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A convex body N moves such that it touches a closed surface M . While doing this, it

is undergoing a purely translational motion. A �xed point of N traces out the general

o�set surface 
 during this motion. We study the connection between singularities and self-

intersections of 
 and the possible collisions of M with N during this motion and obtain

some global results.

1 Introduction and Definitions

We have the following problem: Given is a solid M in space, which is piecewise curvature

continuous, but may have curvature discontinuities along curves, and even edges. There

is also given a strictly convex body N . We try to �nd conditions on M and N which

characterize the situation that N can move in a purely translational manner such that it

always touches M , the interiors of M and N are distinct, and such that the envelope of N

during this two-parameter motion is precisely M? In [6] and [8] the problem is studied in

the context of three-axis milling of sculptured surfaces.

We begin with a de�nition of `strictly convex' which is slightly di�erent from the usual one:

De�nition: A solid elliptic paraboloid is a nonsingular a�ne image of the set x

n

� x

2

1

+: : :+

x

2

m�1

. A strictly convex body K is a compact convex subset of R

m

which has the property

that for all p 2 @K there is a supporting paraboloid P with p 2 @P and K � P . The

boundary @K will be called strictly convex surface.

We want to study solids and their boundaries (surfaces) at the same time. We also want

to include non-smooth surfaces. On the other hand we are studying o�set surfaces and we

know that concave edges always produce singularities in the o�set surfaces (see Fig. 1). This

leads to the de�nition of admissible solids below.

Recall that a convex pyramid P of R

m

is a subset of R

m

with the property that x; y 2 P

implies �x+ �y 2 P for all �; � � 0. We de�ne:
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Figure 1: O�set curve with singularity

at concave vertex and normal pyramids
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Figure 2: The indicatrix i

f;n

(p) is con-

tained in the exterior of i

N;n

(p)

De�nition: An admissible solid M is a compact subset of R

m

with the property that for

all x 2M there is a local C

1

di�eomorphism � with d�(x) = id, which takes M to a convex

pyramid T (x) with vertex x. This pyramid is called tangent pyramid of x. The points of the

various d-dimensional faces of this pyramid correspond to points of the various d-dimensional

boundary surfaces of M . The normal pyramid N(x) of a point x of an admissible solid M is

de�ned as the pyramid orthogonal to T (x).

If T (x) is entire R

m

, then x is an interior point, otherwise it is a boundary point. If T (x) is

a half-space, its boundary is the usual tangent plane at x.

Our de�nition of the normal pyramid assigns to an interior point the singleton f(x; 0)g, to an

`ordinary' boundary point the ray pointing to the outside of M , to a point of an `ordinary'

edge a wedge in the plane perpendicular to the edge, and so on (see Fig. 1).

In order to study o�set surfaces, we parametrize the set of unit surface normals, which is,

by de�nition, the union of the unit vectors in the normal pyramids N(x). We exploit the

fact that locally all normal pyramids N(x) are di�eomorphic. This is true for all boundary

surfaces because it is true for pyramids.

De�nition: The set of unit vectors in N(x) is denoted byN

1

(x). The set ?M =

S

p2M

N(p)

is called the one-sided normal bundle of M , and the set ?

1

M =

S

p2M

N

1

(p) is called the

one-sided unit normal bundle of M .

If a surface N is smooth, then for every p there is exactly one n such that (p;n) 2 ?

1

N .

Thus ?

1

N and N can be identi�ed.

?M and ?

1

M are subsets of the tangent bundle of R

m

, which is identi�ed with R

2m

. When

we speak of di�erentiable mappings with values in ?M [or ?

1

M ], we mean di�erentiable

mappings into R

2m

whose image is contained in ?M [or ?

1

M ]. The topology and di�eren-

tiable structure of ?M [or ?

1

M ] is that of subset of R

2m

. Let f : K ! M be a compact

boundary d-surface. The unit normal bundle over this boundary surface is a continuous

1-1 image of K � (S

m�1

\ N) where N is a model normal pyramid for the points of this
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boundary surface. Thus ?

1

M is compact and consists of pieces homeomorphic to the various

K � (S

m�1

\N) glued together (It can be shown that ?

1

M is in fact homeomorphic to M ,

which is trivial if M is smooth).

A compact C

r

d-surface f : K ! R

m

is a mapping of a compact K � R

d

to R

m

with the

property that there is an open subset U with K � U and a C

r

mapping

�

f : U ! R

m

with

�

f jK = f .

De�nition: A compact C

r

boundary d-surface of M is a compact C

r

d-surface f : K ! R

m

which parametrizes a part of a d-dimensional boundary surface ofM . An admissible piecewise

C

r

solid M is an admissible solid all of whose �nitely many boundary surfaces are compact

C

r

surfaces (boundary surfaces need not be edges of M , it is also possible that pieces of @M

which are C

r

are separated by a boundary surface, and their union is C

s

with 1 � s < r).

Let f : K ! R

m

be a compact boundary d-surface of an admissible solid, and let N by a

pyramid di�eomorphic to an N(x), x = f(u). A C

r

surface normal parametrization is a C

r

parametrization n : K � (N \ S

m�1

)! ?

1

f(K) which is one-to-one and onto.

Of course a surface which we only know to be C

1

need not have a C

1

surface normal

parametrization. We will however encounter surfaces which are C

1

but have a piecewise C

1

surface normal parametrization. Such surfaces are in fact essentially C

2

:

Lemma 1 Let f be a regular C

1

hypersurface with C

1

surface normal parametrization. Then

in the neighborhood of every point there is a local C

1

change of parameters which makes f a

C

2

surface.

Proof: Let p

0

= f(x

0

). There is a C

1

change of parameters � : V ! U such that after a

suitable choice of coordinate system in R

m

, we have

f � �(u

1

; : : : ; u

m�1

) = (u

1

; : : : ; u

m�1

; z(u

1

; : : : ; u

m�1

)): (1)

The unit normal vector at f � �(u) then equals

�n

0

(u) = �n(u)=k�n(u)k with �n(u) = (�z

;1

(u); : : : ;�z

;n

(u); 1); (2)

where z

;i

= @z=@u

i

. On the other hand there is the C

1

surface normal parametrization

n � � : V ! R

m

, u 7! (n

1

(u); : : : ; n

n

(u)). Because there is only one surface normal, we

have n(u) = ��n(u) and the C

1

function n

j

(u)=n

n

(u) equals ��z

j

(u)=�z

n

(u) = �z

j

(u) for

j = 1; : : : ;m� 1, which shows that all partial derivatives z

;1

; : : : ; z

;m�1

are C

1

, and f � � ist

therefore C

2

.

2 Local Interference of Surfaces

We want to study the case where a strictly convex C

2

body N touches the admissible solid

in a point p. The restriction to strictly convex bodies in the sense of our de�nition above
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is essential for the analytic apparatus, because we need that the spherical mapping of N is

regular. The collision problem however is no `di�erentiable' problem at all, and it is easy to

approximate (in the sense of the Hausdor� metric) a convex body M by a strictly convex

body M

0

whose collision behaviour is arbitrarily close to that of M .

The point of contact is an interior point of exactly one d-dimensional boundary surface

of M and a boundary point of other (d + k)-dimensional boundary surfaces (in order to

avoid complicated formulations, we call the only element of a one-point boundary surface its

interior point).

The second fundamental form II

n

(v;w) of a C

2

d-surface f : U ! R

m

with respect to a

normal vector n is de�ned by the scalar product II

n

(v;w) = f

;vw

� n: If n : U ! R

m

is a

normal vector �eld containing n, then di�erentiating f

;v

� n = 0 with respect to a tangent

vector w gives

II

n

(v;w) = �f

;v

� n

;w

: (3)

If f is not C

2

, then (3) serves as a de�nition of II

n

. There is the following lemma:

Lemma 2 If f is a C

1

surface with C

1

normal vector parametrization, then (3) de�nes a

symmetric bilinear form.

Proof: If f is a C

1

hypersurface of dimension m� 1, there is a local di�eomorphism � such

that f �� is C

2

. Denote its second fundamental form by II

n

. Obviously f

;d�(v)

= (f ��)

;v

and

therefore II

n

(v;w) = II

n

(d�(v); d�(w)). d� is an isomorphism and therefore II is symmetric.

If f is a C

1

d-surface U ! R

m

with C

1

surface normal parametrization, let n : U ! R

m

be a C

1

vector �eld of f which contains the given vector n. De�ne a hypersurface

�

f :

U �R

m�d�1

! R

m

by

�

f(u

1

; : : : ; u

m�1

) = f(u

1

; : : : ; u

d

) +

X

d<i<m

u

i

n

i

(u

1

; : : : ; u

d

); (4)

where n

i

(u) (d < i < m) are linearly independent C

1

vectors �elds orthogonal to [f

;1

(u);

: : : ; f

;d

(u); n]. They are found by Gram-Schmidt orthonormalization applied to B(u) =

ff

;1

(u); : : : ; f

;d

(u); n(u); n

(0)

d+1

; : : : ; n

(0)

m�1

g, where the n

(0)

i

are constant. Then the C

1

unit

normal vector �eld of

�

f coincides with n when restricted to U � 0 and obviously the second

fundamental forms II and II of f and

�

f , respectively, have the property that II

n

(v;w) =

II

n

(v;w) for all v;w tangent to f . Thus also II

n

is symmetric.

De�nition: Let f be a d-surface in R

m

such that its second fundamental form II is de�ned,

let p a surface point and n a unit normal vector at p. For all tangent vectors v 2 T

p

f n 0, we

calculate the normal curvature radius �

n

(v) = I(v)=II

n

(v) with respect to n, and consider

the set

i

f;n

(p) = f�

p

�

n

(v)=kvk � v j v 6= 0; 0 < �

n

(v) <1g � T

p

f: (5)

This set is called the signed indicatrix of curvature of f at p and n.
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Consider a translate of N which touches M in a point of contact p with common normal

vector n pointing to the inside of N . We consider the signed indicatrix i

N;n

(p) and the

indicatrices i

f;n

(p) for all boundary surface patches f whose image contains p.

Lemma 3 In a touching position with common surface normal n at the common point p,

the two solids M and N do not interfere locally, if all indicatrices i

f;n

(p) are contained in

the exterior of the indicatrix i

N;n

(p) (see Fig. 2). Here f ranges over all boundary surfaces

of M whose image contains p.

Note that the empty set is contained in any other set, and that i

N;n

is always a non-void

oval quadric, because N is strictly convex.

Proof: If the boundary surface f in question is a hypersurface, Lemma 1 shows that we

can write both f and N as graphs of C

2

functions z

f

, z

N

, respectively, over the common

tangent plane. Consider the di�erence surface de�ned by the graph of z = z

N

� z

f

. The

assumption on the indicatrices implies that the quadratic form II

N

� II

f

, whose matrix in

local coordinates u

1

; : : : ; u

m�1

is the matrix z

;ij

, is positive de�nite. The Lemma of Morse

[7] implies that z(u

1

; : : : ; u

m�1

) =

P

m�1

i;j=1

u

i

u

j

h

ij

(u

1

; : : : ; u

m�1

) with continuous functions h

ij

,

which have the property that h

ij

(0) = z

;ij

and h

ij

(u) = h

ji

(x).

All principal minors of the matrix h

ij

(0) are positive, so there is an " > 0 such that all

principal minors of h

ij

(u) > 0 for all u with kuk < ". Thus z(u) > 0 if kuk < ", u 6= 0, and

f does not interfere with N locally.

If f : U ! R

m

is a d-surface with d < m� 1 then analogously to the proof of Lemma 2 we

choose a normal vector �eld n : U ! R

m

of f which contains n and extend f to a hypersurface

�

f : U�R

m�1�d

,

�

f (u) = f(u

1

; : : : ; u

d

)+

P

d<i<m

u

i

n

i

(u

1

; : : : ; u

d

)�n(u

1

; : : : ; u

d

)�C

P

d<i<m

u

2

i

:

Then

�

f jU � 0 = f ,

�

f 's second fundamental form coincides with that of f , and if C is large

enough, the di�erence form above is still positive de�nite.

De�nition: IfM is a C

1

admissible solid with piecewise C

1

surface normal parametrization,

and the conditions of Lemma 3 are ful�lled for all pairs (p; q), p 2M , q 2 N with a common

tangent plane, and for all boundary surfaces meeting at p and q, then we call the solid M

locally millable by the convex body N .

Lemma 4 If the local millability criterion is ful�lled in p, then also in a neighborhood of p.

Proof: This is clear from the fact that the indicatrices i

f;n

(p) vary continuously with p, as

all surfaces involved are C

1

with C

1

surface normal parametrization.
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3 General Offset Surfaces and their Smoothness

The mapping �

1

: ?M ! M denotes the mapping which maps a normal vector to its

footpoint, and the the spherical mapping �

M

maps a unit normal vector (p;n) 2 ?

1

M to

n 2 S

m�1

. The mapping �

N

is de�ned analogously, but here we can identify ?

1

N with N .

De�nition: The relative spherical mapping is de�ned by

�

M;N

: ?

1

M ! N; �

M;N

= �

�1

N

� �

M

: (6)

and the mapping




M;N

: ?

1

M ! R

m

; (p;n) 7! �

1

(p;n) � �

M;N

(p;n) (7)

is called the general o�set surface of M with respect to N .

Obviously �

M;N

is C

1

when restricted to surfaces with a C

1

surface normal parametrization.

The meaning of 


M;N

is the following: Because N is strictly convex, for all (p;n) 2 ?

1

M

there is a unique a 2 R

m

such that a + N touches M at (p;n). The vector a is given by




M;N

(p;n) and the surface 


M;N

(M) is the (m � 1)-parameter set of positions of the origin

during a motion of N such that it touches M during this motion.

Theorem 1 If M and N ful�ll the local millability condition, then the parametrization of




M;N

is regular and orientation-preserving when restricted to boundary d-surfaces f : U !

R

m

. Further it is locally injective, and the tangent space T

(p;n)




M;N

is orthogonal to n.

Proof: We consider a normal vector (p;n) 2 ?

1

f: The subspace V = ker(d�

1

) is tangent

to the submanifold of all vectors (p;n) with �xed p. It clearly is mapped in a one-to-one

manner by d�

M

onto a subspace W of T

n

S

m�1

.

Because T

n

S

m�1

? n, the translation which maps p to n maps T

p

f onto a subspace W

0

of

T

n

S

m�1

. Obviously T

n

S

m�1

=W �W

0

: Let V

0

= d�

�1

M

(W

0

). Then T

(p;n)

(?

1

M) = V � V

0

:

1

Consider v

0

2 V

0

n 0 and assume d


M;N

(v

0

) = 0. This implies

d�

N

d�

1

(v

0

) = d�

M

(v

0

): (8)

Note that u = d�

1

(v

0

) 6= 0 because v

0

62 ker(d�

1

). Equ. (8) and II

n

(u) = �u � d�(v

0

) imply

II

n;N

(u) = II

n;M

(u) and further

II

n;N

(u)=I(u) = II

n;M

(u)=I(u): (9)

But this means equality of normal curvatures in direction u, which contradicts our assump-

tion. Thus also V

0

is mapped in a one-to-one manner and d


M;N

is nonsingular.

1

The geometric meaning of V

0

is this: a curve (p(t);n(t)) in ?

1

M with tangent vectors contained in the

respective subspaces V

0

is a parallel �eld of normal vectors n(t) along the curve p(t) in the one-sided normal

bundle.
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Because all tangent spaces to M , N , and S

m�1

involved in the calculation are orthogonal to

n, so is T

(p;n)




M;N

.

N is a compact convex body and can therefore be shrunk to a point by a simple scaling �N ,

0 � � � 1. As the indicatrices of �N are just the scaled versions of the indicatrices of N , the

local millability criterion is ful�lled for all �N . Thus the mapping � : (p;n; �) 7! 


M;�N

(p;n)

is a homotopy of regular mappings between 


M;N

and the identity map, which shows that




M;N

is orientation-preserving.

Suppose that 


M;N

(p

1

) = 


M;N

(p

2

). Then there is a position of N such that N touches M in

both p

1

and p

2

. The local millability condition asserts that the points of contact are isolated,

and 


M;N

is locally injective.

Theorem 2 If M and N ful�ll the local millability condition, and 


M;N

is injective, then

the general o�set surface 


M;N

(?

1

M) is a C

1

submanifold of R

m

.

Proof: Choose (p;n) 2 ?

1

M and consider all surface normal parametrizations f

i

whose

domains K

i

contain p. All f

i

can be extended to an open domain U

i

� K

i

. In a neighborhood

of q = �

M;N

(p) we can write N as a graph surface of the function g(x

1

; : : : ; x

m�1

) over the

tangent hyperplane T

q

N . We want to show that also 


M;N

(?

1

M) can locally be written

as a C

1

graph surface over T

q

N . Denote the orthogonal projection onto T

q

N by �

1

. Its

complementary projection is denoted by �

2

: R

m

! R; where R is identi�ed with the surface

normal in q.

Let 


i

= 


M;N

j U

i

. Then �

1

� 


i

is C

1

and regular, because T

(p;n)




M;N

= T

(p;n)




i

is parallel

to T

q

N for all i. The local mappings

g

i

(x) = �

2

� 


i

� (�

1

� 


i

)

�1

(10)

are C

1

. In a neighborhood of p the mapping �

1

� 


M;N

is injective, because two 


M;N

-images

(x

1

; : : : ; x

m�1

; z

0

) and (x

1

; : : : ; x

m�1

; z

00

) with z

00

> z

0

in 


M;N

(M) would mean that two

translates N

0

; N

00

of N touch M , and we have N

00

= N

0

+ (0; : : : ; 0; z

00

� z

0

): But N

00

n N

0

does not have any points near p, so this assumption is a contradiction to Lemma 4.

The mapping �

1

�


M;N

is also locally surjective, because �rst 


M;N

is an injective continuous

mapping of the compact space ?

1

M , and therefore a homeomorphism onto its image, and

second, as 


M;N

consists of �nitely many 


i

all of which are C

1

with `horizontal' tangent

plane, it is Lipschitz continuous in a neighborhood of p and therefore cannot omit `vertical'

lines arbitrarily near p.

Thus it makes sense to de�ne

g(x) = g

i

(x) if x 2 �

1

� 


i

(M): (11)

The mapping g is well de�ned and continuous. It is di�erentiable, because all g

i

are di�er-

entiable with the same tangent plane. It is also continuously di�erentiable, because all g

i

are C

1

and in an "=�-formulation of the continuity criterion we can choose, for a given �, a

common " for all g

i

, because there are �nitely many of them.

Thus we have parametrized 


M;N

(M) in the neighborhood of p as the graph of a C

1

function,

and therefore it is a C

1

submanifold of R

m

.
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4 Self-Intersections of the General Offset Surface

We consider the mapping

� : ?

1

M �R! R

m

; (p;n;�) 7! p + ��

M;N

(p;n): (12)

Its di�erential at (p; 0) is regular, and therefore locally � is an embedding of ?M into R

m

.

In this context we will identify ?M and ?

1

M �R

+

0

.

Lemma 5 For all admissible solids M with piecewise C

1

surface normal parametrization

and for all C

1

strictly convex bodies N with C

1

surface normal parametrization, there is an

" > 0 such that 


M;�N

is a C

1

submanifold for all 0 < � < ".

The mapping � of Equ. 12 is an embedding of f(p;n) 2 ?M j 0 < knk < "g into R

m

.

Proof: We need something like the tubular neighborhood theorem [2] to prove this state-

ment. Because @M ist not one of the objects which usually are proven to have tubular

neighborhoods in textbooks of di�erential topology, we give our own proof:

In the following B(x; r) denotes the set of all points whose distance to x is less or equal

r. For all x 2 M �nd an "

0

> 0 as follows: For all boundary d-surfaces f : U ! R

m

with f(u) = x �nd an "

0

(f) such that the connected component of f(U) \ B(x; r) which

contains x is di�eomorphic to a d-dimensional disk for all r < "

0

(f). (This is accomplished

by determining a � such that �

1

� f is injective in B(u; �) and then requiring the "

0

(f)-

neighborhood of x to lie in f(B(u; �)).) Then "

0

= min

f

"

0

(f) > 0 because the number of

f 's involved is �nite.

The connected component of B(x; "

0

) which contains x is denoted by V . The set M n V is

compact, and there is an "

1

< "

0

such that B(x; "

1

) \M n V is empty.

There is further an "

2

such that in an "

2

-neighborhood of x, the mapping � is an embedding

of ?M into R

m

. At last choose "(x) < minf"

1

=2; "

2

g.

Then the sets U(x) = B(x; "(x))\M are connected, and the one-sided normal bundle de�nes

a �bration in the union of the B(x; "(x)). AsM is compact, �nitely many U(x

i

), i = 1; : : : ; r,

coverM , and there is an " > 0 such that 


M;�N

(M) is contained in U(x

1

)[ : : :[U(x

r

) for all

� < ". This means that � restricted to normal vectors (p;n) with knk < " is an embedding.

Lemma 6 If 


M;�N

is injective and regular for all � 2 [0; 1], then 


M;N

is the boundary of an

admissible solid, denoted by M +N . The surface normals of M give a piecewise C

1

surface

normal parametrization of 


M;�N

(?

1

M). Furthermore, (M + �N) + �N = M + (� + �)N ,

if all sums are de�ned.

Proof: The solid in question consists of the original M and the set fp+n j (p;n) 2 ?M; knk �

1g. Its boundary is a C

1

submanifold of R

m

which has the C

1

surface normal parametrization

inherited from M , which also implies the equation (M + �N) + �N =M + (�+ �)N .
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The previous lemma moreover asserts that there is an " > 0 such that 


M;�N

is injective and

regular even for � � 1 + ":

Corollary 1 The set of all � > 0 with the property that 


M;�N

is a C

1

submanifold for all

� � � is open.

De�nition: The injectivity size s(M;N) of N with respect to M is the minimal positive �

such that 


M;�N

is not a regular C

1

submanifold. If such a � does not exist, then we set

s(M;N) =1.

Lemma 6 shows that s(M;N) > 0 for all admissible M , N . Regarding whether or not the

image of 


M;�N

is a C

1

submanifold, there are three possibilities:

1. M is convex. This means that all indicatrices of M 's boundary surfaces are void and

all 


M;�N

are regular, because always II

f;n

(v) � 0.

Moreover, the convexity of M easily shows that injectivity of 


M;�N

for all � > 0. This

shows that s(M;N) =1.

2. If M is not convex, then there are f , p, n, v, such that the second fundamental form

II

f;n

(v) of f at p is positive. There is a smallest � > 0 such that � = II

N;n

� II

f;n

is

degenerate but still positive semide�nite. Consider a tangent vector w in the radical

of �, i.e., �(v;w) = 0 for all v. We note that II

�N;n

=

1

�

II

N;n

, and calculate 0 =

1

�

(II

N;n

� �

f;n

)(v;w) = II

�N;n

(v;w) � II

f;n

(v;w) = v � (d�

�N

(w) � d�

f

( �w)), where

�w 2 T

p;n

?

1

f is such that d�

1

( �w) = w. The scalar product in T

p

f is nondegenerate, so

we have d�

�N

(w) � d�

f

( �w) = d�

�N

(d


M;N

(�v)) = 0. Because d�

�N

is an isomorphism,

d


M;N

(�v) = 0, and s(M;N) � �, i.e., s(M;N) is �nite.

The smallest � such that 


M;N

is no more regular may nor may not equal s(M;N). If it

does, we say that local properties of M and N restrict the injectivity size of N .

If for all � � s(M;N) the general o�set 


M;N

is regular, we say that at � = s(M;N), the

solid M is not globally millable by �N , although locally it is.

Theorem 3 If M is not globally millable by �N at � = s(M;N), but locally it is, 


M;N

has

a self-intersection which is not transverse, but the surface touches itself.

Proof: Because of 


M;N

= 


M+"N;(1�")N

we may assume thatM is C

1

and identifyM = ?

1

M .

We have to show that if at 


M;�N

(x

1

) = 


M;�N

(x

2

) the tangent planes are not parallel then

there are �

0

< �, and x

0

1

; x

0

2

, such that 


M;�

0

N

(x

0

1

) = 


M;�

0

N

(x

0

2

). We study the behav-

ior of solutions of this equation in a neighborhood of the original solution by solving the

corresponding equation of di�erentials (d�; v; w).

v � �d�

M;N

(v)� d��

M;N

(x

1

) = w � �d�

M;N

(w)� d��

M;N

(x

2

); (13)

which gives d�(�(x

1

)��(x

1

) = v��d�

M;N

(v)�w+�d�

M;N

(w): The span of all v��d�

M;N

(v)

equals the whole (m�1)-dimensional tangent plane of 


M;�N

, because the di�erential d


M;N

9



was assumed to be regular. So the above equation of di�erentials is solvable for d� 6= 0 if

the span of the right hand side equals R

m

, which is the case if the normal vectors at x

1

; x

2

are not parallel.

Thus there is a local submanifold of solutions of 


M;�

0

N

(x

0

1

) = 


M;�

0

N

(x

0

2

) with �

0

< �.

Theorem 4 If M is globally millable by �N (cf. the discussion preceding Th. 3), then �N

can be moved such that for all (x;n) 2 ?

1

M , the translate of �N touches M at x with

common normal vector n. This is not possible for � > s(M;N).

Proof: Consider a point (x;n) 2 ?

1

M . There is a � > 0 and a vector r(�; x) 2 R

m

such

that the translate �N + r(�; x) of �N touches M at x having normal vector �n there, and

such that the intersection Z :=M \ (�N + r(�; x)) equals the singleton fxg.

We let � increase until, at a smallest � = �

1

, the intersection set Z is greater than fxg. If

x is not an isolated point of Z, then the various indicatrices of M at (x;n) can no longer be

contained in the exterior of i

N;n

. In this case 


M;�

1

N

is no longer regular for all � � �

1

.

If, however, x is an isolated point of Z, then �

1

N + r(�

1

; x) actually touches M in all points

of Z. This can be seen by an argument similar to the proof of Th. 3. It is easily seen that if

the tangent planes at an intersection point are not parallel, there is a �

2

< �

1

with Z ) fxg.

But if �

1

N touches M in two di�erent points x and y, then 


M;�

1

N

(x) = 


M;�

1

N

(y), and so




M;�

1

N

is no longer injective.

Thus the notion `globally millable' is justi�ed, if we think of N as of a milling tool shaping

the solid M .

This leads to an algorithm for determining the value of s(M;N). First we de�ne a general

normal of a surface element:

De�nition: For every point p of N there is a unique second point q of N with T

p

N k T

q

N .

We call the line spanned by p and q the general normal (in the points p, q).

For any surface element (x;n) 2 ?

1

M we de�ne the general normal �(x;n) as the line which

passes through x and is parallel to the line which joins �

�1

N

(n) and �

�1

N

(�n).

The generalized distance of two points x; y of a general normal parallel to the points p; q 2 N

is the factor d in the equation kx� yk = dkp � qk.

Now Theorems 3 and 4 imply:

Theorem 5 Search for the smalled generalized length s

0

of a general normal chord which

joins two points (x

1

;n) and (x

2

;�n) of ?

1

M . Further determine the smallest real number

s

1

such that the indicatrices of M , scaled by the factor s

1

, are not contained in the interior

of the respective indicatrix of N . Then

s(M;N) = minfs

0

; s

1

g: (14)
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5 Non-smooth N

In applications we cannot expect N to be smooth | cutting tools in three-axis milling will

often have edges. It is however easy to show that the general o�set surface is smooth again

under certain circumstances.

It is obvious how to modify the de�nition of �

N

and �

M;N

if N is not smooth. As we did for

M , we consider the unit normal bundle ?

1

N and the spherical mapping �

N

: ?

1

N ! S

m�1

.

Then �

M;N

: ?

1

M ! ?

1

N , �

M;N

= �

�1

N

� �

M

. Because of our de�nition of strict convexity,

�

N

again is one-to-one.

The local millability criterion is to be modi�ed in the following way: Let (p;n) 2 ?

1

M and

(q;�n) 2 ?

1

N be corresponding pair of normal vectors, and let f , g be surface patches

of M and N , respectively, containing p and q. Then there are the indicatrices i

f;n

and

i

g;�n

. Assume that N is translated such that it touches M at (p;n). Then for all pairs of

boundary surfaces f; g of M;N which contain the point of contact and have the property

that T

p

f � T

p

g the indicatrix i

g;n

is contained in the interior of i

f;n

, and for all pairs f; g

with T

p

g � T

p

f the indicatrix i

f;n

is contained in the exterior of i

g;n

. Note that a pair f; g

such that neither of T

p

f , T

p

g is contained in the other, does not contribute to the criterion.

Theorem 6 If M , N are piecewise C

1

surfaces with piecewise C

1

surface normals, the

local millability criterion is ful�lled for all possible pairs of surface patches for all pairs

(p;n) 2 ?

1

M and (q;�n) = �

M;N

(p;n) 2 ?

1

N , and either

(i) one of the two surfaces is smooth, or

(ii) the tangent spaces of the boundary surfaces containing p and q, respectively, are com-

plementary subspaces of R

m

,

then 


M;N

(?

1

M) is an immersed C

1

submanifold of R

m

, if 


M;N

is injective, then its image

is a C

1

submanifold of R

n

with piecewise C

1

surface normals.

Proof: First suppose that we have a corresponding pair of normal vectors (p;n) 2 ?

1

M and

(q;�n) 2 ?

1

N with M smooth at p. Then there is an " > 0 such that the inner parallel

surface M

0

at distance " with respect to the unit ball is smooth in a neighborhood of p.

Analogously the outer parallel surface N

0

of N at distance " is smooth. But the general

o�set of M with respect to N

0

equals the general o�set of M

0

with respect to N

0

, which is

smooth.

Now suppose that the pair (p;n) and (q;�n) belongs to edges of M and N , respectively,

whose tangent spaces are complementary subspaces of R

m

. Then 


M;N

is the surface of

translation de�ned by the two edges, which is smooth if both edges are.
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6 Special Cases

There are situations where there are no general normal chords between points of M . One

example is the case of a star-shaped surface: Recall that a solid is called star-shaped with

respect to the point o, if for all p 2 M the line segment [op] = tp + (1 � t)o, 0 � t � 1, is

contained in M .

Corollary 2 If M is both star-shaped and locally millable by N , then it is also globally

millable by N .

Proof: It is easily seen that for all (p;n) 2 ?

1

M the line segment [op] is completely contained

in the half-space (x� p)n � 0. Otherwise n could not be in N(p).

Suppose that there are points (p;n) and (q;�n) in ?

1

M . The general normal chord [pq]

leaves M in p, so we have (q � p)n > 0. We also have (o � p)n � 0 and (o � q)(�n) � 0.

These three inequalities contradict each other, as is clearly seen when we write them like

this: qn > pn, pn � on, on � qn.

The convex core cc(M) of a star-shaped solid M is the set of all o with respect to which M

is star-shaped. It is easily seen to be convex.

A set which is a `hole' R

m

nM in R

m

is said to be admissible, if D(0; r) nM is admissible

for some large r.

Corollary 3 A convex body N is able to globally mill the interior of a star-shaped solid M ,

i.e., is able to mill R

m

nM , if R

m

nM and N ful�ll the local millability condition and N is

contained in the convex core of M .

Proof: It is easily seen that (see also the proof of Cor. 2) that a point o 2 cc(M) ful�lls the

equation (o� p)n � 0 for all (p;n) 2 ?

1

(R

m

nM). Thus a general normal chord de�ned by

(p;n) and (q;�n) forces cc(M) to lie in the strip

fx 2 R

m

j pn � xn � qng: (15)

The corresponding chord of N has therefore general length � 1 and thus we have s(M;N) �

1.

If M is the inside of a convex body, then there is the following generalization of the theorem

of Blaschke [1] which says that sphere can roll freely inside a convex surface if its radius is

smaller than the smallest principal curvature of that surface. It follows directly from the

previous corollary, because for convex M we have cc(M) = N .

Corollary 4 A strictly convex body N contained in the convex body M is able to globally

mill R

m

nM , if the local millability condition is ful�lled for R

m

nM and N .

A similar result has been proved by J. Rauch [9], who showed a stronger result if both

surfaces have strictly positive curvature: in that case it is not necessary to assume that N

is contained in M , it is automatically true (see also [5]). A detailed study of generalizations

of Blaschke's rolling theorem in the smooth and non-smooth case can be found in [3].
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