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Abstract. We show that all so-called C-curves are affine images of trochoids
or sine curves and use this relation to investigate the occurrence of inflection
points, cusps, and loops. The results are summarized in a shape diagram of C-
Bézier curves, which is useful when using C-Bézier curves for curve and surface
modeling.
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1. Introduction

Bézier, B-spline, and other curves are piecewise polynomial, and due to their
simplicity and beautiful geometric properties they are powerful tools in Computer-
Aided Geometric Design. Hybrid polynomial curves on the one hand may be more
complicated, but on the other hand they may have some properties which are
convenient in special cases.

This paper deals with C-curves, which are the linear combinations of the basis
functions sin t, cos t, t, 1. Ever since the advent of analytic geometry such curves
have been considered, their most famous representative being the cycloid. The
first analysis of their shapes in general was probably given by [3]. As the above
mentioned basis is a Tchebycheff system if restricted to an interval of length
less than π, corresponding T-Bézier and TB-spline curves may be defined by
blossoming as described by [8]. Shape analysis then makes use of the general
theory of Tchebycheff systems. Our basis has been studied by [10] under the name
of helix splines. [16] constructed C-Ferguson-, C-Bézier-, C-B-spline- and other
curves, which incidentally are the same as defined by the blossoming procedure.
Previous work on the topic of characterizing the existence of inflection points and
singularities can be found in [1, 2, 4, 5, 6, 7, 9, 11, 12, 14].

In this paper C-curves and C-Bézier curves are discussed. Some of their prop-
erties are similar to those of cubic curves. Moreover, trochoids, circular arcs,
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Figure 1. Trochoids

elliptical arcs, and sine curves may be represented as C-Bézier curves by control
polygons. We give conditions on the existence of inflection points, cusps, and
loops, which are undesirable features in many cases where one wants to design
‘fair’ curves. The results are summarized in a shape diagram like the one in [13].

This paper is organized as follows: First we show that nondegenerate C-curves
are affine images of trochoids or sine curves. This correspondence is used to
describe the occurrences of inflection points, cusps, and loops. At last we apply
those conditions to C-Bézier curves.

2. The shape of trochoids and C-curves

A trochoid is the path of a point at some distance b > 0 from the center of
a circle of radius a, while this circle is rolling on a fixed line. If we let a = 1
it has the parametric equation c(t) = (x(t), y(t)), with x(t) = t − b sin t and
y(t) = 1− b cos t.

For b < 1, the curve is a curtate cycloid and has inflection points at t =
2kπ± arccos b, k ∈ Z. For b = 1, the curve is a proper cycloid, or simply cycloid.
It has cusps at t = 2kπ, k ∈ Z. For b > 1, the curve is a prolate cycloid and it
has loops which are located at c(t1) = c(t2), where t1,2 = 2kπ± τ , k ∈ Z, τ > 0 is
the smallest zero of the function t/ sin t− b. Examples are shown by Fig. 1. The
interested reader is also referred to [15].

Assume that vi = (ai, bi) ∈ R
2 (i = 0, 1, 2), and p3 = (a3, b3) ∈ R

2 is a point.
A C-curve in general has the parametrization

(1) c(t) = v0 sin t+ v1 cos t+ v2t+ p3, t ∈ R.

Define the determinants d0 = det(v1, v2), d1 = det(v2, v0), and d2 = det(v0, v1).
If d0 = d1 = 0, c(t) is a line or an ellipse, and we will disregard these cases in the

following. We let b = |d2|/
√

d2

0
+ d2

1
and choose ω such that tanω = d1/d0, and

such that ω ∈ [−π/2, π/2] or ω ∈ (π/2, 3π/2) depending on whether d0d2 ≥ 0 or
d0d2 < 0.

Lemma 1. If d2 6= 0, (1) is the affine image of a trochoid.

Proof. We notice that
[ −d0 −d1

d1 −d0

][

b1 −a1

−b0 a0

]c(t)− p3

d2

0
+ d2

1

+
[

0
1

]

=
[

t− b sin(t+ ω)
1− b cos(t+ ω)

]

.
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Figure 2. C-curves with inflection points, cusps, and loops (from
left to right).

¤

Lemma 2. If d2 = 0, then (1) is the affine image of a sine curve.

Proof. We assume that d1 6= 0, the case d0 6= 0 being analogous. It is easily

verified that
[

b0 −a0

b2 sinω −a2 sinω

]c(t)− p3

d1

+
[

ω
0

]

=
[

t+ ω
cos(t+ ω)

]

. ¤

Lemma 3. If (1) is not a straight line or an ellipse (i.e., d2

0
+ d2

1
> 0), then:

(i) (1) has inflection points at c(t) if and only if b < 1; then t = 2kπ − ω ±
arccos b (k ∈ Z).

(ii) (1) has cusps if and only if b = 1; they are located at t = 2kπ − ω (k ∈ Z).
(iii) (1) has loops at c(t1) = c(t2) if and only if b > 1; then t1,2 = 2kπ − ω ± τ

(k ∈ Z).

Proof. Being an inflection point, a cusp, or a loop is invariant under affine trans-
formations ([13]). The result follows immediately from Lemmas 1 and 2. ¤

Lemma 3 shows that inflection points, cusps, and loops are mutually exclusive.
Examples of C-curves which exhibit these features can be seen in Fig. 2. The
following theorem again summarizes the previous results, this time with a view
towards C-Bézier curves:

Theorem 1. We consider the C-curve (1) to be defined in the interval (0, α)
with α ≤ π. Then c(t) has two inflection points if and only if b < 1 and ω ∈
(β−α,−β), where β = arccos b. There is one inflection point if and only if b < 1
and

ω > 2π − β − α or
{ −β − α < ω < −β

ω ≤ β − α
or

{

β − α < ω < β
ω ≥ −β.

There is a cusp if and only if b = 1 and ω ∈ (−α, 0) ∪ (2π − α, 3π/2). There is
a loop if and only if b > 1 and ω ∈ (τ − α,−τ) ∪ (2π + τ − α, 2π − τ).

Proof. This is a direct consequence of Lemma 3. ¤
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3. The shape of C-Bézier curves

A C-Bézier curve as defined in [16] is the C-curve c(t) defined in the interval
(0, α) with α ≤ π, and having the form

c(t) =
1

α− s

[

sin t cos t t 1
]









c 1− c−M M −1
−s (α−K)M −KM 0
−1 M −M 1
α −(α−K)M KM 0

















q0

q1

q2

q3









,

where(2)

s = sinα, c = cosα, K = (α− s)/(1− c), M =
{ 1 if α = π,

s

α−2K
if α < π

, qi ∈ R
2.

The points q0, . . . , q3 are called control points. We want to apply the shape
classification of C-curves to C-Bézier curves and therefore have to express (2) in
terms of (1).

Let q be the intersection of the lines q0q1 and q2q3, and define λ, µ by

e1 := q − q0, e2 := q3 − q, λe1 = q1 − q0, µe2 = q3 − q2.

(see Fig. 3). If q does not exist, we let λ = µ = 0.
If we rewrite (2) as a C-curve (cf. Equ. (1)), we get

v0 =
1

α− s
[(M + λ−Mλ− cλ− 1)e1 + (M −Mµ− 1)e2],

v1 =
1

α− s
[(sλ+KMλ−KM)e1 +KM(µ− 1)e2],

v2 =
1

α− s
[(1−M +Mλ)e1 + (1−M +Mµ)e2].

Now we can express the shape parameters b and ω in terms of α, λ and µ.
Theorem 2 describes the shape of (2) in terms of regions of R

2 where the point
(λ, µ) lies in. These regions depend on α and constitute a shape diagram for
C-Bézier curves (see Fig. 4)

We define the matrices Lij, Iij, Nij, where i is the row index and j is the
column index, both starting with 0.

L11 = s(c− 1), L10 = c(α− s), L01 = α− s, L00 = I10 = I01 = I00 = 0,

I22 = −2(c− 1)3, I21 = I12 = 2s(c− 1)(α− s), I20 = I02 = (α− s)2,

I11 = 2c(α− s)2, N12 = α(c− 1)3, N11 = (1− c)(α− s)(αs− c+ 1),

N10 = N01 = −s(α− s)2, N02 = (c− 1)2(α− s), N00 = 0,

I =
∑2

i,j=0

Iijλ
iµj,

f(λ, µ) = I arccos
( 1√

I

∑1

i,j=0

Lijλ
iµj

)

+ λ
∑1

i=0

∑2

j=0

Nijλ
iµj.
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Figure 3. Definition
of λ and µ.
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Figure 4. Shape dia-
gram of C-Bézier curves.

We define curves C,E, F by

C : (c− 1)(α2 + 2c− 2)λµ+ 2(α− s)2(λ+ µ− 1) = 0, where λ, µ 6∈ [0, 1];

E : f(λ, µ) = 0 where λ < 0, µ > 1; F : f(µ, λ) = 0 where λ > 1, µ < 0.

The curves C,E, F together with the lines λ, µ = 0, 1 are partitioning the (λ, µ)-
plane into the regions D, L, S, N according to Fig. 4.

Theorem 2. The curve (2) has an inflection point, if (λ, µ) ∈ S, it has two of
them if (λ, µ) ∈ D, it has a cusp if (λ, µ) ∈ C, it has a loop if (λ, µ) ∈ L, and is
has none of them if (λ, µ) ∈ N .

Proof. Multipling d0, d1, and d2 with the factor d, which is defined as

d := (α− s)2(α + αc− 2s)/s

will not affect the result. So we have

d0 = s(c− 1)λµ+ (α− s)(cλ+ µ),

d1 = λ[(c− 1)2µ− s(α− s)],

d2 = α(c− 1)λµ+ (α− s)(λ+ µ).

It follows directly from the defintion of the angles ω, τ , and β that

cosω = bd0/d2, sinω = bd1/d2, τ/ sin τ = b, 0 < τ < π, sin β =
√
1− b2.

We are going to consider the cases of (i) two inflection points, (ii) one inflection
point, (iii) a cusp, and finally (iv) a loop separately. The conditions that we have
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case (i), as given by Theorem 1, are equivalent to

b < 1, sin(−ω + β) > 0, cos(−ω + β) > c, sin(−ω − β) > 0, cos(−ω − β) > c,

⇐⇒ t := d2

0
+ d2

1
− d2

2
> 0, d1d2 + |d0|

√
t < 0, (d2

0
+ d2

1
)c+ |d1|

√
t < d0d2.

Substitute d0, d1, and d2 into the above inequalities yields the definition of the
region D shown by Fig. 4.

Case (ii) is similar: The conditions given by Theorem 1 are equivalent to either
one

b < 1, sin(−ω + β) > 0, cos(−ω + β) > c, sin(−ω − β) ≤ 0

or b < 1, sin(−ω − β) > 0, sin(−ω − β − α) < 0, sin(−ω + β − α) ≥ 0

If we use the abbreviation t := d2

0
+ d2

1
− d2

2
, this is equivalent to

t > 0, d1d2 − d0 sgn(d2)
√
t < 0,

d1d2 + d0 sgn(d2)
√
t ≥ 0, (d2

0
+ d2

1
)c− d0d2 < d1 sgn(d2)

√
t

or t > 0, d1d2 + d0 sgn(d2)
√
t < 0, d2(cd1 + sd0) ≤ (cd0 − sd1) sgn(d2)

√
t,

d2(cd1 + sd0) > (sd1 − cd0) sgn(d2)
√
t

By substituting d0, d1, and d2 into above inequalities we get the definition of the
region S shown by Fig. 4.

Again according to Theorem 1, case (iii) (a cusp) is equivalent to

b = 1, sin(−ω) > 0, sin(−ω − α) < 0,

⇐⇒ d2

0
+ d2

1
− d2

2
= 0, d1d2 < 0 (sd0 + cd1)d2 > 0.

These inequalities define the curve C of Fig. 4.
As to the last case (iv) of a loop, Theorem 1 shows that it is equivalent to:

b > 1, sin(−ω) > 0, sin(−ω − α) < 0,

τ < arccos(cos(−ω)), τ < α− arccos(cos(−ω)),

which is equivalent to

d2

0
+ d2

1
− d2

2
< 0, d1d2 < 0, (sd0 + cd1)d2 > 0,

(d2

0
+ d2

1
) arccos

d0 sgn(d2)
√

d2

0
+ d2

1

+ d1d2 > 0,

(d2

0
+ d2

1
)(arccos

d0 sgn(d2)
√

d2

0
+ d2

1

− α) + (cd1 + sd0)d2 < 0.

By substituting d0, d1, and d2 into the above inequalities we get the definition of
the region L of Fig. 4. ¤

Examples of these five different shapes of C-Bézier curves are shown in Fig. 5.
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Figure 5. Different shapes of C-Bézier curves

Conclusion

We investigated the existence of inflection points, cusps, and loops in C-curves
and C-Bézier curves by showing that these curves are affine images of trochoids,
and finally computed a shape diagram. The conditions are useful for classifying
the shapes of other special forms of C-curves as well, such as C-Ferguson curves
or C-B-spline curves.
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