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Fig. 1. This paper deals with the interactive design of meshes with restrictive properties which are nevertheless highly relevant, e.g. for manufacturing. Here
we show a control structure for editing a quad mesh with planar faces where both families of mesh polylines have the property that they are entirely contained
in a support plane transverse to the mesh. This so-called PP property still leaves su�iciently many degrees of freedom, so we can implement interactive
geometric modeling via the colored design handles shown in the le� hand image.

In this paper we investigate geometric properties and modeling capabilities
of quad meshes with planar faces whose mesh polylines enjoy the additional
property of being contained in a single plane. This planarity is a major
bene�t in architectural design and building construction: if a structural
element is contained in a plane, it can be manufactured on the ground
without sca�olding and put into place as a whole. Further, the plane it is
contained in serves as part of a so-called support structure. We discuss
design of meshes under the requirement that one half of mesh polylines are
planar (“P-meshes”), and we also investigate the geometry and design of
meshes where all polylines enjoy this property (“PP-meshes”). We work in
the space of planes and with appropriate transformations of that space. We
also incorporate further properties relevant for architectural design, such as
near-rectangular panels and repetitive nodes. We provide geometric insights,
give explicit constructions, and show an approach to geometric modeling of
both P-meshes and PP-meshes, in particular the case of nearly rectangular
panels.
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1 INTRODUCTION

Many curved structures in architecture are composed of a grid of
intersecting beams, each following the edges of a quadrilateral mesh.
This article studies situations where many or all of those beams can
be manufactured easier because they lie in a plane. There is a long
list of actual architectural freeform skins that enjoy this property,
and we point only to a few examples. Most are modelled after quad
meshes with planar faces. A very practical requirement is that mesh
polylines lie in horizontal planes and are thus aligned with �oors,
see e.g. the Sail Tower in Haifa, Israel [Ballas 2003]. Other examples
range from small structures like the 2002 Schubert Club “Bandshell”
in St. Paul, Minnesota, to medium-sized domes like the roof of the
Grand Reading Room, Mansueto Library, Univ. of Chicago, to large
buildings like the Sage Gateshead concert venue in the UK (Fig. 2).
An example where the planes are visually prominent is the Metropol
Parasol in Seville, Spain shown by Fig. 3. Structures with planar
beams are not restricted to the quad mesh case: a grid without local
symmetries supports the glass roof over an interior courtyard at
the Dutch maritime museum. And even if a structure is quad based,
faces do not have to be planar, as is the case e.g. for the Amtrak
train station in Anaheim, California.
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Fig. 2. �adrilateral meshes with planar polylines. The Sage Gateshead

concert venue, completed in 2004 and designed by Foster+Partners, is based
on a quad mesh with planar faces and planar mesh parameter lines.

1.1 Planar Beams in Shell-Like Structures

1.1.1 Planarity of long-range elements. Amajor reason for planarity
of structural elements is easier manufacturing. For timber structures
a popular way to fabricate curved beams is via glued laminated
timber (glulam). Thin layers, usually lumber of standard sizes, are
elastically bent and glued together in a curved con�guration. It is
also possible to make shapes exhibiting torsion that are not con-
tained in a plane, but this process is much more involved. For steel
structures, the most common method to produce curved beams is
roller bending. This is a manageable task even for varying curvature
but is very di�cult for non-planar curves. Beams modelled after
non-planar curves have to be manufactured in other, more costly,
ways.

1.1.2 The P and PP cases of long-range planar beams. In structures
where beams cross each other, the actual crossings can be realized
in di�erent individual ways. It turns out that this is an important
distinction and has strong implications on the global geometry of
the structure. Basically two categories have to be distinguished. We
call them the P case and the PP case.
• The P case. There are structures where only one sequence

of beams continues through crossings uninterrupted, while the
transverse beams are short and reach only from one crossing to
the next. In such a situation only beams of the �rst kind present
manufacturing challenges so that planarity has to be imposed.

Fig. 3. The Metropol Parasol in Seville, Spain, designed by Jürgen Mayer
and completed 2011 not features planar mesh parameter lines. The planes
carrying parameter are structural elements.

• The PP case. There are also structures where all beams continue
through crossings, and then planarity is imposed on all beams. The
Schubert Club bandshell is an example of this [Schober 2015].

In the Seville Metropol Parasol (Fig. 3), only one half of the beams
continue through crossings, but planarity is imposed also on the
other half. The reason for this is the e�cient manufacturing of the
load-bearing nodes at crossings [Schmid et al. 2011]. The same is
true for the steel structure of the Sage Gateshead [Schober 2015].

Planarity of beams has also structural bene�ts in itself. It ensures
that beams can be readily sti�ened by auxiliary elements, as has been
done for the interior courtyard roof of the Museum of Hamburg
History [Ermias et al. 2013]. It also simpli�es the fabrication of
multi-layer gridshells.

1.1.3 Combining planarity of beams with other properties. Planar
beams covering a given surface are, in principle, easily found by in-
tersecting the surface with arbitrary planes. This freedom in design
can be used to achieve additional properties.
• Planarity of faces. An important property of this kind is pla-

narity of faces. It allows cladding of the surface with planar panels.
Surfaces easily admitting such planar panels are translation surfaces,
where all beams are parallel translates of two generators. Only spe-
cial geometric shapes can be achieved in this way, but they have
been used several times, e.g. for the above-mentioned Mansueto
library [Sobek and Blandini 2010] or the Hippo house in the Berlin
zoo [Schober 2015]. Translation surfaces can be e�ciently manufac-
tured because of repetitive elements.
• Further properties include an intersection angle of 90◦ between

beams, implying identical nodes and in turn, e�cient manufacturing.
The Schubert Club “Bandshell” pavillon we mentioned above is an
example of this [Schober 2015].
• Another property is funicularity, meaning small bending mo-

ments (up to the ideal case of self-supporting surfaces in the sense
of Vouga et al. [2012]). An example combining funicularity, pla-
nar beams and planar faces is the Dutch Maritime museum [Adri-
aenssens et al. 2012]. We do not discuss funicularity in this paper.
• Last, but not least, the designer’s wishes must be seen as con-

straints that are imposed on top of geometric properties like pla-
narity of beams and of faces. E.g. for application to architectural
facades, it is convenient that upper and lower edges of panels coin-
cide with �oor slabs. Imposing this property on many of the occur-
ring planar beams is a strong restriction. We mention this special
case to illustrate the fact that a succession of increasing demands
reduces the designer’s freedom. Planar beams or �at faces alone do
not restrict the class of available shapes, only the meshing. However,
planar beams plus planar faces plus horizontal �oor slabs on top of
orthogonal intersection results in a very reduced class of shapes (in
this case, the so-called moulding surfaces).

1.2 Contributions and Overview

We study surfaces with long-range planar beams, namely the so-
called P and PP cases of one family resp. two families of planar
beams covering a design surface. Both are naturally discretized
by means of a quad mesh with regular grid combinatorics. Planar
beams are discretized as planar mesh polylines (isolated combinato-
rial singularities occur when individual regular patches are pasted
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together). Planar beams are, in principle, easy to achieve since all
we have to do is to intersect the design surface with suitable planes.
Interesting questions arise if additional properties are required.

Consequently this paper restricts itself to the case of planar faces.
The individual contributions of this paper are the following.

— We investigate the P and PP properties for quad meshes with
planar faces and completely describe meshes with the PP prop-
erty (§3.1).

— We study the property of orthogonal intersection of polylines.
We argue why this case is best represented by conical meshes
and show how to constructively access all possible shapes of
such meshes (§§4.1, 4.2 for the PP and P cases, resp.)

— Our methodology is based on the geometry of planes. We there-
fore give an introduction to Laguerre geometry (§2.1). We also
employ torsion-free support structures which were previously
proposed in the study of meshes with planar faces. This leads
to a new device called the weighted face image (§2.2).

— We discuss di�erent kinds of transformations of meshes which
keep the relevant properties we are interested in (§§ 2.3.5, 4.3).

— We discuss di�erent methods of geometric design for meshes.
Besides optimization, we make the design space user-friendly
by starting from easily accessible and controllable initial shapes
and by using transformations for navigation.

The P and PP properties discussed in the present paper restrict
the available meshes, even the available shapes, if combined with
other properties relevant to architecture. They are thus di�cult
to achieve by optimization. For this reason our paper extensively
discusses explicit constructions of such meshes and how to enable
their geometric design.

1.3 Previous Work

The geometric topics touched upon in this paper are more or less
classical. Applications of Laguerre geometry to geometric design
have been presented by Pottmann and Peternell [1998], and their
role in discrete di�erential geometry is shown by Bobenko and
Suris [2007]. Generally, planes instead of points have been used as
basic elements of geometric design in several places, e.g. in the dual
approach to developable surfaces by Pottmann and Wallner [1999].
A main topic of our paper is representing geometric shapes by

planar sections. This has been investigated from the viewpoint of
human perception and minimalist representation of shapes [McCrae
et al. 2011]. Assembly by interlocking planar pieces is the topic of
[Schwartzburg and Pauly 2013].

Our work is about representing geometric shapes by meshes with
certain speci�c properties, namely planar mesh polylines, planar
faces, and in addition to that, near-orthogonal intersection of edges.
Analogous objects in di�erential geometry are surfaces with planar
parameter lines, with conjugate parameter lines, and in addition to
that, with principal parameter lines. The combination of planarity
and conjugacy was �rst studied by [Darboux 1896, vol. IV, ch. IX].
He derived the representation we employ in § 3.1.3.

The more special orthogonal case (surfaces with one or two fami-
lies of planar principal curvature lines) had been thoroughly studied
earlier. Monge [1809] constructed a great variety of such surfaces
as sweeping surfaces via the motion of a rotation-minimizing frame.

A special case (rotation-minimizing frame of a planar curve) yields
the so-called moulding surfaces. For rotation-minimizing frames we
refer e.g. to [Bergou et al. 2008; Wang et al. 2008]. Joachimsthal’s
1846 result states that the angle between a planar curvature line and
its tangent planes is constant. Bonnet [1853], Lemonier [1868] and
Serret [1853] used this to determine the equations of such surfaces.
Darboux [1896] showed how his representation of planar+conjugate
parametrizations specializes to the orthogonal case. We will present
a discrete version of his result in § 4.1.

Planar beams and planar faces in freeform architectural skins
have recently started to attract interest. Design of special surfaces
with one family of principal curvature lines for architectural appli-
cations is the topic of Mesnil et al. [2018]. [Tellier 2020; Tellier et al.
2019] employed the classical result by Darboux [1896] and used a
discrete model of the Gauss map to obtain circular meshes with
planar mesh polylines in both directions. This already represents an
approach to the case of meshes with planar beams plus planar faces
and near-orthogonal edges. It is the direct motivation for our work,
where we broaden the theory and aim at direct and more intuitive
methods of design. The main advance of our work compared to
[Tellier 2020] is to consider the P case besides the PP case, as well
as easier and more comprehensive design methods.
Finally we mention prior work on a di�erent subject (the so-

called multi-nets) which has an overlap with our work. Bobenko et
al. [2020] contains a characterization of meshes with planar faces
and planar parameter lines as so-called multi-&∗ nets.

2 GEOMETRIC BASICS

Here we recap the Laguerre geometry of planes (§2.1), describing
both planes and spheres as its basic elements, Laguerre transforma-
tions of both spheres and planes, and Laguerre transformations of
smooth surfaces.
§2.2 introduces the weighted face image, which provides a new

viewpoint of torsion-freee support structures. It allows us to express
the P and PP properties in terms of the shape of dual faces.

§2.3 discusses how further geometric properties (like orthogonal-
ity) are expressed in terms of the weighted face image.

2.1 Laguerre Geometry

Geometric arguments in this paper often are concerned with spheres
and planes. It is therefore convenient to make use of the well-
developed methods of Laguerre geometry whose basic entities are
spheres, planes, and contact between them. A brief introduction
to this topic is given by [Pottmann and Peternell 1998]. For a more
comprehensive account see [Cecil 1992].
Both spheres and planes are endowed with an orientation by

the choice of a unit normal vector �eld; oriented contact involves
contact in the usual sense plus agreement of unit normal vectors in
the point of contact. Formally, two oriented planes are in contact if
their unit normal vectors agree (the point of contact is at in�nity). A
Laguerre transformation is de�ned as a permutation of the planes,
plus a permutation of the spheres, such that oriented contact is
preserved. Points are spheres of zero radius. Laguerre transforms
in general do not preserve this zero radius property. Points may be
mapped to spheres.
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2.1.1 Laguerre Transformations of Spheres. We encode a sphere
with center (G,~, I) and signed radius A by the vector

- = (G,~, I, A ) ∈ R4 . (1)

We think of a sphere endowed with normal vectors pointing out-
wards if A > 0, and inwards if A < 0. We introduce the Minkowski
inner product and squared distance in R4 by letting

⟪-1, -2⟫ = G1G2 + ~1~2 + I1I2 − A1A2 = -Đ
1 �-2, (2)

32 (-1, -2) = ⟪-1 − -2, -1 − -2⟫ , where � = diag(1, 1, 1,−1) .

It is easy to see that
√
32 (-1, -2) is the

tangential distance of spheres, measured
between the contact points of a plane
that is in oriented contact with both; see
inset �gure. Contact of oriented spheres is expressed by

32 (-1, -2) = 0.

It is known that in this coordinate representation, a Laguerre trans-
form acts as an a�ne mapping - ↦→ _�- +) , where _ is a nonzero
factor, � ∈ R4×4 is a matrix obeying �Đ �� = � , and ) ∈ R4.

2.1.2 Laguerre Transformations of Planes and Normal Vectors. Planes
are entities of Laguerre geometry, so a Laguerre transformation can
be applied to them. It is known that parallel planes are mapped to
parallel planes by a Laguerre transformation. It therefore makes
sense to ask in what way Laguerre transforms act on normal vectors.
It turns out that this action is that of a Möbius transform of the unit
sphere (2:

{planes}
Laguerre transf.

−−−−−−−−−−−−−−−−−−−−−→ {planes}
³ ³

{normal vectors}
Möbius transf.
−−−−−−−−−−−−→ {normal vectors}

We describe a point (G,~, I) in R3 by homogeneous coordinates
- = (G1 : G2 : G3 : G4) where G =

Į1
Į4
, ~ =

Į2
Į4
, I =

Į3
Į4
. In these

coordinates, the unit sphere is described by

- ∈ (2 ⇐⇒ -Đ �- = 0, where � = diag(1, 1, 1,−1) . (3)

A Möbius transform of the unit sphere reads - ↦→ �- , where
� ∈ R4×4 obeys �Đ �� = � . The matrix � is the same as the one
occurring in §2.1.1.

2.1.3 Laguerre Transforms of Smooth and Discrete Surfaces. Apply-
ing a Laguerre transformation to the points of a smooth surface ¨,
as well as to planes and spheres tangent to ¨, one gets spheres and
planes tangent to a well-de�ned image surface ¨′ [Cecil 1992].

As to meshes, Laguerre transformations act on the face planes. To
recover the vertices of the transformed mesh we need to intersect
face planes again. This procedure works only for special meshes,
fortunately the conical meshes are among those [Liu et al. 2006].
We will be using Laguerre transforms later in this paper (see Figures
19, 24). Here we only mention that the passage from a mesh to an
o�set mesh at constant face-face distance is also an example of a
Laguerre transform.
Laguerre transforms operating on surfaces are known to map

principal curvature lines to principal curvature lines [Cecil 1992].
We will be concerned with surfaces where principal curvature lines
are contained in planes. They, too are preserved:

Proposition 2.1. A Laguerre transformation maps a planar cur-

vature line 2 to a planar curvature line 2∗ on the image surface.

The proof makes use of the following form of Joachimsthal’s
theorem, see e.g. [do Carmo 1976, p. 152]:

Proposition 2.2. Consider the normal vector �eld =(C) along a

principal curvature line 2 (C) in a surface. If the curve lies in a plane

with normal vector 4 , then the angle $(=(C), 4) is constant. Conversely,

existence of 4 with this property implies that the curve 2 lies in a plane.

Proof of Prop. 2.1. If=(C) are the unit normal vectors along 2 (C),
then Prop. 2.2 says that =(C) traces out a circle in the unit sphere
(2. A Laguerre transform maps normal vectors by way of a Möbius
transform, preserving circles. So the normal vector �eld =∗ (C) of
2∗ (C) is a circle. Prop. 2.2 in reverse shows that 2∗ lies in a plane. □

2.2 Torsion-Free Support Structures

Pottmann et al. [2007] propose the term torsion-free support structure

for a certain arrangement of planes along the edges of the mesh. The
topic of the present paper represents a special case of this, namely
one where many of the occurring planes are the same.We found that
a more general look at torsion-free support structures yields insights
valuable for our special case. Therefore the text below contains a
theoretical discussion which �rst applies to a more general setting
and only later is specialized to our case. Basically we introduce
a certain version of homogeneous coordinates for the planes of a
mesh from which we can read o� geometric properties.

2.2.1 Torsion-free Support Structures and Their Weighted Face Im-

ages. Consider a polyhedral mesh" = (+ , �, � ). The plane carrying
the face 5ğ ∈ � has an equation of the form

=ğ · G + 3ğ = 0,

where =ğ is a normal vector. We consider the vector

fğ =
[Ĥğ
Ěğ

]
∈ R4 (4)

as coordinates of this plane. It is unique up to a nonzero factor. Once
the factor is chosen, fğ is called a weighted plane. It turns out that
weighted planes allows us to formulate new properties of so-called
torsion-free support structures. Following [Pottmann et al. 2007],
we de�ne:

De�nition 2.3.

Eğ

�ğ

E Ġ

� Ġ

�ğ ∩� Ġ

fğ Ġ

A torsion-free support struc-
ture associated with" consists of a node axis
�ğ passing through each vertex Eğ , and a sup-
porting plane fğ Ġ for each edge EğE Ġ which
contains both axes�ğ and� Ġ . To avoid degen-
eracies we require that fğ Ġ does not contain
the faces adjacent to the edge EğE Ġ .

Proposition 2.4 (De�nition and Properties ofWeighted Face Image).

Consider a simply connected polyhedral mesh " equipped with a

torsion-free support structure where every edge EğE Ġ is associated with

a support plane fğ Ġ . We require that neighbouring faces do not lie in

the same plane. We can choose weighted plane coordinates fĠ of faces
and sğ Ġ of supporting planes such that

sğ Ġ = fĨ − fĢ , (5)
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Fig. 4. Meshes are F-transforms if they share a support structure. Their
respective face images are parallel meshes . Here three F-transforms (shown
by yellow, red, and black edges) have been created by simply parallel trans-
lating the face imageĉĂ of a base meshĉ .

whenever the edge EğE Ġ is the intersection of faces 5Ģ , 5Ĩ .

We now construct the weighted face image"Ă of" as a combina-

torial dual of" which is contained in R4. The coordinate vectors fĠ of
faces of" serve as vertices of"Ă .

Then the faces of"Ă are planar.

Proof. Since the faces 5Ģ , 5Ĩ and the edge plane fğ Ġ have a straight
line intersection, we can achieve (5) locally for each edge, by mul-
tiplying plane coordinates with appropriate factors. We can also
propagate (5) through a sequence of edges. Now consider the cycle
of faces 51, . . . , 5ġ around a vertex E . Assume that (5) holds for all
edges 5ğ ∩ 5ğ+1, 1 f 8 < : . The planes fğ − fğ+1 associated with these
edges contain the vertex E and in fact contain all points E + _0 on
the node axis passing through E . This amounts to 2 independent
linear conditions imposed on the vectors fğ − fğ+1. The plane f1 − fġ
by construction passes through the edge 51 ∩ 5ġ and it obeys the
aforementioned conditions, since

f1 − fġ = (f2 − f1) + · · · + (fġ − fġ−1).

Thus the plane f1 − fġ contains the node axis, and coincides with
the support plane of the edge 51 ∩ 5ġ . This shows that propaga-
tion of Equ. (5) is consistent around each vertex, and, by simple
connectedness, is consistent globally.
The eges of the dual face in"Ă corresponding to E are given by

vectors fğ−fğ+1 (indices modulo :). Because of the 2 linear conditions
mentioned above, these edges lie in a two-dimensional plane. □

Given"Ă , a torsion-free support structure is derived via Equ. (5).
Scaling of"Ă with a nonzero factor does not change the torsion-free
support structure, but apart from that,"Ă and the support structure
determine each other uniquely:

Proposition 2.5. Consider a generic mesh "̃ in R4 whose faces lie

in 2D planes. Then there exists a mesh" equipped with a torsion-free

support structure whose weighted face image equals "̃ .

Proof. The combinatorics of " are dual to those of "̃ . We di-
rectly read o� the face planes of " from the corresponding dual
vertices of "̃ . To reconstruct a vertex E from adjacent face planes

f1, . . . , fġ , we must solve the linear system (E, 1) · (f1, . . . , fġ ) = 0.
The dimension 2 requirement generically implies a unique solution
E ; we appeal to genericity to avoid a discussion of cases. The edge
vectors f1 − f2, . . . correspond to planes that intersect in a straight
line, because their span is 2-dimensional. Thus these coordinates
correspond to the planes of a torsion-free support structure. □

2.2.2 The Weighted Normal Image of a Mesh. The weighted face
image"Ă of" is now used to construct the so-called weighted nor-
mal image"Ċ of" . This happens by forgetting the 4th coordinate,
projecting "Ă onto a mesh "Ċ in R3 which we call the normal

image of " . Like "Ă it is a combinatorial dual of " , and its faces
are planar.
Note that the vertices of"Ċ are normal vectors, but not neces-

sarily unit normal vectors. If they were, we would call"Ċ a Gauss
image, in the tradition of di�erential geometry.

The auxiliary meshes"Ă and"Ċ each have a particular purpose.
Firstly, the mesh "Ă serves to encode the support structure we
endow the original mesh " with. Secondly, special properties of
" like planar polylines will be expressed in terms of much better
accessible properties of"Ă . E.g. " has two families of planar poly-
lines, if "Ă is generated by translation (Prop. 3.1). The additional
level of abstraction caused by "Ă living in R4 is compensated by
the now much easier access to the planar polylines property.

Properties involving angles can be read o� the normal image"Ċ

which lives in dimension 3. E.g. applications may demand a support
structure orthogonal to the base mesh " . This is expressed by"Ċ

being spherical (§2.3.2). Right angles in the support structure’s nodes
correspond to "Ċ being principal (§2.3.4). "Ċ is an important
technical device in our extensive discussion of conical PP meshes
(§4.1). Finally, for interactive design we need as many geometric
transformations as possible that can be applied to support structures.
These likewise can be derived from"Ă (§§ 2.2.3, 2.3.5).

2.2.3 F-Transforms and Parallel Meshes. Polyhedral meshes "," ′

with the same combinatorics are called F-transforms of each other,
if corresponding edges 4, 4 ′ are co-planar. They are called parallel
meshes (Combescure transforms), if corresponding edges are even
parallel [Bobenko and Suris 2008], see Fig. 4. In the architectural
context" and" ′ are seen as a two-layer structure where the inner
and outer surface have variable distance from each other [Pottmann
et al. 2007]. In such a situation the planes carrying corresponding
edges 4, 4 ′ obviously constitute a torsion-free support structure for
both"," ′. If"," ′ are F-transforms of each other, Prop. 2.4 implies
that the respective face images"Ă , "

′
Ă
are parallel meshes.

2.3 Geometric Properties of Support Structures

In applications, geometric properties like the angle beween edges
or the angle between planes often is an issue and corresponding
constraints enter our design problem. This section discusses sev-
eral such properties that might be imposed on torsion-free support
structures.

2.3.1 The Analogy between Discrete and Smooth Di�erential Geom-

etry. In our discussion of geometric properties we are guided by
the analogy between discrete and continuous objects, and we draw
on known results from di�erential geometry. The analogies we use
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in the immediately following paragraphs are summarized by the
following table:

mesh←→ surface,

quad mesh←→ parametrization of surface,

quad mesh with planar faces←→ conjugate parametrization,

circular or conical mesh←→ principal parametrization.

These analogies assume fairness, i.e., the edges of meshes approxi-
mate �rst derivatives, and whenever 2nd order properties are con-
cerned, we assume that 2nd order di�erences approximate 2nd
derivatives. Under these assumptions, a quad mesh with planar
faces approximates a conjugate parametrization, while the circular
and conical properties imply that this parametrization is close to
principal [Liu et al. 2006].

2.3.2 Right Angles Between Sup-

port Structure and Panels.
=ğ

= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ= Ġ
" "Ċ

=ğ = Ġ

Bğ Ġ = =ğ − = Ġ

The �rst
property we study concerns the
angle between support planes and
panels. In applications this might be required to be close to 90 de-
grees. In the weighted normal image "Ċ , the normal vectors of
these items are represented by dual edges resp. dual vertices — a
dual vertex =ğ here is interpreted as the vector −−→>=ğ attached to the
origin. We conclude: The right angle requirement is expressed by
a spherical shape of"Ċ , because only then edges and vertices are
orthogonal.

2.3.3 Principal Meshes — Conical and Circular Meshes. A mesh
with planar faces is conical, if the faces adjacent to a vertex Eğ touch
a common cone of revolution. The axis �ğ of this cone serves as
node axis of a torsion-free support structure; the corresponding sup-
porting planes fğ Ġ of edges are bisectors
of adjacent faces [Liu et al. 2006]. These
properties imply that the normal vectors
=ğ occurring in the weighted normal im-
age"Ċ are unit vectors; this is because
then

Eğ

�ğ

E Ġ

� Ġ

�ğ ∩� Ġ

fğ Ġ

Bğ Ġ = =ğ − = Ġ

computes exactly the normal vector of the bisecting support plane.
Thus "Ċ is inscribed in the unit sphere. Faces of "Ċ are planar
and so have circumcircles; we conclude"Ċ is a circular mesh.

Remark 2.1. A principal curvature line parametrization of a surface
can be discretized in several ways, and it seems a bit arbitrary to
prefer the conical meshes over other choices, e.g. circular meshes.
However it typically does not matter which version of principal
meshes we use. By choosing one particular property, say, the conical
property, we will not lose generality as far as approximation of the
continuous situation is concerned.

2.3.4 Right Angles in Nodes. After the preparations in § 2.3.3, we
turn to another property imposed on torsion-free support structures,
namely a near-orthogonal intersection of supporting planes. This
question does not concern " itself, it addresses only the support
structure associated with it. We say such a support structure has
orthogonal nodes.

Interestingly, this propertymeans that theweighted normal image
"Ċ is principal. To see this, observe that orthogonality of support
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·
[
fĠ
1
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Fig. 5. The mesh and torsion-free support structure at le� is being modified
by applying a projective mapping in 4-space to its weighted face image
ĉĂ . A�er introducing homogeneous coordinates, this transformation is
expressed by multiplication with a matrix.

planes means orhogonality of their respective normal vectors. These
normal vectors occur as edges of"Ċ , so edges of"Ċ are approxi-
mately orthogonal."Ċ already has planar faces, and the additional
orthogonality property now means it is principal. We are free to
impose any of the available properties expressing principality. In
this particular case it is convenient to require that"Ċ is a circular
mesh.

2.3.5 Transformations of Torsion-Free Support Structures. It is an
old geometer’s trick to transfer objects from one space to another
in order to bene�t from the latter’s transformations. The following
paragraphs describe how this idea can be applied to torsion-free
support structures

We may subject a mesh" with torsion-free support structure to
projective transformations without destroying the support structure
property. The group of projective transformations of 3-space is 15-
dimensional. However, transfer to the face image"Ă via Prop. 2.4
yields a mesh in 4-dimensional space and a much greater set of
transformations: applying a 4D projective transformation (with
its 24 degrees of freedom) to "Ă does not destroy the relevant
properties. We can then employ Prop. 2.5 and turn the transformed
face image back into a mesh plus support structure — see Fig. 5.

Remark 2.2 (Isotropic Möbius Transforms for Support Structures
with Orthogonal Nodes). In § 2.3.4 we discussed support structures
with orthogonal nodes – they were characterized by "Ċ being
circular. An alternative characterization is that the face image"Ă

projects onto a circular mesh"Ċ when we forget the 4th coordinate.
There is a 16-dimensional group of isotropic Möbius transforma-

tions in 4-space which preserve the property of four points “lying
in a plane and projecting onto a circular quad”. Any such transfor-
mation can be applied to"Ă without destroying the right-angled

��

Fig. 6. Support structures with orthogonal nodes. These two support struc-
tures are connected by an isotropic Möbius transform acting on their re-
spective 4D circular face imagesĉĂ ,ĉ′Ă . The orthogonal nodes property is
visible only for such nodes where the axis is a projecting ray.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.



Planar panels and planar supporting beams in architectural structures • 1:7

node property. Fig. 6 shows an example. For the formulae we refer
to [Pottmann and Peternell 1998].

3 MESHES WITH PLANAR SUPPORTING BEAMS

3.1 P-Meshes and PP-Meshes

This section introduces the P and PP properties which are the main
focus of this paper. All involved meshes are polyhedral, i.e., they
have planar faces.

3.1.1 Definition of the P and PP Property. Consider a polyhedral
quad mesh which locally has the combinatorics of a regular grid.
Vertices Eğ, Ġ are indexed by integers 8, 9 . We call it a P-mesh, if there
is a sequence of planes*ğ such that

Eğ, Ġ ∈ *ğ for all 8, 9,

that is, one family of mesh polylines is planar. We could just as well
have required existence of planes,Ġ such that Eğ, Ġ ∈,Ġ . The mesh
is called a PP mesh, if there are planes*ğ and,Ġ such that

Eğ, Ġ ∈ *ğ ∩,Ġ , for all 8, 9 .

In a PPmesh all mesh parameter lines are planar. The planes carrying
parameter lines can be taken as part of a support structure.
For the following considerations we are indexing faces by their

lowest corner, so that the vertices of the face 5ğ, Ġ are Eğ, Ġ , Eğ+1, Ġ ,
Eğ+1, Ġ+1, Eğ, Ġ+1.

We construct the weighted face image"Ă according to § 2.2.1. It
has vertices fğ, Ġ . Planes *ğ and,Ġ are support planes in the sense
of § 2.2.1. According to Equ. (4) and Prop. 2.4, the cooordinates of
support planes occur as edges of "Ă . Thus the P-mesh condition
translates to

fğ, Ġ+1 − fğ, Ġ = _ğ, Ġuğ ,

where uğ is the homogeneous coordinate vector of the plane *ğ .
Geometrically, this means that faces of"Ă are trapezoids. For a PP
mesh, we also have

fğ+1, Ġ − fğ, Ġ = `ğ, ĠwĠ ,

where wĠ are coordinates of planes,Ġ . The faces of"Ă are paral-
lelograms. This means that"Ă is a discrete translation net.
In the PP mesh case, edges _ğ, Ġuğ depend only on the index 8 ,

and edges `ğ, ĠwĠ depend only on the index 9 . By relabelling these
vectors uğ and wĠ , respectively, we get

fğ+1, Ġ − fğ, Ġ = uğ , fğ, Ġ+1 − fğ, Ġ = wĠ . (6)

We have shown:

Proposition 3.1. If a mesh" has the P property, its face image"Ă

has faces that are trapezoids. If" has even the PP property, the faces

of "Ă are parallelograms, and thus "Ă is generated by translating

one mesh parameter line along a transverse mesh parameter line.

3.1.2 Construction of P-Meshes and PP-Meshes from Initial Values.

Computing PP meshes can be reduced to the problem of �nding
vertices Eğ Ġ constrained to lines ;ğ Ġ = *ğ ∩,Ġ (this idea can also be
used for computing P-meshes, where lines ;ğ Ġ ¢ * Ġ are variables,
and has been employed by Mesnil et al. [2017]). Once the lines ;ğ Ġ
are �xed, vertices can be uniquely propagated from Cauchy initial

E0,0
E1,0

E0,1

plan
esđğ

−−−−
−−−−
−−→

−−−−−−−−−−→
planes

ē
Ġ

Fig. 7. Theoretical construction of
a PP mesh from Cauchy initial
data, if planes planes đ0,đ1, . . .

andē0,ē1, . . . are given. The ver-
tex Ĭğ+1, Ġ+1 is found from Ĭğ,Ġ ,
Ĭğ,Ġ+1, Ĭğ+1, Ġ by intersecting the
plane spanned by these three ver-
tices with the straight lineđğ+1 ∩

ēĠ+1.

values, say, Eğ,0 and E0, Ġ , see Fig. 7. It is however di�cult to control
the �nal shape via those initial values.

Equation (6) immediately implies that

fğ, Ġ = fğ,0 + f0, Ġ − f0,0 . (7)

This yields an explicit dependence of vertices on Cauchy initial
data. Geometric modelling based on (7) is much more stable than
intersecting lines and planes, which is likely to even break down
when the sign of Gaussian curvature changes. However it requires to
appropriately initialize weighted plane coordinates at the boundary.
We deal with the actual geometric design in § 3.2.

3.1.3 Relation of PP Meshes to Bisector Surfaces. The statement of
Prop. 3.1 refers to plane coordinates in dual space, and we want to
give an interpretation in terms of primal space. Equation (7) can be
rewritten as

fğ, Ġ = gğ − hĠ ,

e.g. by letting gğ = fğ,0 and hĠ = f0,0 − f0, Ġ . Now we interpret gğ
and hĠ as coordinates not of planes, but of spheres, where a vector
g = (61, 62, 63, 64) ∈ R

4 corresponds to the sphere Σg with equation
∥G ∥2+(61, 62, 63)

Ī ·G+64 = 0.With another sphere Σh corresponding
to h ∈ R4, we consider the radical plane associated with Σg, Σh. Its
equation is the di�erence

(
(61, 62, 63)

Đ − (ℎ1, ℎ2, ℎ3)
Đ ) · G + (64 − ℎ4) = 0

of equations of Σg, Σh. This plane passes through the intersection
Σg∩Σh. In the special case of zero radius, both Σg and Σh are reduced
to points, and the radical plane is the bisector plane. Observe that
the coordinates of the radical plane is just g − h, so we can say that
the weighted face image consists of the radical planes of spheres
Σgğ and spheres ΣhĠ

.
The reason we invoke this interpretation is that it leads to a

geometrically interesting special case of PP meshes: With a polyline
of zero-radius spheres gğ and another such polyline hĠ , the de�nition
fğ, Ġ = gğ − hĠ yields the weighted face image of a PP mesh whose
face planes bisect the given two polylines; see Figure 8. The PP mesh
can therefore be considered as a discrete bisector surfaces of two
polylines.
A change in the radius of the involved spheres changes the 4-th

coordinate in vectors gğ and hĠ , but not the normal vectors of the
planes fğ Ġ which are represented by coordinates 1,2,3. Thus changing
the radii means that the PP mesh constructed in this way is replaced
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gğ hĠ

fğ, Ġ

gğ hĠ

fğ, Ġ

Fig. 8. PP meshes as bisector surfaces. At le�, the face planes fğ,Ġ of a PP
mesh ĉ are bisecting the vertices of two polylines gğ and hĠ which are
actually spheres of zero radius. At right, these vertices swell and become
true spheres. Then bisector planes become radical planes, andĉ is replaced
by a parallel mesh. We visualize the sphere gğ by means of a channel surface
tangent to them, and the same for hĠ .

by a parallel mesh. The analogous continuous construction was
proposed by Darboux [1896].

Remark 3.1. Bisectors have been studied by [Elber and Kim 1998;
Peternell 2000], mainly from an algebraic perspective. The PP prop-
erty is not mentioned, but is already apparent in simple cases: the
bisector of two straight lines is a hyperbolic paraboloid, which has
parabolas as planar + conjugate parameter lines. Similarly, the su-
peryclide occurring as a bisector of two circles [Peternell 2000]
features conics as parameter lines.

Remark 3.2 (The Multi-Net Property of PP Meshes). The explicit
representation of (7) shows the following: When we delete an entire
row of dual vertices in "Ă and recompute the base mesh " by
intersecting the remaining face planes, we get a PP mesh again. The
same is true for columns. This is a dual version of the multi-net

property which is the subject of [Bobenko et al. 2020].

3.2 Interactive Editing of PP Meshes

3.2.1 The Principle of Design by Tangent Planes. The geometric
design of PP quad meshes is based on Proposition 3.1 and the explicit
representation of vertices fğ, Ġ of the weighted face image by Equ. (7).
For design purposes it will be good to think of the face coordinates

h′(0)

h′(1)

g′ (0)

f (0, 0)
W 0W 01

W 1

f (1
, 0)

f (0, 1)

Bézier control planes

supporting planes

tangent planes

Fig. 9. A surface Į (ī, Ĭ) with the PP property is constructed as envelope
of its tangent planes f (ī, Ĭ) = g(ī) + h(Ĭ) − c. The supporting planes of
the ī and Ĭ parameter lines are given by partial derivatives fĬ = h′ (Ĭ)
and fī = g′ (ī) , respectively. Labels Ą0, Ą01, Ą1 identify control elements
discussed later.

Fig. 10. A PP mesh whose weighted face planes fğ,Ġ are samples of a smooth
dual surface f (ī, Ĭ) . We here show the support structure of the mesh, and
the primal surface Į (ī, Ĭ) derived from f (ī, Ĭ) according to Equ. (9).

fğ, Ġ as discrete samples of smooth functions:

fğ, Ġ = f (Dğ , E Ġ ), where f (D, E) = f (D, 0)
︸︷︷︸
=: g(D)

+ f (0, E)
︸︷︷︸
=: h(E)

− f (0, 0)
︸︷︷︸
=: c

. (8)

Note that g(0) = h(0) = c. The continuous surface G (D, E) whose
tangent planes are f (D, E) is reconstructed by intersecting f (D, E)
with partial derivatives fī , fĬ . We symbolically write

G (D, E) = f × fī × fĬ =
(
g(D) + h(E) − c

)
× g′(D) × h′(E). (9)

The prime indicates derivatives. We see that all points of the E pa-
rameter line G (D0, E) are contained in the plane g′(D0); it is a support
plane of this parameter line. Likewise, h′(E0) is the supporting plane
of the D parameter line G (D, E0) — see Fig. 9.

The PP mesh whose face planes fğ, Ġ are samples of f (D, E) has the
very same support planes g′(Dğ ) and h′(E Ġ ). Note that the vertices of
the mesh are not samples of the surface G (D, E); the sample property
applies to planes.

Example. Fig. 10 illustrates a simple case of interactive design
based on this approach. Given are curves 2 (D) (red, contained in a
plane Y) and 3 (E) (blue, contained in a plane i). With<(D), =(E)
as unit normal vectors of these curves within Y, i , resp., we let

f (D, E) =
[ ģ (ī)+Ĥ (Ĭ)−ģ0
ģ0 ·ę0−ģ (ī) ·ę (ī)−Ĥ (Ĭ) ·Ě (Ĭ)

]
. It is easy to check that the

surface G (D, E) constructed via Equ. (9) interpolates both curves, if
some conditions are met: Y, i are orthogonal, the curves meet in
a common point 20 ∈ Y ∩ i and have a common normal vector
<0 there. A PP mesh is derived from f (D, E) by sampling. We have
thus reduced the interactive design of PP meshes to the interactive
design of 2D curves.

3.2.2 A Bézier Curve Approach to Geometric Design of PP Meshes.

Geometric modelling based on Equations (8) and (9) hinges on the
choice of curves g(D) and h(E) which lie in R4 and are not acces-
sible visually. We show how to nevertheless perform geometric
modeling via controls that can be interactively handled by the user.
We use a curve g(D) which is the concatenation of quadratic seg-
ments g(0) , g(1) , . . . Each segment is determined by control points
gğ , gğ,ğ+1, gğ+1:

g(ğ) (D) = (1 − D)2gğ + 2D (1 − D)gğ,ğ+1 + D
2gğ+1 (0 f D f 1) .

Fig. 11 shows an example. It is easy to verify that the segments �t
together in a tangent-continuous way if and only if points

gğ−1,ğ , gğ , gğ,ğ+1 (10)
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�C0

�C1

�C2

20

21
22

201

212

g0

g1 g2

W0

W1

W2

W01 W12

Fig. 11. Left: Control points ę0, ę01, ę1, . . . for a spline curve consisting of
segments ę (0) (Ī ) , ę (1) (Ī ), . . . which fit togeher with tangent continuity. We
also indicate vectors �Īğ indicating the direction of the curve when passing
through the point ęğ . Right: Analogous control structure Ą0, Ą01, Ą1, . . . for
a spline in plane space. In our se�ing, the planes ăğ related to the spline’s
tangents serve as support planes and are intuitive handles for modeling.

are lying on a straight line, in that order (if the order is reversed, the
union of segments has a cusp). Similarly the curve h(E) is de�ned by
control points h0, h01, . . . To meet the requirement that g(0) = h(0),
we choose g0 = h0, but otherwise curves g, h are independent from
each other.

For the actual design, we cannot expect the user to select control
elements g0, g01, g1, . . . in the four-dimensional space of weighted
planes. Instead, the user picks an arrangement of planesW0, W01, W1, . . .
as shown in Fig. 11, right. If weighted plane coordinates are to obey
(10), the corresponding planes

Wğ,ğ−1, Wğ , Wğ,ğ+1

must intersect in a common line. The user also chooses a plane
gğ passing through that same line which eventually serves as a
supporting plane of the generated PP mesh.
To reconstruct a tangent-continuous union of curve segments

from these data, we choose weighted plane coordinates ḡğ , ḡğ,ğ+1, t̄ğ
for planes Wğ , Wğ,ğ+1, gğ , respectively. We then �nd control points as
required by a recursive re-weighting procedure. We let g0 := ḡ0 and
solve

g0 + `0 t̄0 = _01ḡ01, g01 := _01ḡ01

g01 + a0 t̄0 = _1ḡ01, g1 := _1ḡ1

(with unkonwn coe�cients `ğ , ağ , _ğ , _ğ,ğ+1), and so on for g12, g2, . . .
The control points computed in this way de�ne curve segments
�tting together to form the tangent-continuous curve g(D). It is
constructed such that the derivatives at the endpoints of segments
correspond to the plane coordinates of planes gğ .

Since the arrangement of planes in Fig. 11 has quite a lot of con-
straints, we assist the user by setting up a procedure to interactively
modify the arrangement, while side-conditions are maintained by

g0

g1

g2
W1

W2

W01 W12

Fig. 12. Interactive modeling with the control structure for PP meshes. Left:
Initial position and user-modified position of the control elements. Right: A
PP mesh derived from those.

Fig. 13. A design with planar faces exhibiting the PP property made by the
spline method described by §3.2.2.

an optimization running in the background. We do not describe
the details here, since we do not regard it as a contribution of the
present paper — see Fig. 12 and accompanying video.
An analogous procedure yields the curve h(E). Together, using

the explicit expressions given at the top of this section, they de�ne
a dual surface f (D, E) and, by sampling that, a PP mesh. Note that
the support planes of this PP mesh are given by the derivatives of
curves g, h. This is why we made those support planes a design
handle.

Remark 3.3. Recall that the dual curve g(D) is tangent-continuous
only if control points gğ−1,ğ , gğ , gğ,ğ+1 lie on a straight line, in that
order. It is not di�cult to see that this condition is ful�lled if and
only if planes Wğ−1,ğ , Wğ , Wğ,ğ+1, gğ are arranged in that order, as shown
by Fig. 11. This is not the case for the nonconvex example of Fig. 12,
and indeed the curve g(D) features a cusp here. The user does not
notice this phenomenon which happens in the space of weighted
planes.

3.3 Computing P Meshes by Optimization

The P property — planarity of only 1 family of mesh parameter
lines — is a comparatively mild restriction. We found it quite easy to
establish by optimization, provided we start from amesh with planar
faces already optimized for use in freeform architecture (using e.g.
the method of Tang et al. [2014]). Their mesh polylines are smooth
to such an extent that we experienced no obstacles in imposing the
P property in addition to planarity of faces. Figures 14 and 25 show
examples. The process is the following. We consider a mesh (+ , �, � )
with a collection ( of supporting planes. Variables in optimization
are vertices E ∈ + , and unit normal vectors =Ĝ , =Ă of all faces 5 ∈ �
and of supporting planes f ∈ ( . By summation over all edges EF

Fig. 14. An architectural design exhibiting the P property.
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Fig. 15. A conical meshĉ with planar param-
eter lines has two weighted normal images,
namely a translation net ĉĊ and a circular
meshĉ◦

Ċ
which is the projection ofĉĊ onto

the unit sphere. Prop. 4.1 describes how the
vertices Ĥ◦ğ Ġ ofĉ

◦
Ċ

arise by sampling two or-
thogonal pencils of circles in the unit sphere.

contained in the planes mentioned, we build energies

�Č =

∑

Ă ∈ď

∑

Ĭĭ∈Ă

ï=Ă , E −Fð
2, �Ĝ =

∑

Ĝ ∈Ă

∑

Ĭĭ∈Ĝ

ïE −F,=Ĝ ð
2,

which penalize deviation from those planes. We use the energy

�1 =
∑

Ă ∈ď
(∥=Ă ∥

2 − 1)2 +
∑

Ĝ ∈Ă
(∥=Ĝ ∥

2 − 1)2

to force normal vectors to be of length 1. We also employ a fairness
energy �fair =

∑
triples īĬĭ ∥(D − E) − (E −F)∥

2, where summation
is over all successive vertices of mesh polyline where fairness is to
be imposed. The total energy _Č�Č + _Ĝ �Ĝ + _1�1 + _fair�fair has
been minimized using a Levenberg-Marquardt method [Madsen
et al. 2004]. Figures 14 and 25 show results of this optimization.
For the examples produced in this paper, we let _fair = 0.01

and _Č = _Ĝ = _1 = 1. To evaluate the quality of results, we
measure planarity of a face 5 by the distance XĜ of diagonals divided
by average length of diagonals. Planarity of a mesh polyline % is
expressed by the value XČ which is the maximum distance of % ’s
vertices from a best approximating plane, divided by the bounding
box diameter of % . We summarize the results of optimization:

max. XČ avg. XČ max. XĜ avg. XĜ
Fig. 14 1.6·10−5 2.8·10−6 1.4·10−5 1.7·10−6

Fig. 25 1.2·10−4 2.9·10−5 1.4·10−4 2.3·10−5

We do not consider this optimization a major result of the present pa-
per, since it is very similar to other cases where global optimization
of meshes is employed.

4 PRINCIPAL MESHES WITH THE P AND PP PROPERTY

In architectural design, a highly visible property is that of orthogonal
or near-orthogonal intersection of edges, or the near-rectangular
shape of planar panels. This leads to so-called principal meshes, see
§2.3.3. Our focus is onmeshes enjoying the P or even the PP property.
Among di�erent de�nitions of principal meshes, we choose to work
with conical meshes. This is because then we can treat the P and PP
properties elegantly via the Laguerre geometry of planes.

Recall the de�nition and properties of a conical mesh from § 2.3.3,
in particular the torsion-free support structure canonically asso-
ciated with it. Recall also the weighted normal image of a mesh
in §2.2.2. The weighted normal image and face image associated
with the canonical support structure will be labelled "◦

Ċ
and "◦

Ă
,

respectively."◦
Ċ

is inscribed in the unit sphere (see Fig. 15).
If" is endowed with another torsion-free support structure (e.g.,

if " enjoys the PP property), another face image "Ă and normal
vector image"Ċ are derived from it. Since the base mesh" is still
the same, corresponding vertices of"Ă and"◦

Ă
are proportional,

and so are corresponding vertices of"Ċ and"◦
Ċ
. Thus"◦

Ċ
arises

from"Ċ by normalization, i.e., projection to the unit sphere, see Fig.
15. Similarly"◦

Ă
arises from"Ă by a projection which normalizes

the �rst three coordinates. The existence of these projections is a
strong constraint on the geometry of"Ă and"Ċ , since planarity
of faces must not be destroyed by the projection.

Fig. 15 shows the two di�erent weighted normal images"Ċ ,"◦
Ċ

asssociated with such a mesh" . The conical property allows us to
derive one support structure, the PP property leads to another. The
former leads to"◦

Ċ
inscribed in the unit sphere, the latter leads to

"Ċ which is a translational net.

4.1 Conical PP Meshes

The conical condition on top of the PP property is very restrictive.
It is in general not achievable by optimization — see the discussion
around Fig. 23. An example where we nevertheless succeeded is
shown by Fig. 16. Here optimization started from a conical mesh
which is the union of patches, each of which enjoys regular grid
combinatorics. We managed to optimize this mesh so that all the
short polylines contained in individual patches become planar (in
the notation of §3.3, we achieved XĜ = 10−7, XČ,max = 2.6 · 10−6,

XČ,average = 3.3 · 10−7).
For design we use a di�erent approach based on an explicit de-

scription of the shapes of achievable meshes. The weighted nor-
mal images"Ċ ,"◦

Ċ
mentioned in the previous paragraph can be

described completely (see Cases 1,2 below). Degrees of freedom
available for design are only contained in the 4th coordinate of the
weighted face image which is not yet determined by the weighted
normal image.

The continuous analogue of a conical PP mesh is a surface all of
whose curvature lines are planar. Recall that the surface intersects
the plane carrying a curvature line under a constant angle (Prop. 2.2).
Orthogonality then implies that the Gauss image must be rather
special: There are two pencils of planes (with their axes being polar
to each other) which intersect (2 in exactly the circles mentioned
above.
The discrete version of such a situation has been studied to a

certain extent [Mesnil et al. 2018; Tellier 2020; Tellier et al. 2019].
We extend this work by proving the following statement which is
also illustrated by Fig. 15.

Proposition 4.1. Consider a conical quad mesh" of regular grid

combinatorics that in addition enjoys the PP property."◦
Ċ
,"Ċ shall

be the weighted normal images derived from these properties.

Then there are two straight lines ;, ;̄ which are polar w.r.t. the unit

sphere (2, and planes Uğ £ ; , Ū Ġ £ ;̄ , such that the vertices =◦ğ, Ġ of"
◦
Ċ
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are contained in Uğ ∩ Ū Ġ . In particular the mesh parameter lines of

"◦
Ċ

lie on circles contained in planes Uğ resp. Ū Ġ .

Proof.
B

????????????????? @

A

?◦
@◦

(Ħħ

The proof uses projective
geometry, for which we refer e.g. to
[Berger 1987, §14.5]. We �rst estab-
lish a geometric fact concerning the
projection of a parallelogram ?@AB

onto a quad ?◦@◦A◦B◦ in (2. Firstly
?, @, ?◦, @◦ lie in the 2D subspace [?, @], so the straight line ?◦ ( @◦

intersects the 1D subspace [@−?] in a point (Ħħ , possibly at in�nity.
Since edges ?@ and AB are parallel, [@−?] = [?, @] ∩ [A, B]. If vertices
?◦, @◦, A◦, B◦ happen to be contained in a plane V , then obviously
(Ħħ = [?, @]∩[A, B]∩V . This expression remains the same if edges ?@
and AB are exchanged, so (Ĩĩ = (Ħħ . If ?@AB shares the edge AB with
another parallelogram ABDE with analogous properties, the same
argument shows that (Ħħ = (Ĩĩ = (īĬ .

We apply this construction inductively to a row of parallelogram
faces of"Ċ . Since"◦

Ċ
has planar faces, all lines {=◦ğ+1, Ġ ( =

◦
ğ, Ġ } Ġ ∈Z

meet in a common point (ğ , see Fig. 15. Similarly, lines {=◦ğ, Ġ+1 (

=◦ğ, Ġ }ğ∈Z meet in a common point (̄ Ġ .

It is known that for a quad =◦ğ, Ġ , =
◦
ğ+1, Ġ , =

◦
ğ+1, Ġ+1, =

◦
ğ, Ġ+1, inscribed in

a circle, the intersection points (ğ , (̄ Ġ of opposite edges are conjugate.
So (ğ , (̄ Ġ are conjugate also w.r.t. the unit sphere, i.e., (ğ lies in the
polar plane of (̄ Ġ . Since a single (ğ lies in many such polar planes
(one for each 9 ), such a con�guration is only possible if there is a
straight line ; carrying all (ğ ’s. Reversing the argument, the points
(̄ Ġ lie on the straight line ;̄ polar to ; .

Looking back, we have established that =◦ğ, Ġ+1 lies in the plane

spanned by =◦ğ, Ġ and ; (because (ğ ∈ ;), and so does =◦ğ, Ġ−1 (because

(ğ−1 ∈ ;). By recursion, the entire parameter line {=ğ, Ġ } Ġ ∈Z is con-
tained in that plane, which is labelled Uğ . Similarly each parameter
line {=ğ, Ġ }ğ∈Z is contained in plane Ū Ġ . □

Remark 4.1. The polar dual ("◦
Ċ
)∗ of "◦

Ċ
w.r.t. the unit sphere

is combinatorially equivalent to " , and its faces are, by polarity,
parallel to the faces of" . Therefore we may recover" as a parallel
mesh of ("◦

Ċ
)∗. Our design methods are not based on this approach,

though.

4.1.1 Explicit Computation of Conical PP Meshes. As to the relative
position of lines ;, ;̄ which occur in Prop. 4.1, there are two cases:

Case (1) One of ;, ;̄ is outside of the unit sphere (2, the other one
intersects (2 in two points. The circles carrying the mesh’s
parameter lines form a pair of orthogonal pencils. This is the
situation shown by Fig. 15.

Case (2) The lines ;, ;̄ both touch (2 in the same point, while
being orthogonal. The circles carrying the mesh parameter
lines of" form a pair of orthogonal “parabolic” pencils.

We start with case (1) and determine the possible weighted normal
images"Ċ as shown by Fig. 15. We use a coordinate system adapted
to the lines ;, ;̄ such that they are given by the following equations:

; : G2 = 3, G3 = 0, ;̄ : G1 = 0, G2 = 1/3, where 3 > 1.

The 2D subspaces Y, Ȳ spanned by ;, ;̄ are the G1G2 plane resp. the
G2G3 plane.

Fig. 16. A smooth union of conical PPmeshes, each of which exhibits regular
combinatorics, with combinatorial singularities (yellow) occurring only at
corner vertices of individual PP patches. The detail at right shows the torsion-
free support structure associated to the individual PP pieces.

The faces of"Ċ are parallelograms, and by the proof of Prop. 4.1
its edges are parallel to either Y or Ȳ. The parameter lines of "Ċ

therefore lie in planes parallel to either Y or Ȳ, and we have

=ğ, Ġ =



i1 (Dğ )

i2 (Dğ )

0


+



0

k2 (E Ġ )

k3 (E Ġ )


.

The usage of functions i1, . . .k3 indicates that we wish to represent
the vertices of the mesh "Ċ as discrete sample of a continuous
parametric surface. This is already known to be possible for the
projection"◦

Ċ
, because its parameter lines lie on circles. Backpro-

jection into the aforementioned planes yields conics the parameter
lines of"Ċ are samples of. An elementary calculation reveals that

=ğ, Ġ = =(Dğ , E Ġ ), where =(D, E) =

[
ě sinī
Ě cosī + cosh Ĭ

ě sinh Ĭ

]
, 4 =

√
32 − 1.

This representation has already been given by [Blaschke 1929]. The
plane image"Ă in R4 has parallelogram faces like"Ċ , so it reads

fğ, Ġ = f (Dğ , E Ġ ), f (D, E) =

[
=(D, E)

6(D) + ℎ(E)

]
, (11)

where 6, ℎ are arbitrary. As 3 →∞ we achieve a rotationally sym-
metric case:

fğ, Ġ = f (Dğ , E Ġ ), f (D, E) =
(
sinD, cosD, sinh E, 6(D) + ℎ(E)

)Đ
. (12)

The mesh"Ċ then lies in a cylinder with rotational symmetry about
the G3 axis.
In case (2) we use a similar computation. We choose ;, ;̄ as lines

parallel to the G1 and G2 axis which are tangent to the unit sphere
in the north pole. The result is

fğ, Ġ = f (Dğ , E Ġ ), f (D, E) =
[
D, E,

D2 + E2 − 1

2
, 6(D) + ℎ(E)

]Đ
. (13)

Apparently"Ċ is inscribed in the paraboloid 2G3 = G21 +G
2
2 − 1. The

parameter lines are samples of parabolas contained either in planes
G1 = Dğ or in planes G2 = E Ġ . Projection onto (2 yields the circles
carrying the mesh parameter lines of"◦

Ċ
.

4.1.2 A Representation of Conical PP meshes Adapted for Geometric

Design. Representations (11) and (13) show that the face planes of
a conical PP mesh are samples of a 2D continuous family f (D, E).
The envelope of this family of planes is a continuous surface G (D, E)
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approximating the mesh. It depends on the lines ;, ;̄ and on the
functions 6, ℎ. The choice of ;, ;̄ amounts to specifying the size and
position of G (D, E), while functions 6, ℎ determine its shape.

Using homogeneous coordinates (G1 : . . . : G4) corresponding to
Cartesian coordinates 1

Į4
(G1, G2, G3), this envelope is computed via

the 3-ary cross product of f (D, E) with its partial derivatives, namely
G (D, E) = f × fī × fĬ – see Appendix.

Choosing the functions 6(D), ℎ(E) is not a task that can be left
to the designer. There is unfortunately no good intuitive relation
between 6, ℎ on the one hand, and the geometric shape of the mesh
on the other hand. In order to gain better insight into the right
choices, and to �nd a path towards a design tool, we re-parameterize
both f (D, E) and =(D, E), starting with Case 1.

We �rst observe that =(D, 0) = (4 sinD + 1, 3 cosD, 0) is an ellipse
with focal point in the origin. It has the polar coordinate represen-
tation

(A (i) cosi, A (i) sini, 0) with A (i) =
42 (sini + 3)

42 + cos2 i
.

Likewise, =(0, E) is a hyperbola. It is contained in the G2G3 plane
and has the polar coordinate representation

(0, B (k ) cosk, B (k ) sink ) with B (k ) =
42 (3 cosk + 1)

42 cos2k − sin2k
.

Note that we obtain the entire hyperbola ask ranges from 0 to 2c .
The points at in�nity are attained if tan2k = 42.

The weighted normal image =(D, E) is symmetric w.r.t. the hori-
zontal G1G2 plane containing the ellipse, and is also symmetric w.r.t.
the G2G3 plane containing the hyperbola.

Using i,k as parameters to substitute D and E , we obtain

=̃(i,k ) =



Ĩ (ą) cosą
Ĩ (ą) siną + ĩ (ć ) cosć − Ě − 1

ĩ (ć ) sinć


.

We have used that A (±c/2) = 3 ± 1 and B (0) = 1 + 3 , B (c) = 1 − 3.
The above-mentioned ellipse and hyperbola are recoved as =̃(i, 0)
and =̃(c/2,k ), respectively. They meet in the point =̃(c/2, 0) =

(0, 3 + 1, 0).
At this point it is useful to re-parametrize also the weighted face

image f (D, E) given by Equ. (11):

f̃ (i,k ) =

[
=̃(i,k )

A (i)6̃(i) + B (k )ℎ̃(k ) − 0(3 + 1)

]
where 0 = 6(

c

2
) = ℎ(0).

In this representation, functions 6̃(i) and ℎ̃(k ) have a geometric
meaning. Let us �rst look at k = 0. The planes f (i, 0) have the
implicit equation

G1 cosi + G2 sini + 6̃(i) = 0. (14)

Their envelope is a vertical cylinder whose intersection with the
G1G2 plane is a planar curve with support function 6̃(i), as can be
clearly seen from Equ. (14). Analogously, the planes f (c/2,k ) have
the implicit equation

G2 cosk + G3 sink + ℎ̃(k ) = 0. (15)

Their envelope is a cylinder whose rulings are parallel to the G1
axis and which intersects the G2G3 plane in a curve whose support

function is ℎ̃(k ).

Case 1 Case 2

Fig. 17. Examples of conical PP meshes designed via their principal planar
sections, using the explicit representations derived in §4.1.1 and §4.1.2.

The two cylinders mentioned here are tangent to the surface
G (D, E) along parameter lines G (D, 0) and G (0, E) by construction.
Thus they yield the apparent contour of the surface G (D, E) when
viewed in the G3 direction and the G1 direction. However, even more
is true. Since the parameter lines of G (D, E) are planar principal
curvature lines, Prop. 2.2 implies that parameter lines G (D, 0) and
also G (0, E) are orthogonal planar sections of the design surface
G (D, E).

We have thus reduced the design of the mesh (resp. the design
of the surface G (D, E)) to the design of its principal planar sections.
These can be chosen by the user. We recover the support functions

6̃(q) and ℎ̃(k ), see Equ. (14), and enter them in the explicit repre-
sentation of the weighted face image f̃ (q,k ). A conical PP mesh
is recovered from f̃ (q,k ) by arbitrary sampling. Fig. 17 shows an
example of this.

A similar computation can be performed in Case 2. Here =(D, 0) =
(D, 0, 12 (D

2 − 1)) is a parabola with focal point in the origin. Its polar
coordinate representation is (A (i) cosi, 0, A (i) sini), with A (i) =
(sini + 1)/cos2 i . Also =(0, E) is a parabola with polar coordinate
representation (0, B (k ) cosk, B (k ) sink ), where B (k ) = (sink + 1)/
cos2k . From here the computation of conical PPmeshes is analogous
to Case 1.

4.2 Conical P Meshes

4.2.1 Continuous Surfaces Analogous to Conical P Meshes. For ap-
plications, already the P property may be useful, where only one of
the 2 families of mesh parameter lines is planar. We therefore study
conical P meshes in more detail. Their continuous counterparts are
principal parametrizations G (D, E) of surfaces with the additional
property that each E parameter line is contained in a plane, (D).

B (D) =(D, E0)

=(D, E1)

Recall Prop 2.2: The angle between the
surface and, (D) is constant along the
parameter line, so it is a function U (D).
It follows that the E parameter lines of
the unit normal vector image =(D, E) are

circles. By the principal property, derivatives =ī , =Ĭ are orthogonal,
so the tangents of D parameter lines along a E parameter line form
the rulings of a cone with a vertex B (D). See inset �gure.

4.2.2 Geometry of Conical P Meshes. The case of conical P meshes
is analogous to the continuous case described in the previous para-
graph, but as it turns out, only approximately so. If all mesh pa-
rameter lines {Eğ, Ġ } Ġ ∈Z are planar, the �rst paragraph of the proof
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of Prop. 4.1 applies to the weighted normal image "◦
Ċ
: The lines

{=◦ğ+1, Ġ ( =
◦
ğ, Ġ } Ġ ∈Z spanned by transverse edges meet in the vertex

(ğ of a discrete cone. This situation is already shown in Fig. 15. The
di�erence to the PP case is that now we cannot conclude that all
(ğ ’s lie on a straight line. Nor are parameter lines of"◦

Ċ
circular.

For the applications we are interested in, meshes enjoy a certain
amount of fairness, and their edges can be interpreted as deriva-
tives. It is therefore reasonable to require that one family of mesh
parameter lines of"◦

Ċ
is circular.

4.2.3 Design of Conical P Meshes. Channel Surfaces. In theory we
could design a conical P mesh" from a sequence of cone vertices
(ğ , which yields"◦

Ċ
." itself is found as a parallel mesh of ("◦

Ċ
)∗

according to Remark 4.1. This approach is not practical, however.
We propose a di�erent method of design in stages; from a guiding
sequence of spheres to a channel surface to a general P surface. This
method is based on the geometry of oriented spheres, so we will be
able to use Laguerre geometry as introduced by § 2.1.

Step 1. The user chooses a sequence of (oriented) spheres by
choosing their center and radius A . Using coordinates as in Equ. (1),
this data is stored as vectors (G Ġ , ~ Ġ , I Ġ , A Ġ ) and is considered as
control polygon of a B-spline curve to create a continuous family
of spheres / (C) = (I1 (C), . . . , I4 (C)). We use the tangential distance
of Equ. (2) to uniformly sample / (C) and get a dense sequence of
spheres /1, /2, . . .

Step 2.

Ė Ġ−1

Ė Ġ

Ė Ġ+1

ÿ Ġ−1

ÿ Ġ
ēĠ−1

ēĠ

We wish to �nd a watertight
union of cones � Ġ that serves as a dis-
crete envelope of the sphere sequence
/ Ġ . We determine the cone� Ġ by its tan-
gency to both / Ġ and / Ġ+1 and clip it
along the planes,Ġ ,,Ġ+1 containing the respective intersection
with neighbours� Ġ−1 and� Ġ+1. Practitioners of Laguerre geometry
[Pottmann and Peternell 1998] know that the points contained in
the plane,Ġ are exactly those spheres of radius 0 which obey

⟪- − / Ġ , � Ġ⟫ = 0, G4 = 0, where

� Ġ = � Ġ + � Ġ+1, � Ġ =
1

3 (/ Ġ , / Ġ−1)
(/ Ġ − / Ġ−1). (16)

By comparing this formula with Euclidean geometry, we see that
� Ġ is the normal vector of a bisector plane (in the sense of the
Minkowski inner product) of edges / Ġ−1/ Ġ and / Ġ/ Ġ+1. This com-
putation is preferred over computing the intersection of algebraic
surfaces � Ġ ,� Ġ+1, because it is stable and it automatically yields the
correct one of the two components of the complete intersection.

Step 3. We replace one cone, say � Ġ0 , by a sequence of tangent
planes, clipped by planes,Ġ0−1 and,Ġ0 . This yields one row in a
quad mesh enjoying two planar mesh parameter lines. We propagate
this construction throughout the entire sequence of cones and get
a quad mesh with the P property. It is even conical, since all faces
incident with a vertex Eğ Ġ ∈,Ġ are tangent to the sphere / Ġ . Some
results can be seen in Fig. 18.

Step 4. Here we ask the designer for input again. We select a plane
,Ġ0 and change the circular pro�le curve of the channel surface to
an arbitrary pro�le curve. It is replaced by a pro�le polygon whose

Fig. 18. Design of conical P meshes via the channel surface approach of
§ 4.2.3. Here we show Steps 2+3 of the construction. In the top row the
radius function is the same for both examples shown, but the spine curve is
di�erent. In the bo�om row the reverse is true.

edges are parallel to the edges of the channel surface’s pro�le. We
incrementally propagate this change to neighbours, maintaining the
property that planes,Ġ carry mesh parameter lines. The conical
property is not destroyed, because the new mesh is parallel to the
original one. Figures 19 and 20 show examples created in this way.
§ 4.3 will discuss how further transformations are applied.

Remark 4.2 (In�ection points in pro�les). The pro�le of Fig. 19, right,
features in�ection points. Such a pro�le can be edgewise parallel to
a convex source pro�le only if the latter is traversed forwards for a
time, and then backwards, and so on, changing direction every time
an in�ection point is reached.

Remark 4.3 (Semidiscrete surface representations). The semi-discrete
surface representation in Step 2 is interesting in its own right for

−−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−→

chang
e pro�

le

−−−−−−−−−−−−−−→

←−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−−

ap
ply

La
g.
tra
ns
f.

−−−−−−−−−−−
−−−−−−−−−−

−−−−−−−−−−
−−−−−−−−−−

−−−−−−−→
apply mesh parallelity

−−−−−−−−−−−−−−→

Fig. 19. Geometric design of conical P meshes via the channel surface ap-
proach of § 4.2.3. Step 4 of the construction consists of choosing a profile
curve and propagating it along the spine curve. A�erwards Laguerre trans-
forms and mesh parallelity are applied, see § 4.3.
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Fig. 20. Editing conical P meshes via changing profiles (Step 4 in the channel
surface approach to design).

architecture applications. It can be extended to pro�les in the form
of arc splines, leading to surfaces consisting of cone patches.

Remark 4.4 (Interpretation in terms of rotation-minimizing frames).
We constructed spheres / Ġ as a uniform sample of a curve. If this
uniformity is strictly true, Minkowski distances 3 (/ Ġ−1, / Ġ ) are
equal, and Equ. (16) shows there is a Minkowski re�ection f Ġ (in the
bisector plane of edges / Ġ−1/ Ġ and / Ġ/ Ġ+1) with obeys f Ġ (/ Ġ−1) =

/ Ġ+1. Obviously also cones are mapped by f Ġ (� Ġ−1) = � Ġ . When
discretizing cones in Step 3 by using their tangent planes, these too
are related by fğ . A further modi�cation in Step 4 replaces meshes
by parallel meshes (Figure 19) — we now have general discrete
developables in between planes,Ġ ,,Ġ+1. Still, the passage from
one to the next is performed by fğ . This reveals that the evolution of
pro�les as shown by Figure 19 is a discrete+Minkowski version of
the motion of a rotation-minimizing frame along the discrete curve
{/ğ }. For the RMF in general we refer to [Bergou et al. 2008], and
for a treatment via re�ections see [Wang et al. 2008].

4.2.4 Conical PP Meshes as Special Cases of Conical P Meshes. The
design procedure of § 4.2.3 is capable of creating conical PP meshes.
If the spine curve lies in a plane" , and all spheres /ğ touch a plane
) , then all spheres and cones involved are symmetric w.r.t." , and
the vertices of cones �ğ lie in the line" ∩) . The intersection of an
arbitrary pair of tangent planes of �ğ meets" ∩) . For this reason
the mesh constructed in Step 3 has edges which are either contained
in the planes,Ġ , or edges lying in a plane through" ∩) . Thus, all
mesh polylines are planar, and we have constructed a conical PP
mesh. Examples are shown by Figure 21.

Another special case occurs if all spheres /ğ have the same radius
A . Then the cones�ğ are cylinders, and propagation of a mesh along
the spine curve according to Step 3 is essentially done by the move-
ment of a rotation-minimizing frame (see Remark 4.4). We mention
a 3rd special case: If the spine curve lies in a horizontal base plane,
planes,Ġ are vertical. This may be useful for architectural design.

4.3 Design of Conical P Meshes by Transformations

In § 4.2 we established the geometry of conical meshes which in
addition enjoy the P property. We learned that neither mesh par-
allelism nor Laguerre transforms destroy these properties. Since
the former do not change face normal vectors, and the latter cause

Fig. 21. Design of conical PP meshes via the channel surface approach
of §§ 4.2.3 and 4.2.4. We demonstrate the results of Steps 2+3 with the
additional ingredient of a common tangent planeĐ to ensure the PP property.
The examples in the top row have the same spine curve but di�erent plane
Đ ; for the bo�om row the spine is changing, but the planeĐ is the same. In
the language of § 4.1.1, this belongs to Case 1.

Fig. 22. Design of conical PP meshes via the channel surface approach of
§§ 4.2.3, 4.2.4. Like in Fig. 21, we demonstrate the results of Steps 2+3 with
an additional ingredient to ensure the PP property. We show the limit case
where the two tangent planes exhibited by Fig. 21 have become one vertical
plane, plus the requirement of symmetry w.r.t. the horizontal plane. In the
language of § 4.1.1, this belongs to Case 2.

them to undergo a Möbius transform, we can simultaneously apply
both kinds of transforms for geometric modeling, without having
to implement general Laguerre transforms.
We use homogeneous coordinates # = (=1 : . . . : =4) for a

normal vector 1
Ĥ4
(=1, =2, =3). The condition of being a unit vector

reads =21 + =
2
2 + =

2
3 = =24 and similar to Equ. (3) can be written as

#Đ �# = 0, where � = diag(1, 1, 1,−1). § 2.1.2 states that a Möbius
transform acts as # ↦→ �# , where the matrix � obeys �Đ �� = � .

Consider now a conical P mesh (+ , �, � ). Each face 5 has a normal
vector #Ĝ = (=1 : . . . : =4) and is contained in a plane. The equation
of that plane, using Cartesian coordinates G = (G1, G2, G3) is written
as

∑3
ğ=1 =ğGğ + =43Ĝ = 0. In block matrix notation this reads

[ Į
ĚĜ

]
Đ · #Ĝ = 0.

When transforming the mesh, each vertex E contained in a certain
face 5 gets mapped to a corresponding vertex Ē contained in the re-
spective face 5̄ with normal vector #̄Ĝ and scalar 3̄Ĝ . Consequently,

[ Ĭ̄
Ě̄Ĝ

]
Đ · �#Ĝ = 0 (17)
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Fig. 23. Optimizing the PPmesh at le� so that in addition it becomes conical,
its shape changes dramatically (center). An e�ort to optimize such that even
the previous shape is retained is unsuccessful: The result at right exhibits
self-intersections, general lack of fairness, and non-planar faces.

holds whenever E ∈ 5 . These equations together with �Đ �� = �

represent a system of quadratic constraints on the variables

� ∈ R4×4, {3̄Ĝ }Ĝ ∈Ă , {Ē}Ĭ∈Ē .

The number of these variables is 4 × 4 + |� | + 3|+ |. The user’s
input during interactive modeling can be incorporated as further
constraints. Note that the full Laguerre transformation does not
occur in this setup at all, only the Möbius transform as it operates
on normal vectors.
The constraint system described here is quadratic and could be

treated by the method of guided projection [Tang et al. 2014], using
a combination of proximity to the previous state and fairness as
regularizer. Our implementation is even simpler. When � is consid-
ered �xed, constraints become linear. So are user-imposed position
constraints, and the entire system is solved in a least-squares sense,
together with the aforementioned regularizers. In this way the paral-
lel meshes of Fig. 19 have been created. We apply the same principle
with � as a variable and disregarding the constraint �Đ �� = � . A
subsequent projection onto the set of admissible matrices can be
performed via a Minkowski-polar decomposition [Higham 2003;
Kintzel 2005]; see Figures 19 and 24 for examples.

5 CONCLUSION

In this paper we have shown many di�erent approaches to the
geometric design of meshes with planar faces equipped with various
kinds of torsion-free support structures. In particular we treated
planarity of mesh parameter lines (properties P and PP), and angle
conditions which lead to principal meshes. The more conditions
are imposed, the more special the methods of geometric design
have to be. In some highly constrained cases (conical PP meshes)
we employed an analogy to the continuous case to �nd explicit
constructions of such meshes. In other cases (PP meshes) we showed
to which extent design freedom exists, and we were able to suggest
a spline-based design method. Only if comparatively few special
properties are imposed, straightforward global optimization can be
used. This is the case where meshes already have planar faces and
we wish to additionally impose the P property.

Evaluation. In this paper we discuss the geometric design of
highly constrained meshes, which is not easy with previous meth-
ods. Methods based on optimization in principle can be extended
to include the P and PP properties, and indeed this works in some
cases (see § 3.3). For more highly constrained meshes however, such
as the conical meshes, simply adding the P and PP properties as op-
timization targets will likely not succeed, see Fig. 23 for an example

for making a PP mesh conical. Similarly, forcing a principal mesh
to enjoy the PP property causes optimization to fail.
Even if optimization succeeds it is hardly an e�cient way of

design. This is not only because optimization is time-consuming.
An additional reason is that a conical mesh with the P or PP property
corresponds to a surface whose principal curvature lines are planar.
The shapes of such meshes are therefore restricted, and achieving
the P or PP property via optimization inevitably changes the shape
of the mesh. It is hard to predict if optimization succeeds at all, and
if it does, how much it will change the shape.

For this reason we do not expect that previous methods for con-
structing conical meshes can be extended to accommodate pla-
nar polylines. The same goes for torsion-free support structures,
which like conical meshes are in relation to principal curvature lines
[Pottmann et al. 2007]. In order to nevertheless enable design we
developed the classi�cation and construction results of §4.

Limitations. The di�erent methods for design presented in this
paper each have their limitations. Optimization for the P property
(§ 3.3) will likely work only if planarity of faces is already estab-
lished and mesh polylines can be interpreted as fair discrete curves
– otherwise one cannot expect that straightforward optimization
can achieve planar faces. This is because a mesh with planar faces is
analogous to a network of conjugate curves on a surface, and so this
property has implications on the mesh connectivity [Liu et al. 2006].
Other methods of design are based on faces, which can be called a
dual approach to the problem (§ 3.2). Its limitations are mostly the
di�culties inherent in handling dual elements, viz., planes. Finally,
the highly constrained meshes discussed in § 4 experience a funda-
mental geometric limitation: They can no longer assume arbitrary
shapes and have to be accessed by explicit constructions. While
this is certainly a limitation from the mathematical viewpoint, it
may not feel like one for applications in architecture, where one
interactively explores the design space.
Summing up, we hope that this comprehensive discussion to-

gether with proposals for geometric design will be helpful for the
actual realization of freeform architectural designs.
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APPENDIX
Explicit Computation of Conical PP Surfaces and Their Geometric
Design. The smooth surface G (D, E) referred to in § 4.1.2 can be
computed explicitly and has the following form: In case (1) we get



Į1
Į2
Į3
Į4



=



Ě [ (ĝ + ℎ) sinī cosh Ĭ + !ĝ cosī cosh Ĭ − !ℎ sinī sinh Ĭ ] + !ĝ
ě [ (ĝ + ℎ) cosī cosh Ĭ − !ĝ sinī cosh Ĭ − !ℎ cosī sinh Ĭ ]
−(ĝ + ℎ) cosī sinh Ĭ + !ĝ sinī sinh Ĭ + !ℎ cosī cosh Ĭ + Ě !ℎ

−ě (cosī + Ě cosh Ĭ)



.

The most relevant information contained in this formula is the fact
that G (D, E) depends on functions 6, ℎ linearly. Case (2) is similar:

1

Į4



Į1
Į2
Į3


=

1

ī2 + Ĭ2 + 1



(ī2 − Ĭ2 − 1) !ĝ + 2īĬ !ℎ − 2ī (ĝ + ℎ)
(Ĭ2 −ī2 − 1) !ℎ + 2īĬ !ĝ − 2Ĭ (ĝ + ℎ)

2(ĝ + ℎ −ī !ĝ − Ĭ !ℎ)


.

The planes which carry parameter lines are given by the partial
derivatives fī , fĬ , in direct analogy to the discrete case. In case (1),
we have fī = (4 cosD,−3 sinD, 0, !6), so the planes + (D) are parallel
to the G3-axis and are tangent to a curve in the G1G2 plane. A similar
computation shows that the planes carrying the E parameter lines
read fĬ = (0, sinh E, 4 cosh E, !ℎ). They are parallel to the G1 axis, and
are tangent to a certain envelope curve in the G2G3 plane.
The signi�cance of this remark is the following: If the geomet-

ric shapes of the aforementioned curves are given, functions !6(D),
!ℎ(E) can be reconstructed: Find the point parameter value D where[ ě cosī
−Ě sinī

]
is a normal vector and read o� !6(D) from the curve’s tan-

gent there; subsequently reconstruct 6 by integration. An analogous
procedure works for ℎ. We conclude that apart from o�sets caused
by the ambiguity in integration, the surface G (D, E) is uniquely de-
termined by the shape of two 2D curves.
It is not di�cult to discuss simple cases. E.g. when both curves

degenerate to points, G (D, E) is a Dupin cyclide or a sphere.
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