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ABSTRACT

In this paper, we present algorithms to reconstruct surfaces

generated by kinematic motions, such as the rotation about

an axis or the rolling of a plane on a developlable surface.

They share the property that a two-dimensional set of scat-

tered data can be transformed into a one-dimensional one

when we are able to detect the kinematics behind the data.

We also present a technique to reconstruct a smooth curve

from a point cloud, which we use in an essential way.

1. INTRODUCTION

Reconstruction of surfaces from point sets such as data from

a 3D scanner has a wide range of applications. The pro-

cess of transforming real parts into computer models is of-

ten called reverse engineering of geometric models. For

an introduction to the basic concepts of reverse engineering

and a survey of the state of the art we refer the reader to

Varady et al. [13].

Two important steps in the process of reverse engineer-

ing are segmentation and surface fitting. There, the given

point set is grouped into subsets each of which has an ap-

propriate single surface to be fitted to the subset. In this

paper, we present algorithms to reconstruct surfaces from

sets of points: On the one hand, we study surfaces which

are invariant with respect to some group of motions, such as

helical surfaces, spiral surfaces, surfaces of revolution (rota-

tional surfaces), and cylindrical (translational) surfaces. On

the other hand, we consider surfaces swept by curves dur-

ing a motion such that they can be well approximated by

surfaces of the first type: These include pipe surfaces, pro-

file surfaces and developable surfaces.

Most of our algorithms assume that the given point set

does not need more segmentation, i.e., at least one single

surface (which is one of the above types) can be fitted to the

set.
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Figure 1: Velocity v(x) of a spiral motion assuming that the

axis passes through the origin (false proportions)

2. EQUIFORM AND EUCLIDEAN MOTIONS

LetM(t) be a one-parameter group of motions of Euclidean

three-space. This means that M(t) is a rigid body motion

for all real numbers t and that M(t)M(s) = M(t+ s). It is

well known thatM(t) is either a translation along the vector

t�v, a rotation about the angle ! �t or a helical motion, which

is a superposition of both. More generally, we consider one-

parameter subgroups of equiform motions, i.e., a superpo-

sition of a scaling and a rigid body motion. Then M(t) is

either one of the above, or a continuous central similarity,

or a spiral motion.

The velocity vector field of M(t) is constant, and it is

well known that it is of the form

v(x) =
�
c+ 
x+ c� x; (1)

where �c, 
x, and c� x represent the translational, scale, and

rotational component of v(x), respectively (see Figure 1).

The following list illustrates the classification of M(t)



in terms of its velocity field, and the type of surface gener-

ated by a curve by the action of M(t).

� 
 = 0:

– c = 0, �c = 0: M(t) is the identitical motion.

– c = 0, �c 6= 0: M(t) = is a translation along �
c,

and S is a cylinder.

– c 6= 0, c � �c = 0: M(t) is rotation about an axis

parallel to c, S is surface of revolution .

– c 6= 0, c � �c 6= 0: M(t) is helical motion about

an axis parallel to c, and S is a helical surface .

� 
 6= 0:

– c 6= 0: M(t) is a spiral motion, S is a spiral

surface.

– c = 0: M(t) is a central similarity, S is a coni-

cal surface.

The process of reconstructing scattered data points d
i

, i =

1; : : : ; k, with a surface generated by one of the special mo-

tions M(t) in the enumeration above has four phases:

1. estimating the surface normal vector n
i

for each d

i

2. computing the velocity field of M(t)

3. approximating a profile curve

4. generating a surface by the profile curve.

Estimation of the surface normals from scattered points is a

well-studied subject in Computer Aided Geometric Design

[2]; we shall omit the details. In this section we focus on

step 2.

Let C = (c;
�
c; 
) 2 R

7 represent the velocity field of

a motion M(t). We are looking for a motion M(t) whose

velocity vectors v(d

i

) at data points d

i

form an angle �

i

close to �=2 with the normal vectors n
i

. Thus, we have to

solve the nonlinear optimization problem which minimizes

G :=

k

X

i=1

cos

2

�

i

; where (2)

cos�

i

= v(d

i

) � n

i

=kv(d

i

)k

=

�
c � n

i

+ 
d

i

� n

i

+ c �
�
n

i

k
�
c+ 
d

i

+ c� d

i

k

;

with �
n

i

:= d

i

� n

i

.

Instead of solving this nonlinear optimization problem,

we proposed [9] to minimize the positive semidefinite quadratic

form

F (C) :=

k

X

i=1

(
�
cn

i

+ 
d

i

n

i

+ c
�
n

i

)

2 (3)

=: C

T

�N � C (4)

subject to the normalization condition

1 = kck

2

=: C

T

�D � C: (5)

Equation (5) sets the angular velocity of the rotational part

to 1 and excludes pure translations and central similarities.

The solution of F ! min subject to (5) is a well-known

general eigenvalue problem. Using a Lagrangian multiplier

�, we solve

(N � �D) � C = 0; C

T

�D � C = 1: (6)

Hence, � must be a root of the equation

det(N � �D) = 0: (7)

Because D = diag(1; 1; 1; 0; 0; 0; 0), (7) is a cubic equation

in �. For any root � and corresponding normalized general

eigenvectorC, we have F (C) = �. Therefore, all roots � are

nonnegative and the solution C is a general eigenvector of

N with respect to D, which belongs to the smallest general

eigenvalue �.

We have so far excluded the case c = 0, i.e., data that

fit well a cone or a cylinder. If we apply our algorithm to

data exactly fitting a cone or cylinder, the matrix N � �D

is singular for all � and thus all coefficients in the char-

acteristic equation (7) vanish; for data close to a cone or

cylinder we are facing a numerical instability. In order to

detect this in advance, we first minimize F with the nor-

malization C

2

= c

2

+
�
c

2

+ 


2

= 1, which leads to an

ordinary eigenvalue problem in R7 . If the solution exhibits

kck; 
 � k
�
ck, we will search for a translation M(t) by let-

ting c = 0; 
 = 0 and minimizing F =

P

k

i=1

(
�
c � n

i

)

2 with

the normalization �
c

2

= 1. This is equivalent to G ! min

and requires the solution of an eigenvalue problem in R

3

(see [11] for more details). Analogously kck � k
�
ck in-

dicates that the data fit a conical surface, with M being a

central similarity.

Let us now continue with the case c 6= 0 and assume

we have found a solution as indicated above. If 
 turns out

to be small compared to kCk, we let 
 = 0 and obtain a

helical motionM(t) by minimizing (4), which is a a general

eigenvalue problem in R6 (see [9]). If 
 is nonzero, M(t)

is a spiral motion. There is exactly one line invariant under

the action ofM(t), which is called the spiral axis and which

passes through the only invariant point, the spiral center z.

This axis is parallel to the vector c.

Multiply invariant surfaces

There are surfaces which are invariant under more than one

one-parameter subgroup. Let us briefly address some of the

possible cases: A cylinder of revolution is invariant whith

respect to all translations along its axis, all rotations about

its axis, and all of their superpositions (helical motions).



Figure 2: Source point cloud (top) and the result of im-

proved moving least squares (bottom)

This situation is characterized by 
 = 0 and two small

eigenvalues (see [9]).

A sphere and a plane are invariant with respect to a

three-parameter set of motions, but planar and spherical data

are easily detected by the property that the surface normals

must either be parallel or intersect in the center of the sphere.

If 
 6= 0, three special cases which all may lead to nu-

merical instabilities should be mentioned. First, data may

be close to a cone of revolution. These cones are invari-

ant by a two-parameter family of spiral motions, which also

contains rotations and central similarities. Thus, two small

eigenvalues will occur. We let 
 = 0 and obtain a (stable)

general eigenvalue problem in R6 when minimizing F . A

weight iteration allows to solve G! min (see [7] for more

details of weight iteration).

Another case of surfaces which are invariant under a

family of spiral motions are spiral cylinders, which are traced

out by lines parallel to the spiral axis. Here we let 
 = 0,

c = 0 and approximate our data by a cylinder as above.

3. FROM MOTION TO SURFACE

3.1. Simple kinematic surfaces

Having determined a generating motionM(t), we look for a

plane P which data points d
i

can be projected into by inter-

(a) (b)

(c) (d)

Figure 3: Reconstruction of surface of revolution: (a) data

points and estimated normal vectors, (b) data points and

computed axis, (c) points projected onto a plane and a curve

approximating the point set, (d) final surface of revolution

secting P with their trajectories under the action of M(t).

If M(t) is a rotation, we choose P such that it contains

the rotation axis. In the case of a helical or spiral motion,

we choose P orthogonal to an appropriate motion trajectory

[9]. Maybe some trajectories intersect P more often than

once. In this case we have to find a domain in P which

intersects the trajectories of the point cloud exactly once.

In this plane we find a curve fitting the resulting thin

cloud of data points. Once the curve is computed, the sur-

face is reconstructed by applying M(t) to the curve for all

t. (see Figure 3).

To find a smooth curve fitting a set of points, we use

a method based on moving least squares [3]. The moving

least squares method [5, 6] is a powerful tool to reduce a

point cloud to a thin curve-like shape which is a near-best

approximation of the point set. The basic idea of moving

least squares is to compute a simple regression curve or sur-

face C

i

for each data point d
i

which locally fits a certain

neighborhood of d
i

, by using a weighted regression scheme.



Then d

i

is moved to a new position d

0

i

on d

i

. In [3], an im-

proved moving least squares technique is suggested using

the concepts of minimum spanning tree, region growing and

refining iteration for point clouds in R2 and R3 . (see Figure

2, showing the result of applying our moving least-squares

technique to a point cloud). After thinning the point cloud,

we can easily reconstruct a smooth curve [3].

3.2. Pipe Surfaces

As an application of curve reconstruction, we introduce an

algorithm for reconstructing a pipe surface. A pipe surface

is generated as envelope of a sphere with a constant radius

whose center runs along a spine curve. When reconstruct-

ing the pipe surface, the sphere radius can be computed by

using a technique described in section 2; we can compute

a torus which locally fits the region after collecting a clus-

ter of points from the given point set. Once the radius r is

found, we translate each data point d
i

by a vector rn
i

, where

n

i

is an estimated unit normal vector at d
i

, always taking

care of the directions of normal vectors. If a given point

set is likely to represent a pipe surface, the translated points

form a reasonably thin point cloud, which corresponds to

the spine curve, and which our reconstruction algorithms

can be applied to (see Fig. 4).

(a) (b)

(c) (d)

Figure 4: Pipe surface reconstruction: (a) data points and

estimated normals, (b) data points translated by the radius

of the swept sphere, (c) approximated spine curve, (d) re-

constructed pipe surface

x

y

�

C

1

C

2

p(t)

�

	

�

Figure 5: Example of a profile surface � generated from the

cylinder axode 	 (top) and top view (bottom)

4. PROFILE SURFACES AND DEVELOPABLE

SURFACES

4.1. Profile surfaces

A profile surface � is traced out by a planar curve p in the

tangent plane � of a developable surface 	 when � is rolling

on 	. A simple example can be seen in Fig. 5 (here 	 is a

cylinder).

The basic idea used in reconstructing a profile surface

from given data points uses the fact that any profile sur-

face possesses a family of osculating surfaces of revolution

�(t) (see [7]). The algorithm finds a finite sequence of ro-

tation axes A
i

of the corresponding surfaces of revolution

�

i

, where consecutive axes either intersect or are parallel.

Then, the profile curves, at which consecutive surface seg-

ments �
i

, �
i+1

meet, lie in the planes �
i

containing both A
i

and A
i+1

. (see Figure 6).

For collecting a point subset generating a �
i

, we use a

technique called region growing [12]. Starting from a set

of points called seed region, which is small both in number

and in diameter, the region grows until it includes all points

which can be approximated within a given tolerance by a
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Figure 6: Rotation axes and boundary planes for two con-

secutive surface of revolution segments

single surface of revolution.

Having found an initial surface of revolution�
i

, this step

is repeated recursively for an adjacent surface of revolution,

�

i+1

, with the constraint that A
i

and A

i+1

intersect in the

projective sense. Figure 7 shows the algorithm of recon-

structing a profile surface.

4.2. Developable surfaces

A developable surface can be reconstructed by an algorithm

similar to profile surface reconstruction. Before we describe

this algorithm (see [1]), we want to tell the reader some ba-

sic facts about developable surfaces and distances between

them, in order to make clear in what sense we approximate.

A developable surface, which by definition is a surface

which can be developed unto a plane in an isometric way, is

shown to consist of pieces of planes, cones, cylinders, and

tangent surfaces of twisted space curves. In any case it car-

ries straight lines (rulings) and the surface tangent plane is

constant along such a ruling. This is in contrast to the non-

developable ruled surfaces, such as the one-sheeted hyper-

boloid, and it makes it possible convert the surface, which

we would naturally think of as a two-parameter set of points,

into something one-parametric, namely its one-parameter

family of tangent planes.

This makes it possible to define a distance between de-

velopable surfaces, more precisely, between two parametriza-

tions of the family of tangent planes. We first define a dis-

tance between two planes u : z = u(x; y) = u

0

+u

1

x+u

2

y,

and v : z = v(x; y) = v

0

+ v

1

x+ v

2

y by

d(u; v) =

Z

D

(u(x; y)� v(x; y))

2

dxdy;

where D is some region of interest in the xy-plane, and

two developable surfaces, or rather their families of tangent

(a) (b)

(c) (d)

Figure 7: Profile surface reconstruction: (a) Data points, (b)

seven wedges are classified, each of which is corresponding

to a surface of revolution, (c) profile curve constructed from

the set of projected data points, (d) resulting profile surface

approximation having seven different surface of revolution

patches

planes U = u(t), V = v(t), then can be given the distance

d(U; V ) =

m

X

i=0

d(u(t

i

); v(t

i

))

2

;

or

d(U; V ) =

Z

d(u(t); v(t))g(t)dt

with some weight function g(t). For a more detailed discus-

sion of these distance functions, and also a suitable choice

of the coordinate system, see [10]. If we determine a plane

by its equation as above, this means that we consider planes

as points in some three-space. The distance function be-

tween planes defines a positive definite scalar product be-

tween them, and the distance function between families of

planes defines accordingly a positive semidefinite scalar prod-

uct in some function space. Thus we are able to reduce the

problem of approximating developable surface to approxi-

mation problems in well-studied function spaces.

In order to be able to apply these distance functions to

scattered data we first have to find the tangent planes or

some approximations of them. We use the well-known fact

that a developable surface possesses a family of osculating

cones, which are locally fitted well by the given data. Thus

we can apply a procedure similar to the reconstruction of

profile surfaces, and after an appropriate segmentation we

approximate the point cloud by a sequence of cones. [4]

shows how to find, for a given sequence of cones, a se-

quence of auxiliary cones which completes the given set



to a tangent-plane continuous developable surface. Its tan-

gent planes define a continuous, piecewise smooth curve

U = u(t) which can be approximated by a spline curve

of a suitable degree of smoothness, which in turn is nothing

but a smooth developable surface approximating the origi-

nal scattered data (see [1]). An example is shown in Fig. 8.

(a) (b)

(c) (d)

Figure 8: Developable surface reconstruction: (a) origi-

nal developable surface (tangent surface), (b) sample points

from tangent surface with some perturbation, (c) 8 approxi-

mated cones, (d) reconstructed developable surface — cone

spline surface

5. CONCLUSION

In this paper, we presented various algorithms to reconstruct

surfaces generated by kinematic motions as well as a tech-

nique to reconstruct a smooth curve from a point cloud. Fur-

ther interesting topics are the treatment of other subgroups

of the group of affine motions, especially those with alge-

braic trajectories. The segmentation of data point clouds

into subsets which fit well to kinematic surfaces is a tricky

problem which is still being investigated.
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