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Abstract: In this paper the semiaxes of quadrics which touch each other

are investigated. If two quadrics Q ;Q 0 are given, it turns out that we can

rotate Q 0 such that it touches Q in two opposite points if and only if the

squared semiaxes of Q ;Q 0 do not separate each other. This is equivalent to

the statement that for two symmetric matrices A;B there is an orthogonal

matrix S with det(A� ST BS) = 0 if and only if the eigenvalues of A and B

do not separate each other.
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Introduction

The aim of this paper is to investigate conditions on the semiaxes of two quadrics Q , Q 0, both

centered at the origin, which can be rotated such that they touch each other. This is equivalent to

the following problem: Given two symmetric matrices A;B, is there an orthogonal matrix S such

that det(A�ST BS) = 0? One motivation (beside the simple characterization of touching quadrics

in terms of their semiaxes) is the study of the singularities of the configuration space of surface-

surface contact [6]: The configuration space is defined as the set of isometries of Euclidean n-space

which transform one surface such that it touches the second. In a regular point, the configuration

space locally is a (n+ 2)(n� 1)=2-dimensional submanifold of the group of isometries. It turns

out that a point of the configuration space is singular if and only if the indicatrices of curvature of

the two surfaces touch each other in two opposite points. Thus, for a given pair of points p;q all

α 2 Isom(En
) with α(p) = q are regular if and only if the principal curvatures do not separate each

other.

1 Eigenvalues and the Determinant of Symmetric Matrices

First we are going to repeat some well known results concerning the eigenvalues and the determi-

nant of symmetric matrices (which actually hold for all hermitian matrices).

Consider a symmetric matrix A 2 Rn�n and its eigenvalues λ1 � : : : � λn. We write h ; i for

the scalar product. The set of k-dimensional subspaces of Rn is denoted by Mk.

Theorem 1 With the notations above, the eigenvalues of A can be expressed as follows:

λk = max
V2Mk

min
x2V
kxk=1

hx;Axi= min
V2Mn�k+1

max
x2V
kxk=1

hx;Axi



This is called the Courant-Fisher minmax principle for eigenvalues (See e.g. [2]).

Theorem 2 Let H 2 Mn�1 and V the matrix of the injection mapping H ! R

n with respect to

orthonormal coordinate systems. Consider the eigenvalues µ1 � : : :� µn�1 of V T AV. Then

λ1 � µ1 � λ2 � : : :� λn�1 � µn�1 � λn:

This is a special case of the Cauchy interlacing theorem. See e.g. [1, 2, 4] for proofs and related

results.

Theorem 3 Let A, B be symmetric n�n matrices with eigenvalues α1; : : : ;αn and β1; : : : ;βn, re-

spectively. Then

min
σ2Sn

n

∏
i=1

(αi�βσ(i))� det(A�B)� max
σ2Sn

n

∏
i=1

(αi�βσ(i))

(The minimum and maximum is taken over all permutations of the indices 1; : : : ;n.)

This theorem has been proved by M. Fiedler (see [2, 5]).

2 Semiaxes of Quadrics

A quadric Q is the set hx;Axi= 1, where A is a symmetric real matrix. After a suitable coordinate

transformation, it has the equation

�

x1

a1

�2

+ : : :+

�

xr

ar

�2

�

�

xr+1

ar+1

�2

� : : :�

�

xn

an

�2

= 1; (1)

where the ai are either positive real numbers or infinite: The matrix A has s positive eigenvalues

λ1 : : :λq, the eigenvalues λq+1 = : : := λr are zero, and the eigenvalues λr+1; : : : ;λn are negative.

Then ai = 1=
p

λi for i = 1; : : : ;s, aq+1 = : : := ar = ∞ and ai = 1=
p

�λi for s = r+ 1; : : : ;n. We

say that Q has the semiaxes

0 < a1; : : : ;aq < ∞; aq+1 = : : := ar = ∞; iar+1; : : : ; ian;

and the squared semiaxes

s1 = 1=λ1; : : : ;sn = q=λn:

The quadric is an ellipsoid, if 0 < ai < ∞. The quadric Q ? conjugate to Q has squared semiaxes

s?i =�si. (We define �∞ = ∞, i.e., we consider the projective closure of the real line R).

There is the following version of the minmax principle for the semiaxes of quadrics, which

follows immediately from Th. 1. We give a different proof which uses properties of quadrics more

familiar to geometers.

Theorem 4 Let Q be a quadric with semiaxes a1 � : : :� ar � ∞ and iar+1 � : : :� ian. Then we

have the following equations:

a1 = min
x2Q

kxk; an = min
x2Q ?

kxk; and, if Q is an ellipsoid: an = max
x2Q

kxk;



and
ak = min

V2Mk

max
x2Q\V

kxk; (k = 1; : : : ;r)

an�k = min
V2Mk

max
x2Q ?

\V
kxk; (n� k = r+1; : : : ;n)

ak = max
V2Mn�k

min
x2Q\V

kxk; (k = 1; : : : ;r)

an�k = max
V2Mn�k

min
x2Q ?

\V
kxk; (n� k = r+1; : : : ;n)

(2)

All values of maxima for indices other than the indices given are infinite.

Proof: Obviously it is sufficient to prove the statements which involve Q . We have

kxk2
= ∑

i�r

x2
i +∑

i>r

x2
i � ∑

i�r

x2
i � ∑

i�r

(

a1xi

ai
)

2
� a2

1 ∑
i�r

(

xi

ai
)

2
�a2

1 ∑
i>r

(

xi

ai
)

2
= a2

1;

and (a1;0; : : : ;0) 2 Q , which shows minx2Q kxk = a1. If Q is an ellipsoid, maxkxk = an is seen

analogously. If Q is no ellipsoid, it is either void or kxk is not bounded.

Let k � q and assume that ak is finite. Consider the subspace V0 = [e1; : : : ;ek]. The quadric

V0\Q is and ellipsoid and we have

min
V2Mk

max
x2Q\V

� max
x2Q\V0

kxk= ak:

For all V 2Mk consider the nonzero subspace W =V \ [ek; : : : ;en]. All x 2W \Q are contained in

the quadric Q \ [ek; : : : ;en], whose semiaxes are ak; : : : ; ar; iar+1; : : : ; ian, which implies kxk> ak.

We set the maximum of a void set to ∞, and have

min
V2Mk

max
x2Q\V

kxk � min
V2Mk

max
x2Q\V\[ek;:::;en]

kxk � ak:

If aq = aq+1 = : : : = ar = ∞, then Q is an orthogonal cylinder over a basis quadric with semi-

axes a1; : : : ;aq; iar+1; : : : ; ian. Let s � k � r and V 2 Mk. If V intersects Z := [eq+1; : : : ;er], then

maxx2V\Q kxk= ∞, because Q \V either is void or contains straight lines.

If V does not intersect Z, let p equal the projection with kernel Z onto [e1 : : : ; eq; er+1; : : : ;

en]. In this case pjV is 1–1, p(V )\Q = p(V \Q ), and maxx2p(V )\Q kxk = ∞, which implies

maxx2V\Q kxk= ∞.

If k > r, then V \Q s a non-void quadric which is no ellipsoid, and so maxx2Q\V kxk= ∞.

This implies the first of the four statements in (2). The proof of the others is similar. 2

We use Th. 4 to prove the following statement about the changes in the semiaxes if a quadric

undergoes a linear transformation.

Theorem 5 Let Q be a quadric with semiaxes a1; : : : ;ar and iar+1; : : : ; ian. Let α be a linear auto-

morphism ofRn with singular values w1� : : :�wn. Then α(Q ) has semiaxes a01; : : : ;a
0

r; ia
0

r+1; : : : ; ia
0

n

which fulfill the inequalities

w1a j � a0j � wna j ( j = 1; : : : ;n)

Here w j �∞ = ∞. When treating each a0j separately, this inequality cannot be further improved.



Proof: The singular values of α are defined as the semiaxes of the α-images of the unit sphere of

R

n . Thus w1 = min
kxk=1 kα(x)k and wn = max

kxk=1 kα(x)k, which implies

w1kxk � kα(x)k � wnkxk:

Then the statement follows from maxx2α(V )\α(Q )

kxk= maxx2V\Q kα(x)k and Theorem 4.

Further it is easy to find for each j a linear transformation such that either w1a j = a0j or wna j =

a0j. 2

There is the following version of the interlacing theorem for quadrics, which follows from Th. 2,

or from Th. 4:

Theorem 6 Let Q be a quadric with semiaxes a1 � : : : � ar � ∞ and ∞ > iar+1 � : : : � ian.

Let H be a hyperplane which contains the origin. Then the quadric Q 0

= H \Q has semiaxes

a01; : : : ;a
0

r�1; iar; : : : ; ia
0

r�1 or a01; : : : ;a
0

r, ia0r+1; : : : ; ia
0

r�1 which fulfill the inequalities:

a1 � a01 � a2 � a02 � : : :� ar�1 � a0r�1 (3)

ar+1 � a0r+1 � ar+2 � a0r+2 � : : :� a0n�1 � an: (4)

If Q 0 has r real semiaxes, then a0r � ar, otherwise we have ar � ar+1. The semiaxes on the real and

imaginary axis can by symbolized by the following diagram:

r
i

Proof: We have

min
V2Mk

max
x2Q\V

kxk � min
V2Mk

max
x2Q\V\H

kxk

max
V2Mn�k

min
x2Q\V

kxk � max
V2Mn�k

min
x2Q \V\H

kxk:

This implies ai � a0i � ai+1 for i = 1; : : : ;r� 1, and a0r � ar if Q 0 has r real semiaxes. The other

inequality follows if we use Q ? instead of Q . 2

The well-known theorem on the semiaxes of ellipsoids one of which is contained in the other, also

can be generalized without much effort:

Theorem 7 Let Q ;Q 0 be two quadrics centered in the origin with semiaxes a1 � : : : � ar � ∞,

∞ > iar+1 � : : : � ian and a01 � : : : � a0n � ∞, i.e., Q 0 is an ellipsoid or cylinder with ellipsoidal

base quadric. Let Q 0 be contained in the connected component of Rn
nQ which contains the

origin. Then

a0i � ai i = 1; : : : ;r (5)

Proof: Let a01; : : : ;a
0

q be finite and a0q+1 = : : : = a0n = ∞. Consider a quadric Q 00 with semiaxes

a001 � : : :� a00j , a00j = a0j for j � q and a00q+1; : : : ;a
00

r > a0q. Then Q 00 is contained in the interior of Q 0.

Every ray emanating from the origin which intersects Q in a point p, also intersects Q 00 in a point

p00 = λp with λ� 1. Thus for all subspaces V 2 Mk we have

max
x2Q\V

kxk � max
x2Q 00

\V
kxk;

which implies a j � a00j for all j � r. As a00j was arbitrary for q < j � r, this shows a j = ∞ in this

case. 2



3 Semiaxes of conics which touch each other

Given are two conics Q ;Q 0 (quadrics of R2) centered in the origin. We look for a rotated version

α(Q 0

) of Q 0 such that Q ;α(Q 0

) touch each other. This touching relation will be slightly different

from the usual notion of touching of conics in the sense of projective geometry, i.e., there is a pair

(point, tangent) which belongs to both conics.

Definition: Two affine conics Q , Q 0 of R2 centered at the origin touch each other, if they are equal

or if the linear pencil of conics spanned by Q and Q 0 contains a double line through the origin. We

say that Q and Q 0 are related, if they can be rotated such that they touch each other, and we write

Q � Q 0.

Obviously � is a reflexive and symmetric relation.

If the pencil of conics spanned by Q and Q 0 contains a double line l through the origin, there

are the following possibilities:

� If l intersects Q in two points �x, then �x = l \Q = l \Q 0 and Q ;Q 0 touch each other in

�x. If Q or Q 0 is an ellipse, this is always the case.

� If both Q and Q 0 are pairs of straight lines, then l is parallel to both of them.

� If both Q ;Q 0 are hyperbolas and l is an asymptote of Q , then l is also an asymptote of Q 0

and Q ;Q 0 hyperosculate at infinity (see Fig. 2).

� In the remaining cases l intersects neither Q nor Q 0, but intersects their conjugate conics in

two points �y = l\Q ?

= l\Q 0?, which then touch each other in �y.

We say that two families ai and bi of points in R[f∞g separate each other if there are i; j;k; l with

i 6= j, k 6= l such that ai � bk � a j � bl or bk � ai � bl � a j. Note that if there is an ai which equals

a bk, then for all a j;bl this condition is fulfilled.

Lemma 8 Given are two ellipses Q ;Q 0 with semiaxes a1;a2 and a01;a
0

2. We have Q � Q 0 if and

only if the pairs a1;a2 and a01;a
0

2 separate each other:

r

This means that either a1 � a01 � a2 � a02 or a01 � a1 � a02 � a2.

Other ellipses are not related, and an ellipse is not related to a conic with imaginary semiaxes

ia01; ia
0

2.

Proof: If ai = a0j for some pair i; j, then clearly Q � Q 0, so we restrict ourselves to the case

of strict inequality: If a1 < a01 and a2 < a02 then the ellipses Q : (x1=a1)
2
+ (x2=a2)

2
= 1 and

Q 0 : (x1=a01)
2
+(x2=a02)

2
= 1 have no points in common.

If in addition a02 > a1, and α0 is a rotation about 90 degrees, then Q and α0(Q
0

) have four

points in common, and for continuity reasons, there is an α 2 SO2 such that Q and α(Q 0

) touch

each other in two points. (see Fig. 1).

If, on the other hand, a1;a2 < a01;a
0

2 then maxx2Q kxk< minx2Q 0

kxk, and we have Q 6� Q 0. If

a1 < a01 � a02 < a2, we assume that Q has equation (x1=a1)
2
+(x2=a2)

2
= 1, and have a look at



Q

Q’

Q

α  (Q’)
  0

Q

α(Q’)

Figure 1: Ellipses touching each other

the intersection points �P1 and �P2 of α(Q 0

) with the x1- and x2-axis, respectively. Theorem 4

implies that �P1 is outside Q and �P2 is inside Q . By continuity, #Q \α(Q 0

) = 4 and therefore

Q 6� Q 0.

If Q has no real points and Q 0 is an ellipse, then Q \Q 0

=

/0 implies that Q 6� Q 0. 2

Lemma 9 Given is an ellipse Q with semiaxes a1 � a2 and a hyperbola Q 0 with semiaxes a01; ia
0

2.

Then Q � Q 0 if and only if a1 � a01 � a2: If Q is a conic with semiaxes ia1 � ia2, then Q � Q 0 if

and only if a1 � a02 � a2.

Proof: The proof is similar to that of Lemma 8. If ai = a01, then obviously Q �Q 0. If a1 < a01 < a2,

there is a position of Q such that #Q \Q 0

= 0 and after a rotation α0 about 90 degrees we have

#α0(Q )\Q 0

= 4, so there is an α 2 SO2 such that α(Q ) and Q 0 touch each other.

If a1;a2 < a01, then α(Q )\Q 0 is void for all α, and if a1;a2 > a01, then α(Q );Q 0 have four

intersection points for all α.

The statement on the conic with two imaginary semiaxes follows from the fact that Q � Q 0 if

and only if Q ?

� Q 0?. 2

Q’

Q’’

Q

x

-x

Figure 2: Hyperbolas: Q ;Q 00 osculate at infinity, whereas Q ;Q 0 touch in the points �x.



Lemma 10 Given are two hyperbolas Q , Q 0 with semiaxes a1; ia2, a01; ia
0

2, a01 � a1. We can rotate

Q 0 such that it then touches Q in two real points if and only if

a1a2 > a01a02

If a1a2 = a01a02, then Q 0 can be rotated such that it then hyperosculates Q at infinity.

Proof: It is easily seen that the only way how Q and a rotated version of Q 0 can touch each other

is like in Fig. 2, and this happens if and only if a02 is smaller than a002, where the hyperbola with

semiaxes a01; ia
00

2 hyperosculates Q at infinity.

Suppose that one of the asymptotes of Q is the x-axis. Then the hyperbolas Q 0 hyperosculating

Q in the horizontal point at infinity are precisely the images of Q under the area-preserving shear

transformations x0 = x+ ky, y0 = y. To prove a1a2 = a01a02 we note that all parallelograms whose

vertices lie on the asymptotes of Q and two of whose edges touch Q have equal area. Now this

area remains invariant under shear transformations, which implies the result. 2

s < 0 s > 0 s < 0 s > 0

Figure 3: Squared semiaxes of conics Q ;Q 0. Left: Q 6� Q 0 Right: Q � Q 0

Theorem 11 Consider two conics Q , Q 0 with squared semiaxes s1;s2, s01;s
0

2. Then Q � Q 0 if and

only if the pairs (s1;s2) and (s01;s
0

2) separate each other. (see Fig. 3).

Proof: We will show two proofs of this result. The first uses the continuity arguments of the

previous lemmas, whereas the second is purely algebraic.

1. If si = s0j, then obviously Q � Q 0, so assume that si 6= s0j for all i; j = 1;2.

If both Q and Q 0 are ellipses, the result follows from Lemma 8. If one of Q ;Q 0 is an ellipse

and the other is a hyperbola, it follows from Lemma 9. If one of Q ;Q 0 is without real points,

the results follows from the fact that Q � Q 0

() Q ?

� Q 0?.

If both Q and Q 0 are hyperbolas, then without loss of generality assume s1;s
0

1 > 0, s2;s
0

2 < 0.

Then we have the four cases (i): s1 < s01;s2 > s02. (ii): s1 > s01;s2 < s02, (iii): s1 < s01;s2 < s02,

(iv): s1 > s01;s2 > s02, In cases (iii) and (iv) the pairs separate each other, in cases (i) and

(ii) they don’t. In case (i) we have s01 > s1 and js1s2j < js01s02j, so Lemma 10 implies that

Q 0 cannot be rotated such that it touches Q in two real points. We have also js02j > js2j, so

Lemma 10 again shows that also Q 0? cannot be rotated such that it then touches Q ? in two

real points. Thus Q 6� Q 0. Case (ii) is the same with the roles of Q , Q 0 interchanged.

In Case (iii) we have both js1j
0

> js1j and js2j> js02j, so Lemma 10 shows that either we can

rotate Q 0 such that it then touches Q in two real points (if js1s2j> js01s02j) or the same with



the conjugate hyperbolas (if js1s2j < js01s02j). If js1s2j = js01s02j, then we can rotate Q 0 such

that it then hyperosculates Q at infinity, and we have shown that (iii) implies Q � Q 0. Case

(iv) is similar.

If Q is a pair of lines then it behaves similar to an ellipse and some simple arguments show

the result.

2. Denote the reciprocals of s1;s2 and s01;s
0

2 by λ1;λ2 and λ01;λ
0

2, respectively. The matrix of a

rotation about an angle φ is given by S =

�

cosφ �sinφ
sinφ cosφ

�

. We can rotate Q such that it

touches Q 0 if and only if there is a φ such that

det

�

ST

�

λ1

λ2

�

S+

�

λ01
λ02

��

= 0:

The left hand side of this equation equals (λ01�λ1)(λ02�λ2)+ sin2 φ(λ2�λ1)(λ02�λ01). A

detailed discussion shows easily that there is a solution if and only if the pairs λ1;λ2 and

λ01;λ
0

2 separate each other. This equivalent to the statement of the theorem.

2

4 Semiaxes of touching quadrics

As in the case of conics, we define when two quadrics touch each other:

Definition: Two affine quadrics Q , Q 0 of Rn touch each other, if the unique quadric contained in

the pencil spanned by Q ;Q 0 which contains the origin has a vertex space of dimension greater or

equal one. If there is an α 2 SOn such that Q touches α(Q 0

), then we say that Q ;Q 0 are related to

each other and write Q � Q 0.

Obviously � is again a symmetric and reflexive relation.

The quadrics with such a vertex space are easily enumerated in low dimensions: In R2 , only

the double line has this property. In R3 , there is the union of two planes, and the double plane.

In R4 , there is the double hyperplane, a union of two hyperplanes, the cone with vertex line and

regular conic as base curve.

There are the following possibilities for touching quadrics Q ;Q 0: Let l be a 1-dimensional

subspace which is contained in the vertex subspace of the quadric mentioned above. If l\Q =�x,

then Q and Q 0 touch each other in the usual sense in l\Q = l\Q 0. If l\Q ?

=�y, then Q ? and

Q 0? touch each other in the usual sense in �y. If both l \Q and l \Q 0 are void, then consider

the trace pencil in any 2-dimensional subspace ε� l. It contains the conics k = ε\Q , k0 = ε\Q 0

and the double line l. l intersects neither k nor its conjugate k?, which means that either k1;k2

hyperosculate at infinity, or both are degenerate.

Lemma 12 Let Q ;Q 0 be two quadrics with squared semiaxes 0< s1 � : : :� sn <∞ and s01 � : : :�

s0n � ∞, i.e., Q is an ellipsoid. If the si and the s0i do not separate each other, then Q 6� Q 0.



Proof: We let I = [s1;sn] and I0 = [s01;s
0

n]. Because the si don’t separate the s0j, there is no si in I0

or no s0j in I or neither. If there is an s0j in I but no si in I0, then all s0j are finite and positive and

Q 0 is also an ellipsoid. Thus without loss of generality we may assume that no s0j is contained in I,

which means that either s0j < s1 or s0j > sn for all j = 1; : : : ;n.

We note that the touching relation is invariant with respect to linear automorphisms of Rn .

Consider the semiaxes a j =
p

s j of Q and define the linear mapping φ by

e j 7!
a1

a j
e j:

Its singular values are a1=a j, their minimum equals a1=an, and their maximum equals 1. All

semiaxes of φ(Q ) equal a1, and the semiaxes a00i of φ(Q 0

) fulfill the inequalities

a1

an
a0j � a00j � a0j;

where a0j =
q

s0j are the semiaxes of Q 0.

If a0j is real and greater than an, then a00j � (a1=an)a
0

j > (a1=an)an = a1. If a0j is real and less

than a1, then a00j � a0j < a1. This implies that no semiaxis a00j equals a1. Because φ(Q ) is a sphere,

we conclude that φ(Q ) and φ(Q 0

) do not touch, and therefore neither do Q ;Q 0, which means

Q 6� Q 0. 2

Lemma 13 Let Q , Q 0 be two quadrics with squared semiaxes�∞ < s1 � : : :� sr < 0, 0 < sr+1 �

: : :�;sn < ∞, 1 � r � n�1. and s01 � : : :� s0n, i.e., Q is a non-void quadric with finite semiaxes

which is no ellipsoid. If the si do not separate the s0j, then Q 6� Q 0.

Proof: Let I = [s1;sn] and I0 = [s01;s
0

n] and have a closer look at the case that there is an s0j in I but

no si is in I0: Here also Q 0 has only finite semiaxes. If Q 0 is an ellipsoid, then Lemma 12 implies

the result. If Q 0 has no real points, then Q � Q 0

() Q ?

� Q 0? and Lemma 12 show that also in

this case we have Q 6� Q 0. If Q 0 is a non-void quadric which is no ellipsoid, then we interchange

Q and Q 0, so without loss of generality we can assume that there is no s0i in I.

s < 0 s > 0

(Squared semiaxes of Q are marked by empty circles, those of Q 0 by filled ones.) We assume a

coordinate system such that Q has normal form. The semiaxes of Q ;Q 0 are denoted by ai; iak and

a0j; ia
0

l, resp. (black circles). Let a = min(ar=a1;ar+1=an), and define a linear transformation φ by

e j 7! (aar=a j)e j if 1 � j � r and e j 7! (aar+1=a j)e j if r < j � n. The minimum and maximum

singular values of φ are a and 1.

Then φ(Q ) has semiaxes iā1 = : : : = iār = iaar and ār+1 = : : : = ān = aar+1 (their squares

are marked by empty circles below). The quadric φ(Q 0

) = Q̄ 0 has semiaxes ā0j which fulfill the

inequalities aa0j � ā0j � a0j.

Thus if ia00j is an imaginary semiaxis of Q̄ 0, then a00j � aa0j > aa1 � aar = ā1. If a00j is a real

semiaxis of Q̄ 0,t then a00j � aa0j > aan � aar+1 = ān.



s < 0 s > 0

Now suppose that Q touches Q 0 and consider a 1-dimensional subspace contained in a vertex

subspace of a quadric of the pencil spanned by Q̄ ; Q̄ 0. Let l1 = [e1; : : : ;er]\ (l+[er+1; : : : ;en]) and

l2 = [er+1; : : : ;en]\ (l + [e1; : : : ;er]). The conic [l1; l2]\ Q̄ is a hyperbola with axes ā1; ān. The

conic [l1; l2]\ Q̄ 0 has semiaxes (their squares are marked by crosses in the figure above), which,

according to the iterated interlacing theorem (Th. 6) do not separate ā1; ān. Thus these two conics

do not touch, which implies in turn that neither Q̄ ; Q̄ 0 nor Q ;Q 0 touch each other, and therefore

Q 6� Q 0. 2

Now we are able to prove our main theorem on touching quadrics:

Theorem 14 Let Q ;Q 0 be two quadrics with squared of semiaxes s1; : : : ;sn and s01; : : : ;s
0

n. The

n-tuples (si) and (s0i) separate each other if and only if Q � Q 0.

Proof: We denote the unit vectors in direction of the jth axis of the quadric Q (Q 0, resp.) by e j (e0j,

resp.). If we can find two pairs (s j;sk), (s
0

l;s
0

m) which separate each other then there is an α1 2 SOn

which maps the [e0l;e
0

m] onto [e j;ek]. Then the conic α1(Q
0

\ [e0l;e
0

m]) can be rotated in [e j;ek] such

that it touches Q \ [e j;ek]. There is a unique α2 in SOn which extends this rotation and leaves the

span of the other ei pointwise fixed. Then Q and α2α1(Q
0

) touch each other and we have Q � Q 0.

We now show the converse. Assume that the semiaxes of Q ;Q 0 do not separate each other.

There are at least two ways to show that Q 6� Q 0, the second of which is more elementary.

1. Consider the equations hx;Axi and hx;Bxi = 1 of Q and Q 0. A rotated version of Q 0 then

has equation hx;ST BSxi = 1 with an orthogonal matrix S. The unique quadric contained in

the pencil spanned by Q ;Q 0 which contains the origin has equation hx;(A�ST BS)xi= 0. It

has a nonzero vertex space if and only if det(A�ST BS) = 0.

The eigenvalues of A and ST BS are 1=si and 1=s0i, respectively. Without loss of generality

assume that no 1=si is between two 1=s0j. Then there are k eigenvalues of ST BS which are

greater than all eigenvalues of A, and n� k eigenvalues of ST BS which are less than all

eigenvalues of A. Th. 3 applied to A and ST BS implies that the sign of det(A�ST BS) equals

(�1)k, and so det(A�ST BS) 6= 0, which implies Q 6� Q 0.

2. If both Q ;Q 0 have infinite semiaxes, then Q �Q 0, so assume that Q has only finite semiaxes.

Q is an ellipsoid, the result follows from Lemma 12. If Q 0 is without real points, the results

follows from the fact that Q � Q 0

() Q ?

� Q 0? and Lemma 12. If Q is non-void and no

ellipsoid, the result follows form Lemma 13.
2

Corollary 15 Let A, B be symmetric n� n matrices with eigenvalues α1; : : : ;αn and β1; : : : ;βn,

respectively. There are αi;α j;βk;βl with αi � β j � αk � βl or vice versa (i.e., � instead of �), if

and only if there is an orthogonal n�n matrix S with det(A�ST BS) = 0.
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