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Abstract

It is known that a sediment of settled particles can resuspend under the

action of shear. In this paper, based on a mathematical model given by

Leighton & Acrivos [6], we study theoretically the viscous resuspension

of a sediment in a Couette channel with harmonically oscillating walls.

Numerical experiments reveal that the resuspension height and the particle

volume concentration at the bottom of the channel depend on the frequency

of the oscillation. While oscillation of the top wall has nearly no in
uence

on the sediment, a moving bottom wall causes the settled particles to

completely resuspend if the frequency is large enough.

1 Introduction

A settled bed of negatively buoyant particles can resuspend when

in comes in contact with a clear 
uid, even if Brownian motion or

turbulence at very small Reynolds numbers are absent. This phe-

nomenon, called viscous resuspension, was �rst observed by Ga-

dala-Maria [3] and Gadala-Maria & Acrivos [4], and has

been the subject of several experimental and theoretical investiga-

tions. Leighton [6] and Schaflinger et al. [9] have studied both

theoretically and experimentally viscous resuspension caused by a

laminar strati�ed 
ow. Theoretical predictions for a Couette gap

and a 2-dimensionalHagen-Poiseuille channel are in good agreement

with the experimental results.

Even though small frequency oscillatory shear experiments per-

formed by Gadala-Maria & Acrivos [4] indicate anisotropic

structure of the suspension, we model the two phase mixture as an
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e�ective Newtonian 
uid. This is justi�ed for larger frequencies, be-

cause the particles do not have enough time to rearrange. Acrivos

[1] conducted a survey on viscous resuspension and the rheology of

concentrated suspensions of con-colloidal particles.

In the present paper we study viscous resuspension of a sedi-

ment in a Couette channel with a harmonically oscillating top or

bottom wall. The theory is based on a mathematical model for

hydrodynamic di�usion introduced by Leighton & Acrivos [6].

This model later was successfully employed by Acrivos et al. [2],

Schaflinger et a. [9], and Zhang & Acrivos [10].

The downward 
ux of particles is governed by Stokes' law and

the upward hydrodynamic lift is governed by a di�usion coe�cient

proportional to the shear rate and the square of the particle radius.

The Navier-Stokes equations and the hydrodynamic di�usion equa-

tion then have to be solved simultaneously. Besides the relative

density di�erence, the amount of total sediment in the channel and

the frequency, the characteristic parameters of the problem are a

Reynolds number and a kind of Shields number.

2 Basics

We consider a suspension of negatively buoyant particles in a Cou-

ette channel, as depicted in �gure 1. We assume that the 
ow is

periodic and unidirectional. The symbol h

c

denotes the height of a

remaining sediment layer at the bottom and h is the z-coordinate

of the top of the resuspended layer in presence of the laminar shear


ow with velocity u = u(z; t). Both h

c

and h depend on the time t.

The total height of the channel is given by h

p

, and the height of the

sediment layer at the bottom, if the 
ow were suddenly turned o� is

denoted by h

0

. The symbols � and � denote e�ective viscosity and

density, respectively. When necessary, subscript 1 indicates physi-

cal properties of the clear 
uid, subscript 2 physical properties of

the particles, and no subscript indicates physical properties of the

mixture. The particle volume concentration is denoted by �, and �

0
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denotes the particle volume concentration of the sediment. For our

purpose we set �

0

= 0:58. The letter g denotes the gravitational

acceleration.

For simplicity, we restrict ourselves to the resuspension of spheres

of equal radius a and density �

2

. Then, under presence of gravity

the downward 
ux N

s

of particles is given by

N

s

= �u

0

f(�); (1)

where u

0

is the sedimentation velocity of a single particle in the

clear 
uid according to Stokes' law:

u

0

=

2

9

a

2

g(�

2

� �

1

)

�

1

: (2)

Here f(�) is the hindrance function of a single particle settling in

the presence of other particles in the suspension, i. e., the ratio of

the sedimentation velocity of a single sphere in the suspension to

Stokes' settling velocity. The hindrance function f(�) can be easily

estimated by the settling of a single sphere in a suspension with

e�ective viscosity and density. Thus,

f =

1 � �

�

r

; (3)

where �

r

is the dimensionless e�ective viscosity �=�

1

of the suspen-

sion. The empirical relationship

�

r

=

�

�

1

=

0

@

1 +

1:5�

1� �=�

0

1

A

2

(4)

was found by Leighton [5] in order to represent experimental data.

It is known that an \e�ective viscosity" derived from experimen-

tal data can vary in di�erent experiments as much as an order of

magnitude as the particle concentration reaches its maximum [1].

However, since nothing is known for the e�ective viscosity of con-

centrated suspensions undergoing oscillatory shear, we assume eq.

(4) to be valid.
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The considerations above require the particle Reynolds number

to be small, i. e., Re

p

� 1. If the size of the particles is large

enough, Brownian motion does not have a signi�cant in
uence and

non-hydrodynamic forces are negligible. In this case, sedimentation

in the direction of gravity is counterbalanced by a hydrodynamic

lift due to particle-particle interactions. The upward di�usive 
ux

from regions of high concentration to low is given by

N

d

= �D

d�

dz

; (5)

with D being the shear-induced di�usion coe�cient. According to

[5] it can be approximated by

D =

^

D _
a

2

=

1

3

�

2

(1 +

1

2

e

8:8�

) _
a

2

; (6)

with _
 being the absolute value of the shear rate. If � denotes the

shear stress, the shear rate is given by

_
 =

�

�

�

�

�

�

�

�

�

�

�

�

: (7)

Acrivos [1] described a shear-induced anisotropy that occurred

in oscillatory experiments, which show that in the absence of non-

hydrodynamic forces, suspensions of monodisperse solid spheres do

not behave as e�ective 
uids with a concentration dependent e�ec-

tive viscosity. He [1] supposed that the, evidently non-Newtonian,

experimental results can be explained by the fact that if the direc-

tion of the shear is suddenly reversed, the particles do not imme-

diately rearrange themselves into a mirror image of their original

con�guration. Thus, the oscillatory shear experiment described by

Acrivos [1] led to a non-harmonic oscillation in the shear stress

which became asymptotically harmonic if the amplitude of oscilla-

tion tended to zero.

On the other side, relatively large frequencies do not allow the

particles to rearrange and thus we assume that the suspension is

again isotropic. Certainly, non-Newtonian e�ects deserve further

study, which is, however, beyond the scope of this paper. In the

following we will neglect any anisotropies or non-Newtonian e�ects.
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3 Oscillatory Couette 
ow

If v denotes the average particle velocity along the direction of grav-

ity, and j

2

the particle 
ux along this direction, then j

2

= � � v and

the equation of particle mass balance reads

@�

@t

+

@j

2

@z

= 0: (8)

In our case

j

2

= N

s

�N

d

= �u

0

f(�)�

^

D(�) _
a

2

@�

@z

: (9)

For a Newtonian 
uid the Navier-Stokes equations reduce to

�

@u

@t

=

@

@z

(�

@u

@z

): (10)

Here we would like to note that we assume that there is no relative

motion between the particles and the continuous 
uid in x-direction.

We introduce a set of dimensionless parameters which completely

characterize our problem. We scale lengths along the direction of

the z-axis with h

p

, time with h

p

=u

0

and lengths along direction of

the x-axis with u

w

h

p

=u

0

, where u

w

is a characteristic wall velocity.

Then the velocity u in x-direction will scale with u

w

. For u

w

we take

the velocity amplitude of the oscillation. With a Reynolds-number

Re =

�

1

u

0

h

p

�

1

; (11)

a relative density di�erence

" =

�

2

� �

1

�

1

; (12)

and a type of Shields number

� =

u

w

u

0

0

@

a

h

p

1

A

2

=

9u

w

�

1

2h

2

p

g(�

2

� �

1

)

; (13)

the dimensionless versions of eqs. (8) and (10) read

Re(1 + �")

@u

@t

�

@

@z

(�

r

@u

@z

) = 0; (14)
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and

@�

@t

+

@

@z

 

�f(�) + �

^

D(�)

�

�

�

�

�

@u

@z

�

�

�

�

�

@�

@z

!

= 0: (15)

Besides the frequency, the set of dimensionless parameters describ-

ing the problem consists of the four numbers �, Re, " and the

amount of particles present in the suspension, which can be ex-

pressed by the dimensionless height h

0

of the sediment if the oscil-

lation were suddenly turned o�.

We see that the particle radius, which is contained in the Rey-

nolds number but not in �, only appears in the �rst term of eq. (14).

Therefore, a steady state resuspension 
ow does not depend on the

particle radius. This surprising fact has already been mentioned by

Leighton & Acrivos [6].

4 Results

Analytical solutions of eqs. (14) and (15) are possible in the case of

a steady state resuspension Couette 
ow [6] and in the case of a har-

monically oscillating clear 
uid. Then, the Navier-Stokes equations

simplify to

Re

@u

@t

=

@

2

u

@z

2

: (16)

In dimensionless form, the boundary conditions are

u(0; t) = cos!t;

u(1; t) = u

1

cos(!t +  ):

(17)

Then the velocity u is

u(z; t) = R

1

e

�z

cos( 

1

+ �z + !t)

+ R

2

��z

cos( 

2

� �z + !t):

(18)

Equation (18) contains the constants R

1

, R

2

,  

1

,  

2

which follow

from the boundary conditions (17), and the parameter � which is

de�ned as

�

2

=

1

2

Re � !: (19)
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The general case of a resuspension 
ow with oscillating walls, how-

ever, seems analytically intractable.

Because we do not want to solve the equation for the most general

boundary conditions, but only for periodic ones, we can use a simple

second order �nite di�erence scheme which, on the one hand, is

stable against sti�ness of the equations which will inevitably occur

when the concentration approaches �

0

, and on the other hand, the

quantity of error can be made arbitrarily small uniformly by re�ning

the discretization.

In the case of a steady state Couette resuspension 
ow (cf. [6]) it

does not matter whether the top or the bottom wall is moving. In

the oscillating case, however, the situation is di�erent. If we start

with a sediment of certain height h

0

, and the top wall begins to

oscillate, it is possible that no resuspension occurs at all, because

the average velocity in the clear 
uid above the sediment decreases

with e

��z

, as can be seen from eq. (18).

If, on the other hand, the bottom wall is oscillating, the situa-

tion is di�erent. We found that the particles will even completely

resuspend if the frequency of the oscillation is large enough. The

resuspended layer will �ll the channel up to a height h which, in

general, depends on time t. However, if

u

0

� !h

p

; (20)

oscillation of the resuspension height h can be neglected. The in-

equality (20) can be derived from the characteristic time for settling

h

p

=u

0

, if the resuspension height h is of the same magnitude as the

channel height h

p

, and the characteristic time for oscillation 1=!.

Examples of velocity pro�les for di�erent times and of a concen-

tration pro�le for the case of an oscillating bottom wall are shown

in �gures 2a and 2b. The particle volume concentration at the bot-

tom wall (z = 0) is less than �

0

, which shows that in this case

resuspension is complete (�g. 2a). Condition (20) is ful�lled and

the concentration pro�le does not visibly depend on time. Just be-

low z = h the particle volume concentration and thus the e�ective
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viscosity change rapidly. This implies that the e�ective viscosity de-

creases rapidly if z increases. The e�ect of the change in viscosity

is also clearly visible in the velocity pro�les (�g. 2b).

Figure 3a shows the resuspension height h dependent on the di-

mensionless angular velocity ! for some �xed values of the Reynolds

number Re, the Shields parameter � and the initial sediment height

h

0

. We can see that for some angular velocity !

?

, which depends

on h

0

, on � and on Re, the resuspension height is maximal. It is

clear that h has to tend to zero if ! tends to in�nity, because then

the suspension will not be able to follow the bottom wall. Also it

has to be noted that for small ! the resuspension height will visibly

depend on time and a plot would make no sense in this region.

Figure 3b shows the particle volume concentration at the bottom

wall for the same parameter values. It can be seen that for ! > !

0

the particle concentration is less than the particle concentration in

a sediment and for ! > !

0

complete resuspension occurs.

5 Conclusions

In this paper we studied theoretically and numerically viscous re-

suspension of a sediment in a two-dimensional Couette channel un-

dergoing oscillatory shear. The theoretical approach was based on

a mathematical model in which the net downward 
ux of particles

due to gravity is counterbalanced by a di�usive 
ux caused by a

shear-induced random motion of the particles [5]. This model does

not include Brownian motion which is negligible within the range of

particle diameters investigated. We also neglect any non-Newtonian

e�ects. The resulting di�erential equations depend on a Reynolds

number, a Shields type parameter and a relative density di�erence

between the particles and the 
uid. The boundary conditions de-

pend on the oscillation of the walls and the initial conditions on the

total amount of sediment. These equations had to be solved nu-

merically. The results showed that an oscillating top wall does not

in
uence the sediment, but an oscillating bottom wall causes the
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settled particles to completely resuspend if the frequency is large

enough.

The results of this work show once more how viscous e�ects can

lead to resuspension even when turbulence is completely absent at

very small Reynolds numbers. Although in most industrial pro-

cesses involving sediments and suspensions, e. g. the transport of

sediments, the 
ow is highly turbulent and viscous resuspension is

negligible, there are also situations where this phenomenon becomes

important.

Topics of further research in this direction should include a com-

parison of numerical with experimental results, which would also

provide more data concerning the di�usion coe�cient which de-

scribes the di�usive upward 
ux of particles. At the same time, it

would be interesting to have a satisfactory theoretical explanation of

non-Newtonian e�ects which are clearly visible in some situations,

as described by Acrivos [1].
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Figure captions:

Figure 1: Couette gap with suspension

Figure 2: Concentration pro�le (a) and velocity pro�les (b). Re = 21:8, � =

0:046, h

0

= 0:605, " = 0:1, ! = 22:9.

Figure 3: Resuspension height (a) and particle volume concentration at bottom

(b) dependent on the dimensionless angular velocity !. Fixed parameters are

Re = 21:8, " = 0:1, � = 0:046. Bottom wall velocity is oscillating in the interval

�1; 1.
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