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Abstra
t

The natural mapping of the right quaternion ve
tor spa
e H

2

onto

the quaternion proje
tive line (identi�ed with the four-sphere) 
an be

de�ned for 
omplex quaternions H 


R

C as well. We dis
uss its ex-


eptional set, the �ber subspa
es, and how the linear automorphism

groups of two-dimensional quaternion ve
tor spa
es and modules in-

du
e groups of proje
tive automorphisms of the image quadri
s.

1 Notation

Consider the skew �eld H of quaternions. We will use the usual notation

a = a

0

+ ia

1

+ ja

2

+ ka

3

with real numbers a

i

and the `quaternion units' i,

j, k. The symbol a denotes the quaternion a

0

� ia

1

� ja

2

� ka

3


onjugate to

a, and the quaternion norm is denoted by N(a). It has the properties that

N(a) = aa = aa = a

2

0

+ a

2

1

+ a

2

2

+ a

2

3

, and that N(ab) = N(a)N(b). The

group of unit quaternions will be identi�ed with the three-sphere S

3

= fa 2

H j N(a) = 1g.

If V is a ve
tor spa
e over the �eld K , we write rk

K

, dim

K

, et
., to

indi
ate the �eld, if ambiguity is possible. Likewise we write P

K

(V ) for the

proje
tive spa
e de�ned by V . Nonetheless we use `standard' notation to

indi
ate `standard' obje
ts: The real proje
tive spa
e P

R

(H

2

) is of dimension

seven and will be denoted simply by P

7

. The subset f(q

0

; q

1

) j N(q

0

) +

N(q

1

) = 1g of H

2

is 
alled its unit seven-sphere and is denoted by S

7

. P

7

arises from S

7

by identi�
ation of antipodal points.

The proje
tive line P

H

(H

2

) is the set of one-dimensional right quaternion

linear subspa
es of H

2

, and is denoted by P

1

(H ), i.e.,

P

1

(H ) = f(q

0

; q

1

)H j (q

0

; q

1

) 6= (0; 0)g: (1)
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2 The Hopf mapping P

7

! S

4

The topology of P

1

(H ) as indu
ed by the natural mapping H

2

! P

1

(H )

is homeomorphi
 to S

4

. This homeomorphism is expli
itely realized by the

stereographi
 proje
tion: The real ve
tor spa
e H � R 
ontains the unit

sphere S

4

= f

h

y

�

i

2 H � R j N(y) + �

2

= 1g:

The stereographi
 proje
tion � : P

1

(H ) ! S

4

is de�ned by

�(

h

1

y

i

H ) =

1

N(y) + 1

h

2y

N(y)� 1

i

; (2)

�(

h

0

1

i

H ) =

h

0

1

i

and

�

�1

h

y

�

i

=

h

1� �

y

i

H : (3)

The Hopf mapping is usually de�ned as the mapping from S

7

onto P

1

(H ),

whi
h maps

h

q

0

q

1

i

to

h

q

0

q

1

i

H . We will use the fa
t that both

h

q

0

q

1

i

and

h

�q

0

�q

1

i

are mapped to the same proje
tive point, and use the mapping

h

q

0

q

1

i

R 7!

h

q

0

q

1

i

H . In order to make the image a sphere embedded into a real ve
tor

spa
e, we de�ne the Hopf mapping ' by

' : P

7

! S

4

; '(

h

q

0

q

1

i

R) = �

�1

(

h

q

0

q

1

i

H ): (4)

The '-preimage of

h

y

�

i

2 S

4

equals

'

�1

h

y

�

i

=

h

1� �

y

i

H : (5)

The set

h

1� �

y

i

H has an interpretation as a proje
tive point of P

1

(H ), a one-

dimensional right quaternion linear subspa
e of H

2

, as a four-dimensional real

linear subspa
e of H

2

, or a three-dimensional subspa
e of P

7

.

Remark We letH = f1;�1g � H and 
onsider the group G = S

3

=H, whi
h

is isomorphi
 to SO

3

. The group G a
ts on the �bers of ' in the following

way: If g = a �H = �a, then g(

h

p

0

q

1

i

R) = �

h

p

0

a

q

1

a

i

R =

h

p

0

a

q

1

a

i

R. This makes

' : P

7

! S

4

a prin
ipal SO

3

-bundle over the base spa
e S

4

(
f. [3℄, p. 105).
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We embed the aÆne spa
e H �R into the real proje
tive spa
e P

5

= P

R

(R�

H �R). The point

h

y

�

i

2 H �R is identi�ed with the proje
tive point

"

1

y

�

#

R.

Consider the mapping

 : H

2

! R � H � R;  

h

a

b

i

=

"

N(a) +N(b)

2ba

N(b)�N(a)

#

: (6)

Be
ause

1

N(q

1

q

�1

0

)

h

2q

1

q

�1

0

N(q

1

q

�1

0

)� 1

i

=

1

N(q

1

) +N(q

0

)

h

2q

1

q

0

N(q

1

)�N(q

0

)

i

; (7)

we have the equivalen
e

 

h

a

b

i

R =

"

y

0

y

y

5

#

R () '

h

a

b

i

=

1

y

0

h

y

y

5

i

: (8)

If we use 
oordinates with respe
t to the bases

h

1

0

i

,

h

i

0

i

,

h

j

0

i

,

h

k

0

i

,

h

0

1

i

,

h

0

i

i

,

h

0

j

i

,

h

0

k

i

and

"

1

0

0

#

,

"

0

1

0

#

,

"

0

i

0

#

,

"

0

j

0

#

,

"

0

k

0

#

,

"

0

0

1

#

,  reads

 

2

6

4

x

0

.

.

.

x

8

3

7

5

=

2

6

6

6

6

6

6

6

6

4

x

2

0

+ x

2

1

+ x

2

2

+ x

2

3

+ x

2

4

+ x

2

5

+ x

2

6

+ x

2

7

2(+x

0

x

4

+ x

1

x

5

+ x

2

x

6

+ x

3

x

7

)

2(�x

0

x

5

+ x

1

x

4

� x

2

x

7

+ x

3

x

6

)

2(�x

0

x

6

+ x

1

x

7

+ x

2

x

4

� x

3

x

5

)

2(+x

0

x

7

+ x

1

x

6

� x

2

x

5

� x

3

x

4

)

x

2

4

+ x

2

5

+ x

2

6

+ x

2

7

� x

2

0

� x

2

1

� x

2

2

� x

2

3

3

7

7

7

7

7

7

7

7

5

: (9)

3 The proje
tive automorphism group of S

4

The group S

3

a
ts as a subgroup of SO

8

via right translations R

a

h

q

0

q

1

i

=

h

q

0

a

q

1

a

i

, and this a
tion leaves the �bers of ' invariant. This right multipli
a-

tion however is not right H -linear, but semilinear with respe
t to the inner

automorphism x 7! a

�1

xa of H .

We ask if the a
tion of SO

5

on S

4

is indu
ed by a subgroup of SO

8

, or

by a subgroup of GL(2; H ). It will turn out that the answer to an even more

3



general question is aÆrmative. We use the notation PGL(S

4

) � PGL

5

for

the proje
tive automorphisms of the unit sphere when embedded into P

5

. A

proje
tive automorphism xR 7! (A � x)R is determined by the set of s
alar

multiples AR of a regular matrix A. It leaves the quadri
 x

T

� J � x = 0

invariant, if and only if A

T

JA = �J with � 6= 0. Thus

PGL(S

4

) = fAR j A

T

JA = �Jg; (10)

J =

2

4

�1

1

.

.

.

1

3

5

; � 2 R n 0:

Lemma 1 PGL(S

4

) has two 
onne
ted 
omponents. The 
omponent 
on-

taining the identity, whi
h 
onsists of orientation-preserving transformations,

is denoted by PGL

+

(S

4

), and is isomorphi
 to SO

5;1

=f�1g.

Proof: If � < 0 in Equ. (10), then the matrix A = A=

p

j�j ful�lls A

T

JA =

�J . This means that the last �ve 
olumn ve
tors of A span a subspa
e where

the s
alar produ
t hx; yi = x

T

Jy is negative de�nite in. This 
ontradi
ts the

inertia theorem, so � > 0.

Let O

5;1

= fA j A

T

JA = Jg and SO

5;1

= fA 2 O

5;1

j det(A) > 0g.

Then for all AR 2 PGL(S

4

), A=

p

� 2 O

5;1

. Conversely, A 2 O

5;1

implies

that AR 2 PGL(S

4

). This shows the isomorphism PGL(S

4

)

�

=

O

5;1

=f�1g.

The group SO

5;1

has two 
onne
ted 
omponents, distinguished by the sign

of the upper left 5� 5 minor (
f. [1℄, p. 44). As this minor is of odd order,

SO

5;1

=f�1g is 
onne
ted, whi
h shows the statement of the theorem.

Lemma 2 The Hopf mapping provides an isomorphism

'

?

: GL(2; H )=R

�

�

=

PGL

+

(S

4

); '

?

(LR) = 'L'

�1

: (11)

Here R

�

denotes the subgroup of homotheti
al transformations with nonzero

real fa
tors.

Proof: We �rst note that

h

a b


 d

ih

1

q

i

=

h

1

d

�1

(1 + (d

�1


� a

�1

b)(q + a

�1

b)

�1

a

�1

)

i

H ; (12)

wherever de�ned. This shows that L 2 GL(2; H ) indu
es in P

1

(H ) a 
om-

position of transformations of the following types: q 7! q + a, q 7! qa,

q 7! aq, and q 7! 1=q. All of them are M�obius transformations and map

the set of lines and 
ir
les onto itself. This property is not destroyed by �,

and so '

?

L = 'L'

�1

maps 
ir
les to 
ir
les. It is well known (
f. [2℄, p.

4



992) that then '

?

L = �jS

4

with � 2 PGL(S

4

). Be
ause GL(2; H ) is 
on-

ne
ted, � 2 PGL

+

(S

4

) (the 
onne
tedness of GL(2; H ) 
an be shown in a

way 
ompletely analogous to the proof of Lemma 13).

Clearly '

?

: GL(2; H ) ! PGL(S

4

) is a homomorphism with ker'

?


on-

sisting of the homotheti
al transformations

h

a

b

i

7! �

h

a

b

i

, � 2 R. To show

that '

?

is onto, we allow a topologi
al argument:

dim

R

GL(2; H ) = 16;

dim

R

GL(2; H )=R

�

= dim

R

PGL

+

(S

4

) = 15; (13)

and PGL

+

(S

4

) is 
onne
ted. The image of '

?

is an open subgroup of

PGL

+

(S

4

) be
ause '

?

is of 
onstant rank 15 (its kernel has dimension one),

and therefore 
oin
ides with PGL

+

(S

4

).

We are going to �nd expli
it '

?

-preimages of generators of SO

5

. The stabi-

lizer of

h

0

1

i

in SO

5

is isomorphi
 to SO

4

and a
ts on the invariant subspa
e

H �0. We know that every element of SO

4

, when a
ting in the standard way

on the three-sphere S

3

� H , is a produ
t of a left and a right multipli
ation

with unit quaternions. Thus all 
 2 SO

5

with 


h

0

1

i

=

h

0

1

i

have the form




h

y

�

i

= �

a

�

�1

b

h

y

�

i

=

h

ayb

�1

�

i

: (14)

If a; b 2 S

3

and '

h

q

0

q

1

i

=

h

y

�

i

, we have

'

h

bq

0

aq

1

i

= �

�1

h

1

aq

1

q

�1

0

b

�1

i

R

=

1

N(bq

0

) +N(aq

1

)

h

2aq

1

�q

0

�

b

N(aq

1

)�N(bq

0

)

i

=

1

N(q

0

) +N(q

1

)

h

2aq

1

�q

0

b

�1

N(q

1

)�N(q

0

)

i

=

h

ayb

�1

�

i

:

by multipli
ativity of N(�). Thus the a
tion of SO

4

as stabilizer of 
(0; 1) in

SO

5

is indu
ed by the subgroup of matri
es

L

a;b

=

�

a 0

0 b

�

2 GL(2; H ); (a; b 2 S

3

): (15)

Consider the subgroups

�

1;t

:

2

6

4

y

1

.

.

.

y

5

3

7

5

7!

2

6

6

6

6

4

y

1


os t� y

5

sin t

y

2

y

3

y

4

y

1

sin t+ y

5


os t

3

7

7

7

7

5

; (16)
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�

a;t

= �

a

�

1;t

�

�1

a

: (17)

The family �

1;t

of rotations generates SO

5

together with the stabilizer of

h

0

1

i

.

It is dire
tly veri�ed that for all

h

y

�

i

2 S

4

the equation

((1� �) sin t+ y 
os t)((1� �) 
os t� y sin t)

�1

(18)

= (y

1


os 2t� � sin 2t+ iy

2

+ jy

3

+ ky

4

)

(1� (� 
os 2t+ y

1

sin 2t))

�1

holds. This means that

S

1;t

=

�


os t � sin t

sin t 
os t

�

=) 'S

1;t

'

�1

= �

1;2t

2 SO

5

: (19)

It follows that �

a;2t

is indu
ed by

S

a;t

= '

�1

�

a;2t

' =

�

1 0

0 a

��


os t � sin t

sin t 
os t

��

1 0

0 a

�

: (20)

At last we see that

I =

�

0 1

1 0

�

=) �

h

y

�

i

= 'I'

�1

h

y

�

i

=

h

y

��

i

: (21)

We de�ne the R-basis

h

1

0

i

; : : : ;

h

0

k

i

;

h

0

1

i

; : : : ;

h

0

k

i

of H

2

to be orthonormal.

Then the following makes sense:

Lemma 3 The preimage '

�1

?

(SO

5

) is 
ontained in SO

8

\GL(2; H ).

Proof: The right H -linear automorphisms S

a;t

and L

a;b

of H

2

are 
ontained

in SO

8

, if we see them as R-linear automorphisms of R

8

.

Lemma 4 Consider a point

"

y

0

y

y

5

#

R 2 S

4

� (R � H � R)

�

=

P

5

. We de�ne

the ve
tors v

1

; : : : ; w

6

2 H

2

by

w

3

=

h

y

0

� y

1

y � y

5

� y

1

i

; w

4

=

h

y

0

� y

2

y � iy

5

� iy

2

i

;

w

5

=

h

y

0

� y

3

y � jy

5

� jy

3

i

; w

6

=

h

y

0

� y

4

y � ky

5

� ky

4

i

;

v

1

=

h

y

0

� y

5

y

i

; v

2

=

h

y

y

0

+ y

5

i

; v

3

=

h

1 1

�1 1

i

� w

3

;

v

4

=

h

1 �i

�i 1

i

� w

4

; v

5

=

h

1 �j

�j 1

i

� w

5

; v

6

=

h

1 �k

�k 1

i

� w

6

:

6



Then the preimage '

�1

"

y

0

y

y

5

#

equals v

1

H = : : : = v

6

H .

Proof: Equ. (3) shows the result for v

1

. The equation v

2

= I

�1

'

�1

�(v

1

)

shows the statement for v

2

. The rest is a translation of the formulas w

3

=

'

�1

�

1;

�

2

(

1

y

0

h

y

y

5

i

), w

4

= '

�1

�

i;

�

2

(

1

y

0

h

y

y

5

i

), w

5

= '

�1

�

j;

�

2

(

1

y

0

h

y

y

5

i

), w

6

= '

�1

�

k;

�

2

(

1

y

0

h

y

y

5

i

),

and v

3

=

1

p

2

S

�1

1;

�

4

(w

3

), v

4

=

1

p

2

S

�1

i;

�

4

(w

4

), v

5

=

1

p

2

S

�1

j;

�

4

(w

5

), v

6

=

1

p

2

S

�1

k;

�

4

(w

6

).

4 Complex quaternions

De�nition The tensor produ
t

e

H = H 


R

C ; (22)

is 
alled the algebra of 
omplex quaternions.

We denote the imaginary unit in C by the symbol i

C

. We further nat-

urally extend the de�nition of 
onjugate quaternion and norm, using the

same formulas as in the real 
ase). The relations N(a) = aa 2 1 
 C ,

N(ab) = N(a)N(b), a

�1

=

1

N(a)

a remain true. A polynomial identity in

quaternions 
arries over to a polynomial identity for 
omplex quaternions, as

the embedding H !

e

H de�nes a homomorphism H [x

1

; : : : ; x

n

℄!

e

H [x

1

; : : : ;

x

n

℄ of polynomial rings.

Consider the left and right multipli
ation operators �

a

and �

a

, whi
h are

de�ned by �

a

(x) = ax and �

a

(x) = xa.

Lemma 5 The sets

e

H a and a

e

H are C -linear subspa
es of

e

H . Their C -

dimension equals four if N(a) 6= 0, and two if N(a) = 0, a 6= 0. In the

latter 
ase ker(�

a

) = a

e

H and ker(�

a

) =

e

H a.

Proof: The 
oordinate matrix of �

a

with respe
t to the basis (1 
 1 + i 


i

C

; 1
 1� i
 i

C

; j 
 1+ k
 i

C

; j 
 1� k
 i

C

) is given by L

a

=

h

B

1

�B

2

B

2

B

1

i

;

with

B

1

=

h

a

0

� i

C

a

1

0

0 a

0

+ i

C

a

1

i

; B

2

=

h

0 a

2

� i

C

a

3

a

2

+ i

C

a

3

0

i

: (23)

If one of a

0

� i

C

a

1

, a

2

� i

C

a

3

is nonzero (whi
h is the 
ase if a 6= 0), then

obviously rk(�

a

) � 2, and dim

C

(ker�

a

) � 2. The determinant of �

a

equals

N(a)

2

, so dim

C

(a

e

H ) = 4 if N(a) 6= 0. The same results hold for a

e

H , be
ause

xa = �a�x for all x, a.

7
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Figure 1: Left: The quadri
 N(x) = 0 in P

C

(H 
 C ). Right: see the proof of

Lemma 8.

If N(a) = 0, then

e

H a � ker �

�a

. Be
ause dim(

e

H a) = rk(�

a

) � 2, we have

a
tually dim(

e

H a) = 2 and

e

H a = ker �

�a

. The argument for a

e

H is similar.

Consider the three-dimensional 
omplex proje
tive spa
e P

C

(

e

H ), 
onsisting

of elements aC with a 2

e

H . The equation N(a) = 0 de�nes a quadri
, i.e., a

nonsingular quadrati
 variety. It 
arries two families of proje
tive subspa
es

of C -dimension one (its generator lines), whi
h have the property that (i) all

points of the quadri
 are in
ident with exa
tly one line of ea
h family (ii)

any two lines of di�erent families interse
t in one point.

Lemma 6 If N(a) = 0, then the sets a

e

H and

e

H a 
oin
ide with the two

generator lines of the quadri
 N(x) = 0 in
ident with aC . One family of

generators 
onsists of the sets a

e

H , the other one of the sets

e

H a.

Proof: By Lemma 5, the subspa
es a

e

H and

e

H a are of C -proje
tive dimension

one. Obviously they are 
ontained in the quadri
 N(x) = 0. As all points

of this quadri
 are in
ident with exa
tly one generator line, this des
ription

exhausts all generators.

If ab 6= 0, the generators a

e

H and

e

H b interse
t in abC , whi
h shows that

they belong to di�erent families of generators (
f. Fig. 1).

5 Extension of the Hopf mapping to H 
 C .

We 
onsider the aÆne spa
e

e

H � C , and embed it into the proje
tive spa
e

P

5

(C )

�

=

P

C

(C �

e

H � C ) (24)

8



via

(a; �) 7! (1; a; �)C :

The proje
tive extension S

4

(C ) of the 
omplex unit sphere has the equation

S

4

(C ) : y

2

0

= N(y) + y

2

5

: (25)

Further we 
onsider the mapping

e

 :

e

H �

e

H ! C �

e

H � C ;

h

a

b

i

7!

"

N(a) +N(b)

2ba

N(b)�N(a)

#

: (26)

There is a 
orresponding mapping

e' : P

7

(C ) ! P

5

(C ); e'(

h

a

b

i

C ) =

e

 

h

a

b

i

C ; (27)

whi
h is unde�ned for those

h

a

b

i

with

e

 

h

a

b

i

= 0.

Lemma 7

e

 is zero (and e' is unde�ned) pre
isely for the elements of the

set

 

�1

(0) = f

h


a

da

i

j N(a) = 0g = f

h

a

da

i

j N(a) = 0g: (28)

Proof: Obviously  

h


a

da

i

=

"

(N(
) +N(d))N(a)


N(a)d

(N(d) �N(a))N(a)

#

= 0 for all 
; d ifN(a) = 0,

whi
h shows the `�' part of the statement. We show the reverse in
lusion:

If N(a) +N(b) = N(a) �N(b) = 0 then N(a) = N(b) = 0. If N(a) = 0,

Lemma 6 shows that the set of x su
h that x�a = 0 equals

e

H a. This implies

 

�1

(0) = f

h

a

da

i

j N(a) = 0g. This set is 
ontained in f

h


a

da

i

j N(a) = 0g,

and we are done.

We show a lemma whose proof uses geometry to show an algebrai
 relation:

Lemma 8 If a; b; a

0

; b

0

are 
omplex quaternions of zero norm, then the equa-

tion b

0

a

0

C = baC is equivalent to a

0

= ax, b

0

= by.

Proof: Consider the quadri
 N(x) = 0 in

e

H and its two families of generator

lines. Generators of the same family do not interse
t unless they are equal,

and generators of di�erent families interse
t in pre
isely one point. b

0

a

0

C =

baC means that the generators b

0

e

H and b

e

H interse
t, and therefore are equal.

9



Likewise the generators

e

H a

0

and

e

H �a are equal. Thus b

0

= bx and a

0

= �y�a (see

Fig. 1).

Conversely, a

0

= ax, b

0

= by imply these equalities of generator lines.

Generators of di�erent families interse
t in pre
isely one point, whi
h must

be b

0

aC = ba

0

C .

Theorem 1 The image of e' = S

4

(C ). If v

1

; : : : ; v

6

are de�ned as in Lemma

4 with s
alars 1 
 1, i 
 1, j 
 1 and k 
 1 instead of 1; i; j, and k, then

the preimage

e

 

�1

"

y

0

y

y

5

#

C of a point of S

4

(C ) 
ontains the ve
tors v

1

; : : : ; v

6

.

There is an r su
h that e'(v

r

C ) =

"

y

0

y

y

5

#

C .

Proof: It follows dire
tly from Lemma 4 that for all r the ve
tors

e

 (v

r

) and

"

y

0

y

y

5

#

are C -linearly dependent. We show that e' is onto, i.e., there is an r

su
h that

e

 (v

r

) is nonzero.

If

e

 (v

1

) = 0, then (y

0

� y

5

)

2

= 0, whi
h means y

0

� y

5

= 0. If

e

 (v

2

) = 0,

then ne
essarily y

0

+ y

5

= 0. This shows that

"

y

0

y

y

5

#

is a

e

 -image if either y

0

or y

5

are nonzero.

Now 
onsider the 
ase y

0

= y

5

= 0. If

"

0

y

0

#

2 S

4

(C ), then yy = 0.

If y

1

6= 0, 
onsider w

3

=

h

�y

1

y � y

1

i

and v

3

=

h

�2y

1

+ y

y

i

. Then

e

 (v

3

) =

"

0

y(�2y

1

+ y)

0

#

C =

"

0

�2y

1

y

0

#

C =

"

0

y

0

#

C . If y

2

6= 0, we use v

4

instead of v

3

,

and analogously for the 
ases y

3

6= 0 and y

4

6= 0.

Lemma 9 The 
omplete e'-preimage of a point

"

y

0

y

y

5

#

C 2 P

5

(C ) 
onsists

of

e

 

�1

(0) and a three-dimensional proje
tive subspa
e U � P

7

(C ). Assume

that

e

 (a; b) =

"

y

0

y

y

5

#

C . If y

0

= y

5

= 0, then U =

h

a

0

i

e

H +

h

0

b

i

e

H . Otherwise,

U =

h

a

b

i

e

H .
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Proof: We let

e

 

h

a

b

i

=

"

y

0

y

y

5

#

2 C �

e

H � C . In the proof we 
onsider only

points where e' is de�ned, i.e.,

e

 is nonzero.

There are the equivalen
es

(i) N(a) 6= 0; N(b) 6= 0 () y

0

6= �y

5

;

(ii) N(a) = 0; N(b) 6= 0 () y

0

= y

5

6= 0;

(iii) N(a) 6= 0; N(b) = 0 () y

0

= �y

5

6= 0;

(iv) N(a) = 0; N(b) = 0 () y

0

= y

5

= 0;

(29)

and it is obviously suÆ
ient to treat 
ases (i){(iv) separately. If N(a) 6= 0,

there exists a

�1

and

e

 

h

a

b

i

=

e

 

h

1

ba

�1

i

. The mapping

e

 is inje
tive for ve
tors

h

1

x

i

. If N(a

0

) 6= 0 and

e

 

h

a

0

b

0

i

C =

e

 

h

a

b

i

C , we 
on
lude b

0

a

0�1

= ba

�1

whi
h

means

h

b

0

a

0

i

=

h

a


b


i

. This shows the result for 
ases (i) and (iii).

An analogous argument based on N(b) 6= 0 shows the result for 
ases (i)

(again) and (ii). As to 
ase (iv), we do the following: If N(a) = N(b) = 0,

then

e

 

h

a

b

i

=

"

0

ba

0

#

. We look for

h

a

0

b

0

i

su
h that

e

 

h

a

0

b

0

i

C =

e

 

h

a

b

i

C . By

Lemma 8, this is equivalent to b

0

= bx, a

0

= �a�y, or

h

a

0

b

0

i

=

h

ax

by

i

.

De�nition The three-dimensional subspa
es U mentioned in Lemma 9 are


alled the �ber subspa
es of

e

 .

Obviously the sets U n

e

 

�1

(0) form a partition of (

e

H �

e

H ) n

e

 

�1

(0).

Remark Re
all that the �ber subspa
es of the 
omplex Hopf mapping ' :

P

3

! S

2

, '

C

h

q

0

q

1

i

R =

h

q

0

q

1

i

C are straight lines 
ontained in an ellipti
 linear


ongruen
e. After a 
omplex extension, these lines meet the ex
eptional set

of the Hopf mapping, whi
h is a union of two lines. The situation here is

similar. A �ber subspa
e interse
ts

e

 

�1

(0), be
ause

e

 

h

a


b


i

= 0 if N(
) = 0.

De�nition We de�ne two points of S

4

(C ) to be parallel, if their span is


ontained in S

4

(C ).

Lemma 10 The �ber subspa
es of non-parallel points are skew. The �ber

subspa
es of a plane of parallel points interse
t in a 
ommon line, whi
h is


ontained in the set  

�1

(0).
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Proof: Assume that the �ber subspa
es of  

h

a

b

i

and  

h

a

0

b

0

i

have a point

in 
ommon, and that both

h

a

b

i

and

h

a

0

b

0

i

belong to 
lasses (i){(iii) of the

proof of Lemma 9. Then

h

a


b


i

=

h

a

0




0

b

0




0

i

with N(
) = 0,

h

a


b


i

6= 0. Further

h

a
k

b
k

i

=

h

a

0




0

k

b

0




0

k

i

for all k 2 H , so these �ber subspa
es have a line in 
ommon.

The generator lines

e

H 
 and

e

H 


0

of the quadri
 N(x) = 0 interse
t in the

point a
 = a

0




0

, so they are equal and 
 = 


0

k, N(k) 6= 0. Thus there is

the following 
hain of equivalen
es:

h

a


b


i

=

h

a

0




0

b

0




0

i

() a � a

0

k, b � b

0

k 2

ker(R




) = im(�




)()

h

a

b

i

=

h

a

0

b

0

i

k+

h

m

n

i


 with k;m; n 2

e

H , N(k) 6= 0()

h

a

b

i

e

H = (

h

a

0

b

0

i

+

h

m

n

i


)

e

H with m;n 2

e

H . Dire
t 
omputation shows that

 

h

a

0

+ �m


b

0

+ �n


i

=  

h

a

0

b

0

i

+ 2�

"

(a

0


m)

0

b

0


m

�(a

0


m)

0

#

+ 2�

"

(b

0


n)

0

n�
�a

0

(b

0


n)

0

#

; (30)

where (�)

0

denotes the �rst 
omponent with respe
t to the standard C -basis

(1; i; j; k) 
 1. It is easily veri�ed that this is indeed a parametrization of

a plane, unless a
 = b
 = 0. The remaining 
ases are similar, but to avoid


omputations we 
ould also use the fa
t that GL(2;

e

H ) leaves the set  

�1

(0)

invariant and apply one of the mappings S

a;t

of the proof of Lemma 9 su
h

that neither

h

a

b

i

nor

h

a

0

b

0

i

belong to 
ase (iv).

Lemma 11 For all planar se
tions 
 of S

4

(C ) whi
h are 
oni
s, there is a

line e
 with e'(e
) = 
. The same is true for all lines of S

4

(C ).

Proof: If the 
oni
 
 is a planar se
tion of S

4

(C ), it does not 
ontain parallel

points, so the �ber subspa
es of 
's points do not interse
t. We 
hoose

three points P

1

; P

2

; P

3

2 
. Consider their �ber subspa
es U

1

; U

2

; U

3

. For all

h

a

1

b

1

i

C 2 U

1

, there is a unique line L

h

a

1

b

1

i

whi
h meets U

i

in a point

h

a

i

b

i

i

C .

The 
orresponden
es

h

a

i

b

i

i

$

h

a

j

b

j

i

are linear and one-to-one, so we 
an avoid

h

a

i

b

i

i

2

e

 

�1

(0). We let let e
 = L

h

a

1

b

1

i

. The image e'(e
) is linear or quadrati


and 
ontains P

1

; P

2

; P

3

, whi
h shows that a
tually

e

 (e
) = 
.

If P

2

; P

3

are parallel, but P

1

is not parallel to P

2

; P

3

, this pro
edure must

fail be
ause there is no line or 
oni
 in S

4

(C ) whi
h 
onne
ts P

1

, P

2

, P

3

, and

12



so U

2

and U

3

must have a point in 
ommon. As Lemma 10 shows, there is a

line e
 �

e

H

2

su
h that e'(e
) = P

2

_ P

3

.

It is not diÆ
ult to generalize Lemma 2 to the 
ase of

e

H . The group

PGL(S

4

(C )) of proje
tive automorphisms of S

4

(C ) equals the set fAC j

A 2 C

6�6

, A

T

A = � � E

6

, � 2 C g. Be
ause

�

A = �(1=

p

�)A has the prop-

erty that A

T

A = E

6

, we have PGL(S

4

(C )) = O

6

(C )=f�1g. The two 
on-

ne
ted 
omponents of O

6

(C ) are distinguished by the determinant. Further,

det(A=�

p

�) = det(A)=�

3

. Thus we have

Lemma 12 PGL(S

4

(C )) = fAC j A

T

A = E

6

; � 6= 0g has two 
onne
ted


omponents distinguished by the value of det(A)=�

3

.

The 
omponent 
ontaining the identity is denoted by PGL

+

(S

4

(C )). Obvi-

ously

PGL

+

(S

4

(C ))

�

=

SO

6

(C )=f�1g:

Lemma 13 The group GL(2;

e

H ) of invertible right

e

H -linear endomorphisms

of the right

e

H -module

e

H

2

operates transitively on

e

H

2

n 

�1

(0) and is 
onne
ted.

Proof: We use the fa
t that the 
omplement of the quadri
 N(x) = 0 in

e

H

is ar
wise 
onne
ted, as it is of real 
odimension two.

The symbol G


;d

a;b

denotes the set of elements L 2 GL(2;

e

H ) su
h that

L

h

a

b

i

=

h




d

i

. Obviously the stabilizer G

0;1

0;1

of

h

1

0

i


onsists of the matri
es

�

1 0


 d

�

with N(d) 6= 0; and is 
onne
ted. We show that for N(a) 6= 0 there

is a path L

t

in GL(2;

e

H ) beginning in G

1;0

1;0

and ending in G

a;b

1;0

: If a(t) is a

path with a(0) = 1, a(1) = a, then we let

L

t

=

�

a(t) 0

t � b 1

�

: (31)

If N(b) 6= 0, we analogously �nd a path L

0

t

whi
h begins in G

0;1

0;1

and ends in

G

a;b

0;1

.

If both norms N(a) and N(b) are zero, 
onsider the paths S


;t

as de�ned

by Equ. (20). Obviously S


;0

= id for all 
, and the proof of Th. 1 implies

that we 
an 
hoose 
 su
h that S


;�=4

h

a

b

i

=

h

a

0

b

0

i

with either N(a

0

) 6= 0 or

N(b

0

) 6= 0. This shows that either there is a path in GL(2;

e

H ) beginning in

G

1;0

1;0

and ending in G

a;b

1;0

, or the same for

h

0

1

i

instead of

h

1

0

i

.
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As G

1;0

0;1

is nonempty, this shows that GL(2;

e

H ) a
ts transitively. If L 2

G


;d

0;1

, L

0

2 G

a;b

0;1

, then G

0;1

0;1

= L

�1

�G


;d

a;b

�L

0

, so all sets G


;d

a;b

are homeomorphi
.

One of them has already been shown to be 
onne
ted, so all of them are


ontained in the same and only ar
 
omponent of GL(2;

e

H ).

Theorem 2 The Hopf mapping e' provides an isomorphism of the groups

GL(2;

e

H )=C

�

�

=

PGL

+

(S

4

(C ))

�

=

SO

6

(C )=f�1g:

Proof: We �rst show that all L 2 GL(2;

e

H ) indu
e a proje
tive automorphism

of S

4

(C ). To avoid 
omputations, we appeal to a more general theorem by

showing that L indu
es an automorphism of a 
ir
le geometry in the sense

of [2℄:

The set C of proper 
ir
les are those planar se
tions of S

4

(C ) whi
h are

either 
oni
s or pairs of lines. An automorphism of C is a bije
tion of S

4

(C )

whi
h maps C to C. Lemma 10 
hara
terizes 
oni
s and lines as the e'-images

of 
ertain lines, and it distinguishes between them in a GL(2;

e

H )-invariant

way. Thus L maps e'

�1

(C) onto itself. We 
an apply Th. 4.2.3 of [2℄, p. 992,

to 
on
lude that L indu
es a proje
tive automorphism e'

?

(L) = e'Le'

�1

2

PGL

+

(S

4

(C )).

To show that '

?

is is onto, we note that its kernel is the subgroup of


omplex homotheti
al transformations, so dim

R

ker('

?

) = 2. From the di-

mensions dim

R

(GL(2;

e

H )) = 32 and dim

R

(PGL

+

(S

4

(C ))) = 30 we 
on
lude

that '

?

(GL(2;

e

H )) is an open subgroup of PGL

+

(S

4

(C )). Be
ause the latter

is 
onne
ted, '

?

is onto.

6 A Hopf mapping onto the Klein quadri


We 
onsider the real subspa
e

b

H = [1
 1; i
 1; j 
 i

C

; k 
 i

C

℄

R

(32)

of H 


R

C =

e

H . It is easily veri�ed that

b

H is a subring of

e

H and an R-

subalgebra. Further we 
onsider the real ve
tor spa
e

R �

b

H � R = f

"

r

0

r

r

5

#

j r

0

; r

5

2 R; r 2

b

H g: (33)

The set Q

4;2

= S

4

(C ) \ R �

b

H � R then has the equation

r

2

0

+ r

2

3

+ r

2

4

= r

2

1

+ r

2

2

+ r

2

5

; (34)
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whi
h des
ribes a real regular quadri
 of index two. There are the proje
tive

spa
es

b

P

7

= P

R

(

b

H �

b

H ),

b

P

5

= P

R

(R �

b

H � R), and the Hopf mapping

b' :

b

P

7

!

b

P

5

;

h

a

b

i

R 7!

"

N(a) +N(b)

ba

N(b)�N(a)

#

R: (35)

Its representation

b

 in homogeneous 
oordinates with respe
t to the bases

h

1
 1

0

i

; : : : ;

h

k 
 i

C

0

i

;

h

0

1
 1

i

; : : : ;

h

0

k 
 i

C

i

(36)

and

"

1

0

0

#

;

"

0

1
 1

0

#

;

"

0

i
 1

0

#

;

"

0

j 
 i

C

0

#

;

"

0

0

1

#

; (37)

is given by

b

 

2

6

4

x

0

.

.

.

x

7

3

7

5

=

2

6

6

6

6

6

6

6

6

4

x

2

0

+ x

2

1

� x

2

2

� x

2

3

+ x

2

4

+ x

2

5

� x

2

6

� x

2

7

2(+x

0

x

4

+ x

1

x

5

� x

2

x

6

� x

3

x

7

)

2(�x

0

x

5

+ x

1

x

4

� x

2

x

7

� x

3

x

6

)

2(�x

0

x

6

+ x

1

x

7

+ x

2

x

4

� x

3

x

5

)

2(+x

0

x

7

+ x

1

x

6

� x

2

x

5

� x

3

x

4

)

x

2

4

+ x

2

5

� x

2

6

� x

2

7

� x

2

0

� x

2

1

+ x

2

2

+ x

2

3

3

7

7

7

7

7

7

7

7

5

(38)

The very de�nitions of

b

 and b' imply that

h

a

b

i

2

b

H

2

; b'(

h

a

b

i

R) =

"

y

0

y

y

5

#

R; e'(

h

a

b

i

C ) =

"

y

0

0

y

0

y

0

5

#

C (39)

=)

"

y

0

y

y

5

#

C =

"

y

0

0

y

0

y

0

5

#

C :

This means that the mapping b' be
omes the restri
tion of e' to

b

P

7

� P

7

(C ),

if we embed Q

4;2

into 
omplex proje
tive spa
e.

The group PGL(Q

4;2

) of proje
tive automorphisms of Q

4;2

is the set

fAR j A

T

JA = �Jg (40)

with

J =

2

6

6

4

1

�1

�1

1

1

�1

3

7

7

5

: (41)
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Lemma 14 PGL(Q

4;2

) has four 
onne
ted 
omponents. With the notations

of Equ. (40), they are distinguished by sgn(�) and sgn(det(A)).

Proof: Both sgn(�) and sgn(det(A)) are homomorphisms of PGL(Q

4;2

). It

is easy to �nd examples for all four possible 
ases, so PGL(Q

4;2

) has at

least four 
onne
ted 
omponents: They are distinguished by whether or not

they reverse orientation, and whether they inter
hange the two families of

generator planes or not. If det(A) > 0, � > 0, then A=

p

� preserves the

bilinear form �, so after a permutation of 
oordinates, A=

p

� 2 SO

3;3

. The

group SO

3;3

has two 
onne
ted 
omponents, distinguished by the sign of the

upper left minor of order three (
f. [1℄, p. 44). The fa
tor SO

3;3

=f�1g however

is 
onne
ted, as this minor is of odd order.

The subgroup of PGL(Q

4;2

) 
onsisting of orientation-preserving transforma-

tions whi
h do not inter
hange the two families of generator planes will be

denoted by PGL

+

(Q

4;2

). It is isomorphi
 to SO

3;3

=f�1g and is 
onne
ted.

The following results are 
losely related to the respe
tive results for H 
 C :

Theorem 3 The image of b' = Q

4;2

. If v

1

; : : : ; v

4

are de�ned as in Lemma 4

with s
alars 1
 1 and i
 1 instead of 1 and i, then the preimage

b

 

�1

"

y

0

y

y

5

#

R

of a point of Q

4;2


ontains the ve
tors v

1

; : : : ; v

4

. There is an r su
h that

b'(v

r

R) =

"

y

0

y

y

5

#

R (r = 1; : : : ; 4).

Proof: Clearly v

1

; : : : ; v

4

2

b

H

2

if y

0

; y

5

2 R and y 2

b

H . As the proof of Th.

1 shows, it is suÆ
ient to 
onsider v

1

; : : : ; v

4

if one of y

0

; y

5

; y

1

; y

2

6= 0. This

is always the 
ase, be
ause

"

y

0

y

y

5

#

2 Q

4;2

and y

0

= y

5

= y

1

= y

2

= 0 implies

that y

3

= y

4

= 0.

Lemma 15 The 
omplete b'-preimage of a point

"

y

0

y

y

5

#

R 2 Q

4;2


onsists of

b

 

�1

(0) and a three-dimensional proje
tive subspa
e U �

b

P

5

. Assume that

b

 

h

a

b

i

=

"

y

0

y

y

5

#

R. If y

0

= y

5

= 0, then U =

h

a

0

i

b

H +

h

0

b

i

b

H , and U =

h

a

b

i

b

H

otherwise.

Proof: This follows immediately from Lemma 9 by interse
tion of the

e

 -

preimage with the subspa
e

b

H

2

�

R

e

H

2

.
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De�nition The three-dimensional proje
tive subspa
es mentioned in this

lemma are 
alled the �ber subspa
e of b'. Again we 
all points of Q

4;2

parallel

if their span is 
ontained in Q

4;2

.

The following is an immediate 
onsequen
e of the respe
tive result for the


omplex 
ase

e

H .

Lemma 16 The �ber subspa
es of non-parallel points are skew. The �ber

subspa
es of a plane of parallel points interse
t in a proje
tive line. For all

planar se
tions 
 of Q

4;2

whi
h are 
oni
s, there is a line b
 �

b

P

7

, su
h that

b'(b
) = 
. The same is true for all lines of Q

4;2

.

The 
onne
ted 
omponent of the identity in GL(2;

b

H ) is denoted by GL

+

(2;

b

H ). Analogously to the 
ase of GL(2;

e

H ) we have

Lemma 17 The Hopf mapping b' provides an isomorphism

GL

+

(2;

b

H )=R

�

�

=

PGL

+

(Q

4;2

):

We 
an show a bit more by using Th. 2: If b� 2 PGL(Q

4;2

), then there is

a unique proje
tive automorphism e� automorphi
 for S

4

(C ) whi
h extends

b� after embedding the real proje
tive spa
e

b

P

5

into P

5

(C ). The 
oordinate

matri
es of b� and e� with respe
t to the same basis are the same. This is not

a basis where the 
omplex unit sphere has the equation v

T

Ev = 1, however.

It has the same equation as Q

4;2

, namely v

T

Jv = 1. We therefore 
onsider

the matrix group

PGL(S

4

(C )) = fAC j A

T

JA = �J; � 6= 0g: (42)

It is of 
ourse isomorphi
 to PGL(S

4

(C )), and the equations det(A)=�

3

=

�1 de�ne its two 
onne
ted 
omponents. The 
omponent 
ontaining the

identity is denoted by PGL

+

(S

4

(C )). If b� is in the subset `det(A)� > 0' of

PGL(Q

4;2

) (whi
h 
onsists of two 
onne
ted 
omponents), then e� is 
ontained

in PGL

+

(S

4

(C )), and vi
e versa.

Theorem 4 The Hopf mapping b' provides an isomorphism

GL(2;

b

H )=R

�

�

=

fAR j A

T

A = �J; � det(A) > 0g (43)

The right hand group 
onsists of two of the four 
onne
ted 
omponents of

PGL(Q

4;2

).
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Proof: An element

e

L 2 GL(2;

e

H ) is uniquely determined by its values on the

basis

h

1

0

i

and

h

0

1

i

, so for ea
h

b

L 2 GL(2;

b

H ) there is a unique

e

L 2 GL(2;

e

H )

with

e

Lj

b

H

2

=

b

L. Thus the C -
oordinate matrix of

e

L with respe
t to the basis

(36) has real entries. Conversely, if

e

L 2 GL(2;

e

H ), and its (8�8) C -
oordinate

matrix with respe
t to the basis (36) is real, then

e

L a
tually is 
ontained in

GL(2;

b

H ).

First, we do the following: For the sake of brevity, we write G for the right

hand group in Equ. (43). As

e

L indu
es (via e') a proje
tive automorphism

in PGL

+

(S

4

(C )) whi
h leaves Q

4;2

invariant,

b

L indu
es (via b') a proje
tive

automorphism of Q

4;2

. This shows that b'(GL(2;

b

H )) � G.

Se
ond, we show the reverse in
lusion: If b� 2 G, then there is a unique

proje
tive automorphism e� 2 PGL

+

(S

4

(C )) extending b�. By Th. 2, there

exists

e

L 2 GL(2;

e

H ) with e'

?

(

e

L) = e�. Whenever

h

a

b

i

2

b

H

2

, and

e

L

h

a

b

i

=

h

a

0

b

0

i

,

then there are

h

a

00

b

00

i

2

b

H

2

su
h that

h

a

0

b

0

i

e

H =

h

a

00

b

00

i

e

H .

As a C -linear mapping,

e

L permutes the set of subspa
es of 
omplex dimen-

sion 1 belonging to to

b

H

2

, whi
h are spanned by ve
tors with real 
oeÆ
ients.

As the 
oordinate matrix of

e

L as a C -linear mapping 
an be re
overed up

to a 
omplex fa
tor from the images of nine subspa
es, eight of whi
h are

C -independent, there is a 
omplex multiple �

e

L (� 2 C ) whi
h has a real


oordinate matrix as a C -linear mapping with respe
t to the basis (36). This

shows that �

e

L 2 GL(2;

b

H ), and obviously �

e

L, like

e

L, indu
es (via b') the

original proje
tive automorphism of b� 2 Q

4;2

. Thus, b'(GL(2;

b

H )) � G. From

the �rst part of the proof we know that this in
lusion is a
tually an equality.

Third, we 
ompute the kernel of the mapping b'

?

(L) = b'Lb'

�1

. The


ondition (L

h

q

0

q

1

i

)

b

H =

h

q

0

q

1

i

b

H for all

h

q

0

q

1

i

qui
kly leads to L

h

q

0

q

1

i

= �

h

q

0

q

1

i

with � 2 R. This shows the statement of the theorem.

Lemma 18 The set

b

H

2

n

b

 

�1

(0) is 
onne
ted.

Proof: The preimage of 0 is of dimension less than seven.

Lemma 19 The right translation R

x

for x 2

b

H is an R-linear endomorphism

of the real ve
tor spa
e

b

H . We 
onsider the linear mapping R = [R

x

R

y

℄ :

b

H

2

!

b

H . As to the rank of R, there are the following three 
ases:

(i)  

h

x

y

i

6= 0 : rk(R) = 4.

(ii)  

h

x

y

i

= 0, (x; y) 6= (0; 0) : rk(R) = 2.

(iii) x = y = 0 : rk(R) = 0.
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Proof: rk(R

x

) equals four, or two, or zero, if N(x) 6= 0, or N(x) = 0, x 6= 0,

or x = 0, respe
tively. Thus, rk(R) equals four if N(x) 6= 0 or N(y) 6= 0. In

this 
ase also  

h

x

y

i

6= 0.

If N(x) = N(y) = 0, but x; y 6= 0, then rk(R) depends on the position

of the planes R

x

b

H and R

y

b

H . In proje
tive spa
e, these are two generator

lines of the quadri
 N(�) = 0, whi
h are skew (i.e., rk(R) = 4) if and only if

x 62 R

y

b

H . This is equivalent to xy 6= 0. We see that then rk(R) = 4 if and

only if  

h

x

y

i

6= 0.

If x = 0, then rk(R) = rk(R

y

), and if y = 0, then rk(R) = rk(R

x

).

We temporarily denote the 
onne
ted 
omponent of the identity in GL(2;

b

H ) with G

0

, and

b

H

2

n

b

 

�1

(0) with the letter X. Then there is the following

lemma:

Lemma 20 G

0

operates transitively on X.

Proof: The orbit of

h

x

y

i

is the image of the mapping G

0

! X,

h

a b


 d

i

7!

h

a b


 d

ih

x

y

i

. This mapping is the restri
tion of an R-linear mapping to G

0

.

In terms of right translations R

x

and R

y

, we may write the �rst 
oordinate

of the image in the form [R

x

; R

y

℄

h

a

b

i

, with the blo
k matrix R = [R

x

; R

y

℄

already mentioned in Lemma 19. An analogous statement holds for the

se
ond 
oordinate. Lemma 19 shows that rk(R) = 4, so the rank of the

original mapping equals eight. This implies that G

0

h

x

y

i

is open in X.

If two orbits G

0

h

x

y

i

and G

0

h

x

0

y

0

i

interse
t, then they 
oin
ide, be
ause

G

0

is a group. One orbit is the 
omplement of all the others, whose union

is open. So all orbits are 
losed. As X is 
onne
ted it follows that there is

only one orbit.

Theorem 5 The group GL(2;

b

H ) has two 
onne
ted 
omponents.

Proof: GL(2;

b

H ) has at least two 
omponents, be
ause fa
torization with

respe
t to R

�

produ
es a group with two 
onne
ted 
omponents. To show

the reverse inequality, we use the notation of the previous lemmas. The

stabilizer g

0

of

h

1

0

i

in GL(2;

b

H ) 
onsists of the matri
es

f

h

1 b

0 d

i

j b; d 2

b

H ; N(d) 6= 0g: (44)
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and has the two 
onne
ted 
omponents N(d) > 0 and N(d) < 0. As G

0

operates transitively in X, all stabilizers are homeomorphi
. If g 2 GL(2;

b

H ),


hoose a h 2 G

0

with h

h

1

0

i

= g

h

1

0

i

. Further, 
hoose path h

t

in G

0

with

h

0

= id and h

1

= h. Then h

�1

t

g is a path whi
h 
onne
ts g with h

�1

g 2 G

0

.

It follows that GL(2;

b

H ) has not more 
onne
ted 
omponents than G

0

, i.e.,

two.

The quadri
 Q

4;2

is nothing but the Klein quadri
 or the Grassmann manifold

G

3;1

= P

R

(�

2

R

4

), whi
h is a model for the lines of proje
tive three-spa
e:

A line whi
h spans the points aR, bR with a; b 2 R

4

has the homogeneous

Pl�u
ker 
oordinates

x

ij

=

�

�

�

�

a

i

a

j

b

i

b

j

�

�

�

�

; (45)

whi
h depend only on the span of aR, bR, and ful�ll the relations

x

ii

= 0; x

ij

= �x

ji

; x

01

x

23

+ x

02

x

31

+ x

13

x

12

= 0: (46)

The substitution

y

0

= x

01

+ x

23

; y

3

= x

02

+ x

31

; y

4

= x

03

+ x

12

;

y

1

= x

01

� x

23

; y

2

= x

02

� x

31

; y

5

= x

03

� x

12

(47)

yields a proje
tive isomorphism G

3;1

�

=

Q

4;2

. The proje
tive automorphisms

of the Grassmannian are in one-to-one 
orresponden
e with the proje
tive

automorphisms of the dual pair (P

3

; P

3?

), 
onsisting of the four following


onne
ted 
omponents: As P

3

is orientable, there are orientation-preserving

and orientation-reversing proje
tive automorphisms. Further, there are pro-

je
tive automorphisms whi
h map P

3

to P

3

and su
h ones whi
h inter
hange

P

3

and its dual P

3?

.
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