterior of X . The cutting-tool is, geometrically,

always a convex body of rotational symmetry. The ro-

tation of the cutter around its axis, however important

for the mechanical engineering aspect of the problem,

can be completely neglected from the geometric point

of view. The actual cutter, while rotating, has a sur-

face of revolution as envelope. It is this surface which

we consider in this paper. We restrict ourselves to the

case of convex cutters, that is, the line segment which

joins any two points of � is completely contained in

�. This will be su�cient for most applications. We

further assume that � is strictly convex, which means

that it does not contain parts of planes, cylinders or

cones. This condition is often not ful�lled. But there

is always a sequence of strictly convex cutters which
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converges to the actual cutter (where convergence is in

the sense of the Hausdor� metric).

This is easily seen by replacing planar (cylindrical,

conic) parts of the cutter by spherical (toric) parts

which approximate them. Because collision checking

involves, in principle, only the measurement of dis-

tances, and not of derivatives, a close enough approx-

imation will fail the test for millability if the original

cutter would have failed, and vice versa. Thus strict

convexity is no essential restriction.

If we assume a coordinate system such that the z-

axis coincides with the cutter axis a, then the cutter

has a parametrization of the form

� : (r(z) cos(�); r(z) sin(�); z) (1)

The curve r = r(z) is called the meridian curve of �

(see Fig. 1).

c

a

r=r(z)q

Figure 1: Cutting-tool � and meridian curve r = r(z).

While milling the surface X , the surface � under-

goes a translational motion such that the enveloping

surface is just the given surface X . This translation is

described by � 7! � + s, where s denotes the vector

of the translation. For each position � + g of �, there

is a point p 2 X and a point q 2 � such that � + g

touches X in the point p = q + g. The tangent planes

�

p

and �

q

are parallel. For a given p, there are at most

two q 2 � with �

p

k�

q

(because � is strictly convex),

and we are able to choose the right one by noting that

X and � + g lie on di�erent sides of �

p

= �

q

+ g. (see

Fig. 2). Because the translation vector g depends on

p we denote it by g(p). The point q will be called cor-

responding to p, or short, q = q(p). Evidently there is

no collision if the intersection (� + g) \ X is just the

point p.

p = q + g

q

X

Figure 2: Cutting-tool � touching the surface X .

To examine the local behaviour in a neighbourhood

of the touching point, we choose a reference plane such

that locally both surfaces are graphs of real-valued

functions f and s, respectively. Of course this does

not mean that the surfaces X and � must be given as

graphs of real-valued functions. If the tangent plane is

not orthogonal to the base plane, it is always possible

to re-parametrize both X and � locally such that they

become graph surfaces.

Because the graphs touch each other, we have for all

vectors v equality of �rst directional derivatives:

s

;v

= f

;v

: (2)

If additionally we have

s

;vv

> f

;vv

for all v (3)

there is a neighbourhood U of p such that

s(x) � f(x) for all x 2 U: (4)

This means that the part of �(p) which lies `above' U

then does not interfere with X . If there is a direction

vector v such that

s

;vv

< f

;vv

(5)

then obviously � intersects the interior of the solid

bounded by X . If s

;vv

= f

;vv

we cannot tell the local

behaviour from the in�nitesimal one. The case that

always s

;vv

� f

;vv

but not always s

;vv

> f

;vv

almost
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never occurs, if we have no line contact between the

surface X and the cutting-tool. Thus from the engi-

neering standpoint it is no loss of generality if we do

not pursue it further. It is well known that s

;vv

(and

analogously, f

;vv

) can be expressed in terms of the Hes-

sian

H

s

=

 

s

;xx

s

;xy

s

;xy

s

;yy

!

(6)

as

s

;vv

= v

T

H

s

v (7)

and it is easy to see that

7, 9

Equ. 3 is equivalent to

det(H

s

�H

f

) > 0 and s

;xx

> f

;xx

: (8)

De�nition: The surface X is said to be locally mill-

able by the cutter �, if Equ. 8 holds. In a point where

several C

2

surface patches meet, Equ. 8 has to be sat-

is�ed for each of them.

From the considerations above we know that in our

de�nition we excluded some `boundary' cases between

millability and non-millability. As a cutter will almost

never be exactly at this boundary, this does not matter

very much.

There is an equivalent condition in terms of the Eu-

clidean curvature indicatrices of X and �. The indica-

trices have the advantage that they are not dependent

on the choice of a base plane. We repeat their de�ni-

tion here: Let p 2 X and let n be the line perpendic-

ular to X in p. Fix a Cartesian Coordinate system in

the tangent plane �

p

. A surface tangent t(�) is now

determined by its angle � with the x-axis. The plane

spanned by n and a surface tangent t(�) intersects X

in a curve c(�) which has a curvature radius �(�) at

p. This radius is given a negative sign if the curve is

locally beneath �

p

and a positive positive if it is locally

above �

p

.

De�nition: The diagram which in polar coordinates

has the equation

(r; �) = (

q

�(�); �); (9)

whenever the square root is de�ned, is called the

(signed) Euclidean indicatrix of curvature i

p

of the sur-

face X at the point p.

It is well known that the indicatrix is void (if �(�) is

negative or in�nite for all �), or a pair of lines, or a

conic section. Note that all curvature radii are posi-

tive and all indicatrices of � are ellipses because � is

convex. For algorithms concerning curve and surface

curvature, see also Elber

4

.

We de�ne the interior of the indicatrix i

p

as the

star-shaped (with respect to the origin) domain, whose

boundary is i

p

. It may be the whole plane.

The proof of the following is an exercise in Di�eren-

tial Geometry

3

:

Proposition: A surface is locally millable if and only

if for all corresponding points p 2 X and q = q(p) 2

� the indicatrix i

q

is contained in the interior of the

indicatrix i

q

(see Fig. 3).

p=q iq

ip

Figure 3: Indicatrix i

q

contained in the interior of i

p

.

Global Properties of Smooth Sur-

faces

In order to formulate global millability conditions we

make use of the following

De�nition: The surface � which is traced out by an

arbitrary �xed point of � during the motion of � is

called general o�set surface

1, 2, 6, 8

of X with respect

to �.

All possible general o�set surfaces are translates of

each other, and one candidate is the surface which is
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traced out by the translation vector g which we used

above. This gives a parametrization p 7! g(p) of � with

X as the parameter domain.

Using elementary methods of geometric topology

(degree of maps, homotopy, covering maps), it is pos-

sible to show

9

that the following is true:

Proposition: Let X be a smooth surface consisting

of C

2

patches.

(i) If X is locally millable, the parametrization of �

is regular.

(ii) If the surface � has no self-intersections, then X

is globally millable by �.

(iii) Let X be such that it can be re-parametrized

as the graph surface of a compactly supported

smooth function de�ned in the entire plane. If

X is locally millable, then also globally.

(iv) Let X be such that it can be re-parametrized as

the graph surface of a smooth function de�ned in

the entire plane. If � possesses steeper tangent

planes than X (This is always the case if � has

an equator circle), then the local millability of X

implies the global millability.

(v) Let X be such that it can be seen as the graph

surface over a piecewise smoothly bounded planar

domain D. If the `top view' of � is a closed sym-

metric convex domain S and the general outer par-

allel curve D + S is free of self-intersections, then

the local millability of X implies the global milla-

bility. (In most cases S is a disk and the condition

is easily veri�ed. See Fig. 4 for an example).

(vi) If X is strictly star-shaped with respect to an in-

terior point, then local millability implies global

millability.

(vii) In cases (iii) to (iv), the general o�set surface �

of X with respect to � is free of self-intersections.

In most applications we have one of the cases listed

in the proposition, most frequently perhaps case (iv)

(see Fig. 4).

This proposition, if slightly modi�ed, will be later

seen to hold also in the case of non-smooth surfaces.

Figure 4: Milling a surface with boundary.

Non-smooth Surfaces

If the surface is not smooth, but continuous and piece-

wise C

2

, we are still able to given local and global mil-

lability conditions. The �rst method to overcome the

non-smoothness is to consider instead of X an outer

parallel surface X+ "B, where B is the Euclidean unit

ball of Euclidean three-space. Because collision tests

do not involve di�erentiation, the limit "! 0 gives the

exact result.

Another possibility, which is better for computa-

tional purposes, is the following: An edge e where X

is not smooth, is either a ridge or a valley. Valleys can

never be milled exactly by smooth cutters, so we leave

them aside. A ridge has in each of its points p a wedge

T

p

of admissible tangent planes �

p

. For �

p

2 T

p

there is

a corresponding point q(p; �

p

) of �. Then obviously X

can be milled at p if Equ. 8 or an analogous condition

holds outside the edge and if the edge stays outside

�(p; �

p

) with the exception of the point q itself.

In terms of curvatures of e and � this can be ex-

pressed as follows

3

: Denote the osculating plane of e

at p by " and the radius of curvature of c by R. The

edge tangent at p will be denoted by t. For all admis-

sible tangent planes �

p

do the following: Choose the

coordinate system in �

p

such that the x-axis is hori-

zontal. Let � =

6

(x; t) and  =

6

("; �

p

). Draw the

indicatrix i

q

and the two points (in polar coordinates)

P

1

�

q

R=(sin ); �

�

; P

2

= �P

1

: (10)
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If P

1

and P

2

are outside i

q

for all �

p

the surface is locally

millable at p.

We de�ne the region which is shown grey in Fig. 5 as

a substitute `interior' of i

p

. It is easy to see that P

1

and

P

2

lying outside i

q

is equivalent to i

q

lying in the sub-

stitute interior of i

p

, because the rotational symmetry

of � implies that the x- and y-axis are the major axes

of i

q

. The reader may ask why we did not choose the

p=q

t

iq

P1

P2

Figure 5: Indicatrix i

q

and subsitute i

p

in case of an

edge with tangent t.

part of the line [P

1

; P

2

] which is not between P

1

and

P

2

as the indicatrix i

p

, which would be the limit of the

indicatrices when considering an outer parallel surface

X + "B and letting " tend to zero. The reason is that

out version of the interior of i

p

is better to implement

(see later).

It can be shown

9

that here also the local millability

implies the global one, in all cases listed in the propo-

sition above.

Test for Millability of a Smooth Sur-

face

In this section we are going to describe how to test

whether a given cutting-tool is able to mill the surface

X. The cutting-tool contains circles in parallel (`hori-

zontal') planes, which will be called parallel circles (see

Fig. 1, where a parallel circle, denoted by c, is shown).

The tangent planes �

p

of the points q of such a circle c

enclose the same angle

 =

6

(�

q

; a) (11)

with the axis a of the tool. The points of the surface

X which will during the manufacturing process be in

contact with the points of the circle c, are precisely

the points on the isophotic line l

 

which belongs to

the angle  

5

and the direction of a. The curve l

 

is de�ned as the set of points p of X whose tangent

planes �

p

enclose the angle  with the axis a. It can

be shown that the di�erentiability class of l

 

is one

less than the di�erentiability class of X , so the notion

`isophotic line' or `curve' is justi�ed. An example can

be seen in Fig. 6.

As discussed above, the condition for collision-free

manufacturing of X can be expressed in terms of the

Euclidean curvature indicatrices i

p

and i

q

of corre-

sponding points p 2 � and q = q(p) 2 X : The surface

is locally (and hence, globally) millable if and only if

the indicatrix i

q

is contained in the interior of i

q

.

The indicatrices of all points q of a parallel circle c

are the same (up to rotation of �), so we can speak of

the indicatrix i

q

= i

c

of the points of c. The connection

between the various tangent planes of c is given by the

cutter's rotation around the axis a. The connection

between the various tangent planes along the curve l

 

is

given by the condition that when moving along l

 

, the

horizontal line in the tangent plane stays horizontal.

This now makes it possible to re-formulate the con-

dition that for all points p 2 l

 

the interior i

p

must

contain i

c

, as follows: We identify all tangent planes

along l

 

and intersect the interiors of the indicatrices

i

p

. This gives the region I

 

.

I

 

=

\

p2l

 

int i

p

(12)

Local millability is now equivalent to

i

c

� I

 

: (13)

We are going to express this condition in terms of

the curvature of the meridian curve r = r(z) of the

cutter. It is well known that the indicatrix i

q

= i

c

is an

ellipse whose major axes lie in the horizontal and in the

gradient line through q. The length of the horizontal

axis is

a =

q

r= cos : (14)
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The length of the other axis equals

b =

p

�

m

; (15)

where �

m

is the radius of curvature of the meridian

curve r = r(z). Thus, for given r and  , we have an

inequality

�

m

� �

max

(r;  ); (16)

where �

max

is determined such that

p

�

max

is the largest

`vertical' major axis of an ellipse which is contained in

I

 

.

Test for Millability of a Non-Smooth

Surface

First we have to say something about the isophotic

lines in the presence of edges. For this purpose it is

best to think of l

 

as a set of surface elements (p; �

p

),

where a surface element is a pair point { tangent plane.

This makes it possible to simplify the notation in cases

where a point has more than one tangent plane.

If p is situated in an edge e of X , there is a wedge

T

p

of admissible tangent planes. There are up to two

planes in T

p

which enclose the angle  with the axis a.

Thus the isophotic line l

 

can contain up to two surface

elements (p; �

p

). For each of them we have already

de�ned the substitute indicatrix i

p;�

. Of course this has

nothing to do with a Euclidean indicatrix of curvature

except for the fact that it is still true that the indicatrix

i

q;�

must be contained in the interior of i

p;�

, if (q; �)

is the surface element of � which corresponds to the

surface element (p; �

p

) of X .

The test for millability now runs in exactly the same

way as in the smooth case. For all angles  we have

to test if i

c

is contained in I

 

, where c is the parallel

circle which belongs to the angle  , and I

 

is de�ned

as

I

 

=

\

(p;�)2l

 

int i

p;�

(17)

Implementation

In this section we are going to describe how to im-

plement the intersection of the interiors of the various

indicatrices along an isophotic line i

 

.

All indicatrices i

p;�

are star-shaped curves and their

interiors are star-shaped domains in the plane. To in-

tersect them, we write i

p;�

in polar coordinates (r; �)

as in Equ. 9: r = r

p

(�). The interior of the indicatrix

i

p;�

then is written as

int i

p

: r < r

p

(�) (18)

and I

 

has the equation

I

 

: r(�) < min

(p;�)2l

 

r

p

(�): (19)

This is easy to implement: We choose discrete rays

emanating from the origin by prescribing a discrete

set �

0

< �

1

< �

2

< : : : of angles and discrete set of

surface elements (p

0

; �

0

); (p

1

; �

1

); (p

2

; �

2

); : : :. For all i

we are bu�ering the minimum value of r

p

(�

i

). This is

an e�cient way to calculate the domain I

 

. In Figures

6 and 7 you can see a discrete number of isophotic lines

l

 

together with the boundaries of the domains I

 

.

Figure 6: Isophotic lines l

 

i

of the surface X .

To test a given cutter-surface pair for local millabil-

ity (and, in the cases listed in the proposition above,

also global millability), there is the following

Algorithm: (i) Choose a discrete set of angles

 

0

;  

1

; : : : such that the corresponding parallel cir-

cles c

0

; c

1

; : : : (if q 2 c

i

, then

6

(�

q

; a) =  

i

) are

distributed evenly on c

i

.

(ii) Choose a discrete set of angles �

0

; �

1

; : : : such that

the rays having angle �

i

with the x-axis in a planar

6



Figure 7: Boundary curves of the sets I

 

i

which belong

to the isophotic lines of Fig. 6

coordinate system are distributed evenly in the

plane.

(iii) For all i, choose surface elements (p; �

p

) evenly dis-

tributed on the isophotic line l

 

i

.

(iv) For all (p; �

p

), calculate the indicatrix of curva-

ture. Formulae are given above and can be found

in many di�erential geometry textbooks

3

.

(v) For all i, calculate the domain I

 

i

and the indica-

trix i

c

i

of an arbitrary point of c

i

. Test whether

or not i

c

i

is in I

 

i

. If this is the case for all i, the

cutter is able to mill the surface locally, and in the

cases listed in the above proposition, also globally.

Suppose we have given a set of cutters and we have

to choose one of them to mill the given surface X . This

choice depends on the properties of the cutters which

are, after performing the test above, now known to be

able to perform the manufacturing process. Depending

on the material, the shape, the size, and other prop-

erties of the cutters, we can assign to each cutter a

number signifying how `good' or `bad' it would be to

use this cutter as a tool.

A factor which contributes the the goodness or bad-

ness is the required surface quality of X : The smaller

the curvature radii of the cutter, the denser the curves

must be which it is moving along. Thus one would

prefer the `larger' cutters, but on the other hand they

more often fail to mill the whole surface without colli-

sions.

If it is cheap (in the sense of time and cost) to change

the cutting-tool it may be desirable to use two or more

cutters to mill the surface X . By testing in a �nite

number of points we are able to estimate how many

percent of X the given cutters are able to mill. Thus it

is possible to choose the cutting tools such that �rst one

does most of the surface, and the second one �nishes

in the parts of X which the �rst one could not reach

without collision with X .

If we choose the region which the �rst cutter has

mill such that it ful�lls the condition of case (iv) of

the proposition about global millability results, we are

again able to apply our results and have therefore

avoided the constant collision checking, which other-

wise would be necessary.

If X or � is rotated, translated, or scaled, the indi-

catrices undergo the same transformation. This can be

used when one has to test a set of cutters which are just

di�erently scaled versions of each other. Essentially it

is only necessary to test one of them.

Cutter design

In this section we are �nally going to describe how to

�nd an optimal cutter in the sense that it is able to mill

the surface X , but has the largest possible curvature

radii. This is done as follows: The cutter is described

by the meridian function r = r(z): The active region of

�, which lies below its equator circle, can equivalently

be described by

z = z(r): (20)

Because � is convex, we can use the tangent slope

k =

dz

dr

(21)

as a parameter and describe � by the functions

r = r(k) and k = k(r): (22)

The function z = z(r) is recovered from k = k(r) by

integration. Because of

d

2

z

dr

2

=

dk

dr

; (23)
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the �rst derivative of the function k(r) already deter-

mines the curvature of the meridian curve.

The radius of curvature of the meridian curve can

be expressed, as is well known, by the �rst and second

derivative of z = z(r) as follows:

� =

p

(1 + (dz=dr)

2

)

3

d

2

z=dr

2

=

p

(1 + k

2

)

3

dk=dr

(24)

The tangent slope k of a point q and the angle  =

6

(�

q

; z) are connected by

tan =

1

k

: (25)

If both k and r are given, there is a maximal radius

�

max

(see Equ. 16) such that the indicatrix, which is an

ellipse with horizontal major axis

p

r= cos� and ver-

tical major axis

p

�

max

, touches the boundary of I

 

.

The admissible curvature radii � of the meridian curve

therefore have to ful�ll the inequality

�(k) � �

max

(k; r(k)) (26)

This gives the �rst order di�erential inequality

dk

dr

�

�

max

(k; r(k))

p

(1 + k

2

)

3

=: F (k; r); (27)

If we choose, for all k, the maximal possible curvature

radius, we get the di�erential equation

dk

dr

= F (k; r); (28)

whose solution k = k(r) gives the meridian curve

z = z(r) of the optimal cutting-tool. Fig. 8 shows an

example. In this case the global millability is guaran-

teed, because the conditions of the proposition above

are ful�lled.
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