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Abstract. Curve subdivision schemes on manifolds and in Lie groups are
constructed from linear subdivision schemes by first representing the rules of
affinely invariant linear schemes in terms of repeated affine averages, and then
replacing the operation of affine average either by a geodesic average (in the
Riemannian sense or in a certain Lie group sense), or by projection of the
affine averages onto a surface. The analysis of these schemes is based on their
proximity to the linear schemes which they are derived from. We verify that a
linear scheme S and its analogous nonlinear scheme T satisfy a proximity con-
dition. We further show that the proximity condition implies the convergence
of T and continuity of its limit curves, if S has the same property, and if the
distances of consecutive points of the initial control polygon are small enough.
Moreover, if S satisfies a smoothness condition which is sufficient for its limit
curves to be C1, and if T is convergent, then the curves generated by T are also
C1. Similar analysis of C2 smoothness is postponed to a forthcoming paper.

1. Introduction

This paper defines and analyzes a wide class of curve subdivision schemes on
manifolds. Curve subdivision schemes in general consist of repeated refinement
of control polygons. Especially well studied are the linear schemes with rules
for defining the control points at the finer level as finite linear combinations
of control points in the coarser level — see e.g. [10] and [31]. Since any such
convergent curve subdivision scheme is affinely invariant (cf. [10]), we prove that
the rules of the scheme can be expressed in terms of repeated affine averages.
Explicit representations of this type are given for the quadratic and cubic B-spline
schemes, and for the 4-point interpolatory scheme of [11]. This representation of
affinely invariant linear subdivision schemes, which is not unique, is used to define
nonlinear schemes on manifolds in two different ways. One way is to replace affine
averages by geodesic averages. The second consists of projecting affine averages
onto the manifold. These constructions of nonlinear schemes from linear ones
apply to surfaces, to Lie groups and in particular to matrix groups such as the
Euclidean motion group, and to abstract manifolds such as the hyperbolic plane.
Further applications of these two concepts can be found in [30].

The analysis of such a nonlinear scheme is performed by its proximity to the
corresponding linear scheme which it was derived from. The proximity condition
is proved to hold for all the above mentioned nonlinear schemes. It is shown that if
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the linear scheme is convergent, the proximity condition leads to the convergence
of any analogous nonlinear scheme, and to the continuity of its limit curves,
provided that the distances of consecutive points in the initial control polygon are
small enough. Moreover, if the linear scheme satisfies a certain condition which
is sufficient for C1 limit curves, then each of its analogous convergent nonlinear
schemes generate C1 limit curves. Furthermore, the limit curves generated from
the same initial control polygon by different nonlinear schemes, all derived from
the same linear scheme, are close to each other.

Analysis by proximity to a linear scheme is a technique which was used before
in various situations. We mention the paper by [12], which analyzes linear non-
stationary schemes by proximity to linear stationary schemes. In the context of
nonlinear schemes proximity is used in [5], and in the analysis of median interpo-
lating subdivision schemes and their extensions in [33], based on the paper of [24].
In the first two papers mentioned above, the conditions of proximity required for
smoothness are too restrictive. In the last two papers the nonlinearity is rather
weak. Other papers related to median interpolating subdivision schemes are [8],
[25], and [32].

Non-linear interpolatory schemes in Lie groups were constructed from linear
schemes by [7], and used in various applications such as in smoothly interpolating
a motion given at discrete instances. A similar construction of spline-like subdi-
vision schemes on manifolds is suggested by [9]. Although these constructions are
different from the constructions in this paper, we believe that the analysis tools
developed here and in our next paper concerning C2 smoothness ([29]) apply to
these nonlinear schemes.

A general analysis of certain subdivision schemes on abstract Riemannian man-
ifolds is done in [20], [19], and [21]. The geodesic analogues of the second and
third degree B-spline Lane-Riesenfeld algorithms are shown to converge to smooth
curves with Lipschitz derivatives.

We would like to mention a few other kinds of nonlinear schemes. In the func-
tional setting, interpolatory schemes based on the idea of essential non-oscillation
are studied in [4], a certain class of weakly nonlinear schemes are studied in [23],
and shape preserving schemes are studied in [14]. In the geometric setting, exam-
ples of geometry driven schemes are presented in [16]. The analysis of the above
schemes is along different lines, and applies to the particular class of schemes
studied.

The outline of the paper is as follows. Section 2 discusses linear schemes and
the construction of their analogous nonlinear schemes on surfaces and in matrix
groups. All the proofs of the results in this section are postponed to Appendix
A (Section 6). The results in Section 3 are rather general and are not confined
to the schemes of Section 2. Conditions for convergence of subdivision schemes
and for the C1 smoothness of the generated limit curves are formulated. These
conditions are known for linear schemes. A proximity condition between two
schemes is introduced. It is shown that convergence and C1 smoothness for a
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scheme T follow from the proximity condition satisfied by T and a linear scheme
S, which satisfies conditions for convergence and C1 smoothness. The proofs of
the results in this section are given in Appendix B (Section 7). Section 4 returns
to the schemes introduced in Section 2, and verifies that a proximity condition
holds between a linear scheme and its analogous nonlinear scheme, constructed
in one of the ways described by Section 2. The proofs of the results in this section
are presented in Appendix C (Section 8). The results of Sections 2–4 are then
combined in Section 5. Convergence and C1 smoothness is stated and proved for
the nonlinear schemes constructed in Section 2 from appropriate linear schemes,
and also for schemes on abstract Riemannian manifolds and in a certain class of
Lie groups.

2. Linear and Nonlinear Subdivision Rules based on Averaging

2.1. Linear Subdivision Rules and Averaging. We use the symbol p for
a sequence of points pi. A subdivision scheme S is a mapping which takes a
point sequence p as input, and which has another point sequence Sp as out-
put. For the sake of simplicity we consider only infinite sequences pi, where the
index i runs in the integers. Closed polygons are modeled by periodic infinite
sequences. An ‘ordinary’ finite polygon p1, . . . , pr is represented by the sequence
. . . , p1, p1, p2, . . . , pr, pr, . . . . We assume that there is an integer dilation factor
N > 1 such that for all polygons p, q the relation qi = pi+1 for all i implies that
(Sq)i = (Sp)i+N . The case of a dilation factor N > 2 is important to us because
sometimes in the analysis it is necessary to consider several applications of a bi-
nary subdivision scheme as one round of subdivision. For the sake of a unified
treatment, we allow that N assumes any value greater or equal two.

We restrict our attention to subdivision schemes whose definition uses the
notion of average or affine combination. We let

avα(x, y) := (1 − α)x+ αy.(1)

We write down the definition of some well-known subdivision rules in terms of
the av operator: The interpolatory four-point scheme of [11] has dilation factor
N = 2 and is defined by

Sp2i = pi, Sp2i+1 = av1/2(av−2w(pi, pi−1), av−2w(pi+1, pi+2)).(2)

Degree n B-spline subdivision “S(n)” according to [15] has N = 2 and is recur-
sively defined by one splitting step and n averaging steps:

(S(0)p)2i = (S(0)p)2i+1 = pi,(3)

(S(m)p)i = av1/2((S(m−1)p)i, (S(m−1)p)i+1), m = 1, . . . , n.

We mention two cases explicitly: Quadratic B-Spline subdivision (Chaikin’s al-
gorithm) has the form

S(2)p2i = av1/4(pi, pi+1), S(2)p2i+1 = av3/4(pi, pi+1).(4)
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Cubic B-spline subdivision “S(3)” reads

S(3)p2i = av1/2(pi, pi+1),(5)

S(3)p2i+1 = av1/2(av1/4(pi+1, pi), av1/4(pi+1, pi+2)).

For a linear scheme there exists a sequence a = (ai)i∈Z such that

Spj =
∑

i

aj−Nipi.(6)

a is called the mask of S, and is said to be finite if only finitely many ai’s are
nonzero. The subdivision scheme is affinely invariant, if

∑

i

aj−Ni = 1, j = 0, . . . , N − 1.(7)

It is trivial that a finite mask exists for subdivision schemes expressible via the
av operator, and that the scheme is affinely invariant. Indeed also the converse
is true:

Theorem 1. Any affinely invariant linear subdivision rule S with finite mask is
expressible via the “av” operator.

The proof is given in Sec. 6.2.
The expression of a subdivision rule in terms of the averaging operator is not

unique. It should be noted that convergent linear subdivision schemes are either
converging towards zero or are affinely invariant, see [10].

Remark: Note that Theorem 1 guarantees only that each of the N rules of the
linear scheme S is expressible by the av operator. Yet it does not imply that any
affinely invariant scheme has a recursive definition by repeated averaging similar
to (3). ♦

2.2. Geodesic Averages in Surfaces and Geodesic Subdivision. We would
like to replace the straight lines of affine space (which are the shortest curves
ending in two given points) by the geodesic lines in a surface (which again are the
shortest curves, at least locally), and the average of two points by a corresponding
point on the geodesic. This concept belongs to Riemannian geometry, but we
study it first for surfaces. The reason for this is that our method of analyzing
smoothness of nonlinear schemes requires comparison with linear schemes, and
for our proofs the ambient space where a surface is immersed in is necessary. We
consider abstract Riemannian manifolds only in the very end.

Geodesic lines of a surface M in R
n in the sense of elementary differential

geometry are the solution curves c(t) of the symbolic differential equation

c̈ ⊥M,(8)

and all of them are traversed with constant velocity. It is well known that for all
surface curves c(t) the component of c̈(t) orthogonal to M depends only on ċ(t):
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With the tangential component “Dċ
dt

” of c̈, we have

c̈(t) =
Dċ

dt
+ IIc(t)(ċ(t), ċ(t)),(9)

where IIc(t) is the vector-valued second fundamental form of M in the point c(t).
IIp is a symmetric bilinear mapping which takes tangent vectors at the point p
as input, and whose values are vectors orthogonal to M at p (cf. [6], §6.2). It
follows that geodesic lines in surfaces are the solution curves of the differential
equation

c̈ = IIc(ċ, ċ).(10)

Equation (10) implies that if c(t) is a geodesic, then so is any curve of the form
c(at+ b). This property allows us to re-parametrize a given geodesic such that it
is traversed with unit speed. In that case the length of the curve segment between
points c(t) and c(s) equals |t− s|. The reparametrization property above means
that there is never a unique geodesic ending in given points p and q.

A convenient way to denote the geodesic starting at p with tangent vector v is
in terms of the exponential mapping, which is defined as follows: expp(w) means
the point c(t), if c(t) is the geodesic with initial value c(0) = p and initial tangent
vector v = ċ(0), and w = tv. The decomposition w = tv is of course not unique,
but all possible ways of computing expp(w) yield the same result. The geodesic
c(t) has the property that expp(tv) = c(t), for all t.

If we are to replace straight lines by geodesics, we need the existence of a
unique shortest geodesic which connects the two given points (unique up to
reparametrization). For an introduction into this topic see e.g. [17], § 10, or
Th. 3.7 and Remark 3.8 of [6].

Basically, if p and q are close enough, there is always v, smoothly dependent
on q, such that expp(v) = q, and c(t) = exp(tv) is the shortest geodesic with
c(0) = p and c(1) = q. Within a compact subset of a complete surface this
is true for all points which are closer than a given small maximum distance.
The properties enumerated above follow from the fact that geodesics fulfill the
differential equation (10).

Our geodesic averaging (see below) requires the existence of a continuation of
the geodesic c(t) beyond the defining two points. This always exists locally, and
for all parameters t if the surface is complete (see the references above).

In this paper we are not concerned with the problem of existence of geodesics
at all, we just assume that we can carry out all necessary constructions. We
define

Definition 1. If c is the unique shortest geodesic which joins x and y, then we
let

g-avα(x, y) := c(αt), if c(0) = x, c(t) = y.(11)

The g-av operator serves as a replacement of the av operator.
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Figure 1. Geodesic B-Spline subdivision of degree three. From
left to right: Tp, T 2p, T 3p, T∞p.

Note that both the affine average and the geodesic average fulfill the relations

av1−α(y, x) = avα(x, y), g-av1−α(y, x) = g-avα(x, y).(12)

This follows from the fact that for all geodesics c(t), also c(t0 − t) is a geodesic.
We should mention that even if we use the word ‘average’ we do not restrict the
factor α to the interval [0, 1].

Definition 2. The geodesic analogue T of an affinely invariant linear scheme S,
which is expressed in terms of averages, is defined by replacing each occurrence
of the av operator by the g-av operator.

Fig. 1 shows the result of geodesic subdivision according to the algorithm of
Lane-Riesenfeld.

2.3. Geodesic Averages in Matrix Groups. This section extends the concept
of geodesic subdivision to the group of Euclidean motions, such that the helical
motions appear as geodesic-like curves (cf. [3] or [13]). This means e.g. that the
geodesic midpoint of two positions of a rigid body is found by first determining
the shortest helical motion which transforms the first position (at time t = 0)
into the other (at time t = τ), and then evaluating this helical motion half way
in between, i.e., at t = τ/2. Fig. 2 shows the helical motions which connect given
positions of a rigid body, together with the result of subdivision defined in this
way.

The general concept we have to discuss here is that of a one-parameter subgroup
of a matrix group, or more generally, of a Lie group. The relation between matrix
groups and abstract Lie groups is in some ways similar to the relation between
surfaces and abstract Riemannian manifolds. We consider the abstract case only
in the end. For an introduction into Lie groups, see e.g. [22].

The curves we use for subdivision in a Lie group are called geodesics also, which
will be justified when we show that they too satisfy a second order differential
equation just like the geodesics in surfaces.

Let G be a linear Lie group, i.e., a smooth manifold immersed in the space of
n× n matrices, which is closed with respect to matrix multiplication and matrix
inversion. Prominent examples are On and SOn, the groups of orthogonal matri-
ces and of orientation-preserving orthogonal matrices. The group of Euclidean
motions, here denoted by SOn n R

n, is also a matrix group: a matrix g ∈ SOn
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Figure 2. Left: Helical motions (i.e., group geodesics) which con-
nect a sequence of positions of a rigid body. Right: Two rounds of
geodesic B-spline subdivision of degree three.

and a translation vector t ∈ R
n are composed, in block matrix notation, to the

(n+ 1) × (n+ 1) matrix
[

1 0
t g

]
(13)

Multiplication of two such matrices yields the result
[

1 0
t1 g1

]
·
[

1 0
t2 g2

]
=

[
1 0
t1 + g1 · t2 g1 · g2

]
(14)

which corresponds to the composition of transformations which are represented
by the matrix/vector pairs (g1, t1) and (g2, t2). Thus also the group of Euclidean
motions fits the matrix group formalism.

The symbol “n” used in the definition of SOn nR
n means a certain semidirect

product, and it is obvious how to define GnR
n for any group G of n×n matrices.

For the general definition of ‘semidirect product’, see e.g. [22], p. 15.
One-parameter subgroups of matrix Lie groups are curves of the form

c(t) = exp(tv) =
∞∑

k=0

(tv)k

k!
.(15)

The tangent vector ċ(0) equals v. We use those curves as the geodesics emanating
from the identity element of the group. Geodesics emanating from any other
element g ∈ G are, by definition, the left translates

c(t) = g · exp(tv).(16)

Why we use left translates and why the curves defined by (16) represent the helical
motions, if evaluated for the Euclidean motion group, is the topic of Section 6.3.
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The existence of a matrix logarithm shows that there is a neighbourhood of the
identity where for all g there is a one-parameter subgroup c(t) = exp(tv) with
c(τ) = g, such that both v and τ depend smoothly on g. By left translation of this
neighbourhood, we get an analogous local statement for any point in the group.
If a concrete group like the Euclidean motion group is given, we often know how
to find the shortest geodesic which ends in two given points: For SOn n R

n, it is
the shortest helical motion which connects two given positions of a rigid body.

We establish that for groups the geodesics fulfill a second order differential
equation similar to the differential equation of geodesics in surfaces, and we show
cases where they are traversed with constant velocity. This enables us to treat
both the surface case and the Lie group case together.

Lemma 1. Assume that G is a Lie group of n× n matrices. Then the curves of
(16) are precisely the solution curves of the differential equation

c̈ = Bc(t)(ċ(t), ċ(t)),(17)

with

Bg(v, w) =
1

2
(vg−1w + wg−1v).(18)

If G has the property that left translations h 7→ gh are isometric with respect to
a Euclidean scalar product in the linear space of n× n matrices, then the curves
of (16) are traversed with constant velocity.

The proof is given in Sec. 6.4.

Definition 3. A Lie group of n × n matrices is called of constant velocity, if
there is a Euclidean metric in the n2-dimensional space of matrices, such that the
curves of (16) are traversed with constant velocity.

We endow the n2-dimensional vector space R
n×n of matrices with the scalar

product

〈v, w〉 = tr(vwT ).(19)

We have 〈v, w〉 = 〈w, v〉 because of tr(vwT ) = tr((vwT )T ) = tr(wvT ).

Lemma 2. With the scalar product (19), both G and G n R
n are of constant

velocity, if G is a subgroup of the orthogonal group On. Any compact matrix
group becomes a subgroup of On after a suitable coordinate transform.

The proof is given in Sec. 6.4.
Lemma 2 directly applies to the (special) orthogonal groups On (SOn), and

also to the Euclidean motion group.

2.4. Projecting Averages and Projection Subdivision. The method of pro-
jection is a very general way of introducing nonlinearity.

Definition 4. A generalized projection P onto a submanifold M of Euclidean
space is a smooth mapping onto M defined in a neighbourhood of M , such that
P (x) = x for all x ∈M .
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Figure 3. Projection onto the Euclidean motion group. (A, a)
and (B, b) are two positions of the teapot, with A,B ∈ SO3 and
a, b ∈ R

3. Left: Positions avα((A, a), (B, b)), Right: Positions
Pavα((A, a), (B, b)). α has the values 0, 1/4, 1/2, 3/4, 1.

How smooth exactly P must be depends on the application. We later require
that the norms of first and second derivatives of P are bounded by some constants.
One example of a projection is the orthogonal projection onto M .

Definition 5. The projection analogue T of an affinely invariant linear scheme
S, which is expressed in terms of averages, is defined by replacing each occurrence
of the av operator by “Pav”.

In this way we get projection variants of the B-spline schemes and the inter-
polatory 4-point scheme defined by Equations (3), (4), (5), and (2), respectively.

Remark: Instead of adding a projection after each occurrence of “av”, as in
Def. 5, we could have defined an analogous projection scheme T by simply defining
Tpi = PSpi. There is no reason why the results of this paper should not be true
for this simpler definition, but the analysis is no longer analogous to the geodesic
case. This is the reason why we use Def. 5 here. ♦

Examples of projections which are readily computable are the gradient flow to-
wards general level set surfaces, and orthogonal projection onto selected surfaces
like spheres, tori, or the Euclidean motion group. Orthogonal projections onto
that group are treated by [2] and [28]. We briefly mention that if A is an n× n
matrix with positive determinant, a possible projection of the affine transforma-
tion x 7→ A · x + a onto the Euclidean motion group is the Euclidean motion
x 7→ PQ · x + a, where AJ = PDQ is a singular value decomposition, and J
is a positive definite matrix. In applications, J is chosen as the inertia matrix
of the rigid body being transformed. This projection procedure is illustrated in
Fig. 3, which shows the result of both linear and projection averaging. The for-
mer in general does not yield matrices which correspond to Euclidean positions.
Fig. 4 shows two rounds of interpolatory subdivision according to the projection
analogue of the four-point scheme of (2).
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Figure 4. Projection subdivision in the Euclidean motion group
according to the interpolatory four-point scheme of (2). Left: p.
Right: T 2p.

3. Convergence and Smoothness Analysis

3.1. Convergence and Smoothness Conditions. This section introduces con-
ditions called ‘convergence’ and ‘smoothness’ conditions. It will be seen later that
indeed they are the main ingredients in our proofs concerning the convergence of
a subdivision scheme, and the continuity and smoothness of its limit curves.

If p is a sequence of points, we use the symbol ∆p for the sequence of differences:
∆pi = pi+1 − pi. Further we define

d(p) = sup
i

‖pi+1 − pi‖, ‖p‖∞ = sup
i

‖pi‖.(20)

Obviously,

d(p) = ‖∆p‖∞.(21)

Definition 6. A subdivision scheme S is said to satisfy a convergence condition
with factor µ0 < 1, if

d(Slp) ≤ µl
0d(p) for all l, p;(22)

and it is said to satisfy a smoothness condition with factors µ0, µ1 < 1 and the
dilation factor N , if in addition to (22) for all l, p,

d(N l∆Slp) ≤ µl
1d(∆p).(23)

A mixed smoothness condition is satisfied if (22) holds and there is µ1 < 1 as
above such that for all l, p

d(N l∆Slp) ≤ µl
1P1(l)d(p),(24)

where P1 is a linear polynomial with nonnegative coefficients.
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There are schemes where (22) or (23) is true only for all l greater or equal a
certain number L. For example, the interpolatory 4-point scheme of (2) has L =
2, as is explained in more detail later. In that case we define a new subdivision
rule S := SL, which then fulfills both (22) and (23). We subsequently analyze S
instead of S.

Mixed conditions of the type (24) occur naturally in our smoothness analysis
of nonlinear schemes. This is the reason why we consider them, instead of more
familiar conditions of the form d(N l∆Slp) ≤ C1µ

l
1d(p).

Most of our statements consider polygons whose points are contained in some
subset M of R

n, and fulfill the condition d(p) < ε. Such a class of polygons
is denoted by PM,ε. The statements employ a scheme “S”, which is linear and
whose properties are known, and another scheme “T”, which is to be analyzed (S
is to help with the analysis). In the following we impose the additional condition
that Tp ∈ PM,ε if p ∈ PM,ε, but we don’t require the same for Sp.

For instance, we will encounter the case that the smoothness conditions are
true only for p ∈ PM,δ for some δ > 0.

3.2. Convergence and Smoothness of Linear Schemes. In this section we
verify that convergence and smoothness conditions actually hold for the linear
schemes mentioned above. Following [10], we use the concept of k-th derived
scheme Sk of a linear subdivision scheme S, which is recursively defined by

S0 = S, Si(∆p) = N∆Si−1p.(25)

There may be no derived schemes. If S is affinely invariant, then S1 exists
(cf. [10]). For the convenience of the reader, we repeat some definitions here,
especially because the case N > 2 is not so familiar. It is customary to use
the terms in the sequences a (the mask of the scheme) p (the polygon), Sp (the
subdivided polygon), ∆p (the difference polygon) as coefficients of the formal
Laurent series a(z), p(z) Sp(z), and ∆p(z), respectively, such that e.g. a(z) =∑
aiz

i. Such functions in general are called generating functions of the respective
sequences, and a(z) is called the symbol of S. By definition, and in view of (6)

Sp(z) = a(z)p(zN), ∆p(z) = (1 − z)p(z)z−1.(26)

(25) implies that the symbol a[1](z) of the derived scheme S1 satisfies

a[1](z)p(zN)
1 − zN

zN
= Na(z)p(zN)

1 − z

z
(27)

=⇒ a[1](z) = a(z)
NzN−1

1 + · · · + zN−1
.

For any subdivision scheme S two rounds of subdivision yield yet another scheme,
S2. If S has dilation factor N , then the dilation factor of S2 equals N 2. The
mask c and symbol c(z) of S2 are given by

cj =
∑

i aj−Niai, c(z) = a(z)a(zN).(28)
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The norm ‖S‖ of S is defined by

‖S‖ = sup
‖p‖∞≤1

‖Sp‖∞.(29)

In terms of the mask a, we have

‖S‖ = maxj

∑
i |aj−Ni|.(30)

Knowledge of the norms of derived schemes yields factors µ0, µ1 as required by
(22):

d(Sp) = ‖∆Sp‖∞ =
1

N
‖S1∆p‖∞ ≤ ‖S1‖

N
d(p) =⇒ µ0 =

1

N
‖S1‖;(31)

and similarly for (23): We use d(∆p) = ‖∆2p‖∞ and compute

d(N∆Sp) =
1

N
‖(N∆)2Sp‖∞ ≤ 1

N
‖S2‖ d(∆p) =⇒ µ1 =

1

N
‖S2‖.(32)

B-spline subdivision of degree n according to (3) has N = 2 and the symbol

a(z) = (1 + z)n+1/(2z)n (n ≥ 0).(33)

Its first derived scheme is the (n − 1)-st degree B-spline scheme. If n ≥ 2,
Equations (30), (31), and (32) show that convergence and smoothness conditions
are fulfilled with factors µi = 1/2.

If the symbol a(z) of a linear scheme S with dilation factor N has the form

zl(1 + z + · · · zN−1)
k∏

j=1

((1 − αj)z + αj), (l ∈ Z, k ≥ 0),(34)

then S is defined, apart from an index shift, by a splitting step, and k averaging
steps with factors αj. An example of such a symbol for N = 2 is furnished by
the B-spline schemes defined by (3), whose symbol is given by (33). The symbol
of the interpolatory four-point scheme of (2) has the form

a(z) = −w
( 1

z3
+ z3

)
+

(1

2
+ w

)(1

z
+ z

)
+ 1.(35)

For 0 < w ≤ 1/16, a(z) has the form (34) with l = −3, N = 2, and

α1,2 = −2w + γ ± σ1

2w − γ ∓ σ1
, α3,4 = −2w − γ ± σ2

2w + γ ∓ σ2
, α5 =

1

2
,

where γ =
√

2w(1 + 2w), σ1,2 =
√

2w(1 − 4w ± 2γ).

It follows that the four-point scheme of (2) has a recursive definition similar to (3).
It satisfies a convergence condition, but not a smoothness condition. It is known
(see [10], Equations (3.22)ff) that in the case 0 < w < 1/8, the iterated scheme
S2 has the required properties. We have ‖(S2)1‖ = 8w + 1, and ‖(S2)2‖ < 4. In
view of (32), it follows that for 0 < w < 1/8, S2 fulfills a smoothness condition
with factors µ0 < 1/2, µ1 < 1, and N = 4.
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3.3. Proximity Conditions. In this section we present the inequalities which
we use to quantify the differences between linear subdivision schemes of known
properties and nonlinear ones, in order to conclude similar properties for the
nonlinear schemes. Following [26], we define

Definition 7. Subdivision schemes S, T satisfy a proximity condition for a class
PM,δ of polygons p, if there is a constant C such that for all p ∈ PM,δ,

‖Sp − Tp‖∞ ≤ Cd(p)2.(36)

A higher order proximity condition which involves d(∆p) can be used to show
C2 smoothness of limit curves. This will be the subject of [29].

As has been mentioned before, it is possible that a subdivision scheme S does
not fulfill (22) or (23), and we have to consider S := SL instead. If S and T are
in proximity, then obviously this is true for SL and TL also. So the smoothness
analysis will be applied to S and T := T L.

3.4. Convergence from Proximity and an Approximation Result. It is
our aim to show that a convergence condition satisfied by a linear subdivision
scheme S together with a proximity condition satisfied by S and T implies that
T also satisfies a convergence condition, and generates continuous limit curves.

Theorem 2. Suppose that S, T satisfy a proximity condition for all p ∈ PM,ε,
and S satisfies a convergence condition with factor µ0 < 1. Then there is δ > 0
and µ0 < 1 such that T satisfies a convergence condition with factor µ0 for all
p ∈ PM,δ. By choosing δ small enough, we can achieve that µ0 − µ0 is arbitrarily
small.

The proof is given in Sec. 7.1.
It is not difficult to show that a convergence condition together with proximity

ensures convergence even of a nonlinear subdivision algorithm. In order to define
what that means exactly, we introduce the following auxiliary functions:

Assume that T is a subdivision scheme and that p is a polygon. For each
T jp we consider the piecewise linear function T jf , which is linear in the intervals
[iN−j, (i+ 1)N−j] (i ∈ Z), and whose values at the integer multiples of N−j are
given by the points of T jp. We use the notation

f = F0(p), Tf = F1(Tp), T 2f = F2(T
2p), . . .(37)

Then

T∞f = lim
j→∞

T jf(38)

parametrizes the limit curve “T∞p”. It is obvious by construction that

‖p− q‖∞ = ‖Fj(p) −Fj(q)‖∞.(39)

Theorem 3. We assume that S is a convergent linear subdivision scheme of finite
mask, and that T is as required by Theorem 2. With the notation of Theorem 2,
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we let f = F0(p) for p ∈ PM,δ. Then the sequence T jf converges to a continuous
limit in the maximum norm.

The proof is given in Sec. 7.1.

Remark: It is difficult to find examples where geodesic or projection subdivision
do not converge. There are nonlinear schemes which fulfill a convergence condi-
tion for all p with d(p) finite: It is easy to show that the geodesic analogue T of
a scheme S with symbol (34), which works by one splitting step and k rounds of
averaging, has the property that d(Tp) ≤ max(|α1|, |1 − α1|)d(p), if 0 ≤ αj ≤ 1
for j = 2, . . . , k. In the case 0 < α1 < 1 this implies a convergence condition for
T , and Theorem 3 applies. ♦

When doing subdivision in a surface, we want to ensure that the limit curve
T∞p is contained in that surface, if the surface is closed.

Lemma 3. Suppose that T converges in the sense of Theorem 3. If there is a
closed set K such that T jp is contained in K for all j, then so is the limit curve
T∞p.

The proof is given in Sec. 7.1.
Our next result concerns the distance of the limit curves of a nonlinear scheme

which is in known proximity to a linear scheme, from the limit curves generated
by the linear scheme. The following observation is used in the statement of the
theorem: If S is affinely invariant and convergent, then the norms of the iterates
of S converge to 1, implying that the norms ‖S i‖ are uniformly bounded.

Theorem 4. We use the requirements and notation of Theorem 2, and we assume
that S has the property that ‖S i‖ ≤ A. Then for any polygon p ∈ PM,δ,

‖S∞p− T∞p‖∞ ≤ AC

1 − µ2d(p)
2.(40)

The proof is given in Sec. 7.1.

Remark: Theorem 4 allows to transfer stability properties of S to T . If e.g.
‖S∞(p + ε) − S∞(p)‖∞ ≤ D · ‖ε‖∞, then ‖T∞(p + ε) − T∞(p)‖∞ ≤ AC

1−µ2 (d(p +

ε)2 + d(p)2) +D‖ε‖∞ ≤ AC
1−µ2 (2d(p)2 + 4d(p)‖ε‖∞ + 4‖ε‖2

∞) +D‖ε‖∞ ♦

3.5. Smoothness from Proximity. The following theorem establishes that
smoothness conditions as defined by Def. 6 follow from the proximity conditions
as defined in Def. 7.

Theorem 5. Suppose that S, T satisfy the proximity condition for p ∈ PM,ε, and
that S satisfies a smoothness condition of type (23) with factors µ0, µ1 such that

µ0 < µ∗
0 =

1√
N
, µ1 < 1.(41)

Then there is δ > 0 such that T satisfies a mixed smoothness condition of type
(24) with factors µi which also satisfy (41), for all p ∈ PM,δ.



CONVERGENCE AND C
1

ANALYSIS OF SUBDIVISION SCHEMES . . . 15

The proof is given in Sec. 7.2.
With this result, it is possible to show that the curves T∞p are C1 if d(p) is

small enough.

Theorem 6. Under the conditions of Theorem 5, with S of finite mask, the limit
curves T∞p are C1 for all polygons p such that T lp converges.

The proof is given in Sec. 7.2.

Remark: The completeness of the norm of the space we are working in is essential
for the proofs of both Theorem 3 and Theorem 6. But we neither used the
finite dimension of the space, nor the fact that the norm is induced by a scalar
product. ♦

4. Verification of Proximity Conditions

4.1. Geodesic Subdivision. We show that a linear subdivision scheme and its
analogous geodesic scheme (both for a surface and for a matrix group of constant
velocity) fulfill a proximity condition.

We consider a surface M contained in a Euclidean vector space, which is
equipped with geodesics — either in the sense of elementary differential geometry,
or in the matrix group sense. In both cases, geodesics are the solution curves of
a differential equation of the form

c̈(t) = Bc(t)(ċ(t), ċ(t)),(42)

where B is either the second fundamental form of (10) or the expression defined
by (18). Bp is supposed to depend continuously on the point p. This is trivial
for the group case, and follows from C2 smoothness of the surface under consid-
eration in the Riemannian case. Recall that B in both cases is symmetric and
bilinear. Moreover, solution curves are traversed with constant velocity, and the
reparametrization properties of Section 2.2 hold true.

We use the symbol TxM for the tangent space of M at the point x. We consider
such open subsets V of M where there exists a constant D with the property that

x ∈ V, v, w ∈ TxM, ‖v‖ ≤ 1, ‖w‖ ≤ 1 =⇒ ‖Bx(v, w)‖ ≤ D.(43)

Clearly all points in M have a neighbourhood V where there exists D > 0 such
that (43) holds true. A global D exists if M is compact. In the surface case, the
fact that there exists a global D for the entire surface M means that the normal
curvatures of M are bounded.

In the case of a matrix group of constant velocity, the constant D can be
computed explicitly: Let D = max‖v‖,‖w‖≤1 ‖vw‖. Then for ‖v‖, ‖w‖ ≤ 1 we have

‖Bg(v, w)‖ ≤ D
2
(‖v‖‖g−1w‖ + ‖w‖‖g−1v‖) = D.

The following is easy to show:

Lemma 4. Assume that (43) holds true with D > 0 and an open set V , and that
the points x, y are joined by a unique shortest geodesic of length ≤ 1/D. If the
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geodesic segment used in g-avα(x, y) is contained in V , then

‖ avα(x, y) − g-avα(x, y)‖ ≤ 2Dmin(|α| + α2, |β| + β2)‖x− y‖2,(44)

with β = 1 − α.

The proof is given in Sec. 8.2.
By using the elementary estimate of Lemma 4 several times, we are able to

prove the following general result:

Lemma 5. Let V and D be as in (43). Consider an affinely invariant subdivision
scheme S and its analogous geodesic scheme T . Let the class P ′

V,δ consist of all
polygons p in V with d(p) < δ and which have the property that all geodesic
segments used in subdividing according to T are contained in V .

Then S and T fulfill a proximity condition for all polygons p ∈ P ′
V,δ. The

constant C in the proximity condition depends on T , D, and δ.

The proof is given in Sec. 8.2.

Remark: As a consequence of the proof of Lemma 5 we see that it holds also for
nonstationary schemes if the factors used in averaging are bounded: The upper
bound on ‖Sp−Tp‖∞ as required by the proximity condition then is of the form
Cd(p)2, where C depends on an upper bound of these factors. ♦

4.2. Taylor’s Formula. In proving the proximity condition for projection sub-
division schemes, we represent the projection operator by its Taylor expansion.
For the convenience of the reader, we write down Taylor’s formula in the form
we use it. If P is a mapping of sufficient smoothness from R

n to R
m, then for all

x, h such that the line segment with endpoints x and x + h is contained in P ’s
domain,

P (x+h) = P (x)+
dxP (h)

1!
+· · ·+ dk

xP (h, . . . , h)

k!
+
dk+1

x+ϑhP (h, . . . , h)

(k + 1)!
,(45)

for some ϑ ∈ [0, 1]. The k-th derivative of P in the point x, dk
xP , is a k-linear

mapping (Rn)k → R
m of the form

dk
xP (u1, . . . , uk) =

∑

ij∈{1,...,n}

ui1
1 · · · uik

k

∂kP (x)

∂xi1 · · · ∂xik
,(46)

where the vectors ui have coordinates uj
i . Its norm is defined by

‖dk
xP‖ := max{‖dk

xP (u1, . . . , uk)‖ : ‖ui‖ ≤ 1}.(47)

If the domain of P is an interval, then dk
xP (u, . . . , u) = ukP (k)(x), and ‖dk

xP‖ =
|P (k)(x)|.
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4.3. Projection Subdivision. In order to show proximity results for projection
subdivision, we require the existence of upper bounds for the norms of the pro-
jection’s derivatives. In compact subsets, upper bounds always exist in analogy
to the constant D of (43).

We consider an open subset U of R
n (the space where the surface under con-

sideration is contained in), where there are constants D,D′ ≥ 0 such that

x ∈ U =⇒ ‖dxP‖ ≤ D, ‖d2
xP‖ ≤ D′.(48)

If P is the orthogonal projection onto M , then D measures a certain curvature
of M , and D′ has an interpretation as a change of curvature.

The following is a simple application of Taylor’s formula. It is similar to
Lemma 4.

Lemma 6. Assume that U,D,D′ are as in (48), and that the straight line segment
which contains the points x, y, (1 − α)x+ αy is contained in U . Then

‖ avα(x, y) − Pavα(x, y)‖ ≤ D′

2
min(|α| + α2, |β| + β2)‖x− y‖2,(49)

where β = 1 − α.

The proof is given in Sec. 8.3.
Similar to the geodesic case, we have

Lemma 7. (the projection analogue of Lemma 5) Let U , D, and D′ be as in (48).
Consider an affinely invariant subdivision scheme S and its analogous projection
scheme T . Let the class P ′

U,δ consist of all surface polygons p with d(p) < δ, and
such that the line segments used in averaging in the application of T are inside
U .

Then S and T fulfill a proximity condition for all polygons p ∈ P ′
U,δ. The

constant C in the proximity condition depends on T , D, D′, and δ.

The proof is given in Sec. 8.3.

5. Results

We give a definition, which collects the requirements we impose on a linear
subdivision scheme S.

Definition 8. We call a linear subdivision scheme S 0-admissible, if it is affinely
invariant and fulfills the convergence condition (22) with a factor µ0 < 1. S is
called 1-admissible if in addition a smoothness condition (23) holds true, such
that the factors µ0, µ1 are bounded according to (41).

By the analysis of linear schemes (cf. [10]) a k-admissible subdivision scheme
S produces Ck limit curves (k = 0, 1).

Theorem 7. If S is a k-admissible scheme, k = 0, 1, and T is its analogous
geodesic scheme in a surface in the sense of Section 2.2, then T converges and
T∞p is a Ck curve for all p with d(p) small enough.
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Proof. Lemma 5 says that S and T meet a proximity condition. In the case
k = 0, Theorem 2 together with Theorem 3 shows the convergence of T and
the continuity of its limit curves. In the case k = 1, Theorem 5 shows a mixed
smoothness condition for T , and Theorem 6 shows that the limit curves of T are
C1. �

We say a few words concerning the sentence “all p with d(p) small enough” in
the statement of Theorem 7. It does not mean that for a given surface there is
a global constant δ such that for all p with d(p) < δ the theorem holds. Such a
δ in general exists only in a compact subset of M , but can exist globally if there
exists a global constant D such that (43) holds.

One inference however can safely be made: If a nonlinear subdivision scheme
happens to converge, if applied to a given finite polygon, then the limit curve is
smooth, if the appropriate conditions as set down in Theorem 7 are met. This
is because p itself is contained in a compact set, for which there exists δ > 0
such that the theorem applies; and in the process of subdivision, d(p) converges
towards zero.

In Section 2.2 we defined geodesic averaging and the geodesic analogue of
an affinely invariant linear scheme by expressing it in terms of averages, and
by replacing the affine average by the geodesic average. The same definition
applies to Riemannian manifolds, if geodesics and the exponential mapping are
understood in the Riemannian sense, see [6]. We give an example below.

Corollary 1. Theorem 7 applies to geodesic subdivision in Riemannian mani-
folds.

Proof. By the global embedding theorem of [18], any Riemannian manifold can
be embedded as a surface of the same smoothness into a Euclidean space of
sufficiently high dimension. Theorem 7 applies to this surface. �

Example Figure 5 shows four points connected by geodesics in the conformal
disk model of the hyperbolic plane H2. It consists of the points of the open unit
disk in Euclidean R

2. For an introduction into this topic, see e.g. [1]. The vector
model of H2 consists of the points of the upper sheet of the two-sheeted hyper-
boloid with equation z2 = x2 + y2 + 1 in R

3, which is one half of the unit sphere
with respect to the pseudo-euclidean scalar product 〈(x1, y1, z1), (x2, y2, z2)〉 =
x1x2 + y1y2 − z1z2. Mapping a point (x, y) from the disk model to the vector
model is defined by projecting the point (x, y, 0) from the point (0, 0,−1) onto
the hyperboloid. The scalar product and norm of tangent vectors in the vec-
tor model is defined via the scalar product above. H2 is thus equipped with a
Riemannian metric. So far it is not a surface in a Euclidean space, because the
scalar product we use is not Euclidean. Small pieces of H2 are realizable as a
surface of Gaussian curvature −1 in R

3, but it has been shown that there is no
C2 immersion of the entire hyperbolic plane into R

3. For that, we have to resort
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Figure 5. Geodesic B-Spline subdivision of degree three in the
hyperbolic plane. Left: Polygons p and T 4p. Right: Polygons ∆p
and 24∆T 4p.

to higher dimensions. We never actually use this embedding except by referring
to its existence in the proof of Cor. 1.

Recall that in the Euclidean unit sphere of R
3, geodesics are defined via

expp(tv) = cos t · p + sin t · v, if v is a unit vector; and the geodesic distance
δ(p, q) of points p, q fulfills cos δ(p, q) = 〈p, q〉. In the vector model of H2, this is
similar: expp(tv) = cosh t · p + sinh t · v, if 〈v, v〉 = 1; and cosh δ(p, q) = |〈p, q〉|.
In the disk model, geodesics appear as circles which intersect the unit circle or-
thogonally.

We demonstrate the geodesic analogue of the cubic B-spline scheme in the
hyperbolic plane in Fig. 5. ♦

Theorem 7 not only applies to geodesic subdivision in surfaces as defined in
Sec. 2.2 but also for the case of matrix groups treated in 2.3. We will however be
able to show a stronger result (Theorem 8 below). The difference between these
two theorems is that now there is a global constant δ > 0, depending only on the
scheme and the group, which ensures convergence of T lp if d(p) < δ. The reason
for this is that in the matrix group case, there is a global constant D for (43).

Theorem 8. Assume that G is a matrix group of constant velocity. If S is a
k-admissible scheme with k = 0 or k = 1, and T the analogous geodesic scheme
in G, then there exists δ > 0 such that T converges and T∞p is a Ck curve for
all p with d(p) < δ.
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Proof. The result is based on Lemma 5 (which establishes proximity of S and T ),
Theorem 2 and Theorem 3 (for convergence and continuity), and Theorem 5 and
Theorem 6 (for C1 smoothness). �

In order to extend this result to abstract Lie groups, we give the following
definition, which extends the definition of matrix groups of constant velocity.

Definition 9. A Lie group is called of constant velocity, if it is locally isomorphic
to a matrix Lie group of constant velocity.

Remark: The condition regarding constant velocity refers to the Lie algebra of
a Lie group, because this is the object shared by all Lie groups which are locally
isomorphic. In particular, all real Lie groups whose Lie algebra is compact (cf.
[22]), are locally isomorphic to a compact Lie group (loc. cit., p. 228), which in
turn is realizable as a matrix Lie group (loc. cit., p. 241). So in view of Lemma 2,
all real Lie groups with compact Lie algebra are of constant velocity. ♦
Corollary 2. Theorem 8 holds with G replaced by a Lie group of constant velocity,
with geodesics defined by (16), and with geodesic averages as in Def. 1.

Proof. Geodesics are invariant with respect to left translation in the group, and
therefore so is geodesic subdivision. Both continuity and smoothness are local
properties. It is therefore sufficient to consider a neighbourhood of the identity
in the group. By the constant velocity assumption, we may assume, without loss
of generality, that such a neighbourhood is realized in a matrix group. Geodesics
are invariant with respect to this local embedding of the group, so Theorem 8
regarding matrix groups applies. �

There is a result very similar to Theorem 7, which concerns projection subdi-
vision:

Theorem 9. If S is a k-admissible scheme, k = 0, 1, and T is its analogous
projection scheme, then T converges and T∞p is a Ck curve for all p with d(p)
small enough.

Proof. Lemma 7 establishes proximity of S and T . Then we invoke Theorem 2
and Theorem 3 to show convergence of T and the continuity of its limit curves
(in the case k = 0), and Theorem 5 and Theorem 6 to show C1 smoothness (in
the case k = 1). �

Remark: In Theorem 7, Theorem 8, and Theorem 9, proximity was essential for
the convergence of T . Yet T depends on a particular representation of S in terms
of averages, and proximity holds for all possible choices of T . By Theorem 4, any
two schemes T and T , which are analogues of S, satisfy

‖T∞p− T
∞
p‖∞ ≤ 2AC

1 − µ2
0

d(p)2,(50)
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where p is such that proximity holds. This shows that the actual choice of the
representation in terms of averages has a very small influence on the limit curves.

♦
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6. Appendix A: Proofs of Results in Section 2

6.1. Preliminary Results. To begin with, we enumerate some simple proper-
ties of norms of polygons.

‖p− q‖∞ ≤ ε =⇒ d(p) ≤ d(q) + 2ε.(51)

This follows from the triangle inequality, because max ‖pi − qi‖ ≤ ε implies that

‖pi+1 − pi‖ ≤ ‖pi+1 − qi+1‖ + ‖qi+1 − qi‖ + ‖qi − pi‖ ≤ ε+ ‖p− q‖∞ + ε.

Likewise it is obvious that

‖∆p− ∆q‖∞ ≤ 2‖p− q‖∞, d(∆p) ≤ 2d(p).(52)

Note that because of (52), Equ. (24) is also a weaker form of (23) with a constant
polynomial.

6.2. Proof of Theorem 1. The proof of Theorem 1 is elementary linear algebra:
The affine combination of (6) defines, for each j, a rule Fj(p) for computing the
point Spj. There are essentially only N different Fj’s, because Fj+N (p) = Fj(σp),
where σ is the right shift operator (σp)i = pi+1. We would like to express the
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rules Fj (j = 1, . . . , N) in terms of averages. As the mask is finite, only finitely
many pi’s contribute to Fj(p), so we have Fj(p) = Fj(ps, . . . , pr).

It is well known from linear algebra that for points pi in some R
d, repeatedly

computing affine combinations by (1) yields all the points of the smallest affine
subspace U which contains the points pi; and it is also well known that U equals
the set of all affine combinations

∑
bipi with

∑
bi = 1.

This means that for all j and p there is a rule Gj,p, whose definition employs
only averages, and with the property that Gj,p(p) = Fj(p). The statement of this
lemma is that we can choose Gj,p independent of p, i.e., Gj is a rule for computing
Fj(p) whose definition employs only averages.

Both Fj and Gj,p are affinely invariant in the sense that for all affine mappings
α we have

α(Fj(pr, . . . , ps)) = Fj(α(pr), . . . , α(ps)) = Gj,p(α(pr), . . . , α(ps)).(53)

If we choose s−r points pr, . . . , ps as a basis of R
s−r, then for any pr, . . . , ps there

is an affine mapping α with α(pi) = pi. It follows that for all p, we have

Fj(p) = Fj(α(pr), . . . ) = Gj,p(α(pr), . . . ) = Gj,p(p).(54)

Note that the rule Gj,p is independent of p. �

6.3. Lie groups: Why left translates? We want to convince ourselves that left
translates of one-parameter subgroups are indeed what we want for applications.
In particular we want to see the connection with the helical motions.

Let G be a group of n×n matrices. For reasons which will become clear later,
G is to act on R

n by

g−1 · x,(55)

if g ∈ G and x ∈ R
n. The fact that we do not use the more canonical action

g · x does not make any difference for applications. We could say that instead
of representing a linear mapping by its matrix, we represent it by the inverse
matrix.

Group multiplication is defined as matrix multiplication. Because of

(gh)−1 · x = h−1 · g−1 · x(56)

the meaning of the product gh in terms of the group’s action is to apply g first
and h afterwards.

The action of a matrix/vector pair (g, t) with g ∈ SOn and t ∈ R
n is given by

[
1
x

]
7→

[
1 0
t g

]−1

·
[

1
x

]
.(57)
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The product of the matrix/vector pairs (g1, t1) and (g2, t2) acts by applying (g1, t1)
first and then (g2, t2):

[
1
x

]
7→

[
1 0
t2 g2

]−1

·
[

1 0
t1 g1

]−1

·
[

1
x

]
=

[
1 0
t1 + g1 · t2 g1 · g2

]−1[
1
x

]
(58)

Wee see that the multiplication of matrices in (14) is consistent with the action
(57).

One-parameter subgroups of the motion group of Euclidean R
3 are the helical

motions α(t), which in a suitable Cartesian coordinate system are represented by
the matrices

c0(t) =




1 0 0 0
0 cos(ωt) − sin(ωt) 0
0 sin(ωt) cos(ωt) 0

pt 0 0 1


 = exp


t




0 0 0 0
0 0 −ω 0
0 ω 0 0
p 0 0 0





 .(59)

c0(0) is the identify transformation, and it is clearly seen that c0(−t) is the trans-
formation inverse to c0(t). The general form of a helical motion c(t) emanating
from the identity at t = 0 then is of the form

c(t) = β−1c0(t)β = exp(t · β−1vβ),(60)

where β represents a change of coordinate system. Obviously, c(−t) is the trans-
formation inverse to c(t). This means that inverting all matrices changes the sense
in which the one-parameter subgroups are traversed. For a general introduction
to the kinematics of Euclidean space, see [13].

Now suppose that we are given points xi, and two “positions” g and h of these
points. We write simple g and h here, even if g and h are block matrices. The
points at “position g” and “position h” are the points

g−1xi, h−1xi.(61)

If c(t) is a helical motion which transforms position g (for t = 0) into position h
(for t = τ), then necessarily

c(τ)−1g−1xi = h−1xi, or (gc(τ))−1xi = h−1xi.(62)

This means that left translates g · c(t) of one-parameter subgroups are the curves
which have a meaning in applications, if we adopt the inverted action (55).

6.4. Lie groups: The differential equation of geodesics. This section is
devoted to the proof of the statements of 2.3.

Proof of Lemma 1: We first verify that (17) holds. Assume that c(t) =
g exp(tv). By differentiating Equation (15) we get ċ(t) = g exp(tv)v, c̈(t) =
g exp(tv)v2, which implies that c̈ = cv2 = cvc−1cv = Bc(ċ, ċ).

We verify that ‖ċ‖ = const: Left multiplication in the group was supposed to
be isometric, so the relation ċ = cv implies that ‖ċ‖ = ‖v‖, i.e., is constant. �
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Proof of Lemma 2: We show that left translations h 7→ g · h in the group
are isometric if G is a subgroup of On. We have to show that a tangent vector
v attached to the point g does not change its norm if it undergoes the linear
mapping v 7→ g · v. We use the relation gT = g−1.

‖gv‖2 = tr(gvvT gT ) = tr(gT gvvT ) = tr(vvT ) = ‖v‖2.(63)

A similar computation is performed for the group Gn R
n. We apply left trans-

lation by the element

[
1 0
t g

]
to the tangent vector

[
0 0
u v

]
:

∥∥∥∥
[

1 0
t g

][
0 0
u v

]∥∥∥∥
2

=

∥∥∥∥
[

0 0
gu gv

]∥∥∥∥
2

= tr

[
0 0
0 (gu)(gu)T + (gv)(gv)T

]

= tr(ggTuuT ) + tr(ggT vvT ) = tr(uuT ) + tr(vvT ) =

∥∥∥∥
[

0 0
u v

]∥∥∥∥
2

.

As to compact matrix groups acting on a Euclidean vector space, it is well known
that the definition of ‖x‖2

new as the average (with respect to a left invariant
measure on G) over ‖gx‖2 yields a positive definite quadratic form, such that G
is a subgroup of the orthogonal group defined by ‖ · ‖new. So also in this case we
may assume (by changing the coordinate system to a basis which is orthonormal
with respect to ‖·‖new) that G is a subgroup of On. This concludes the proof. �

Remark: In groups G n R
n, right multiplication usually is not isometric with

respect to the scalar product (19). It is therefore necessary to consider left trans-
lates of one-parameter subgroups, and not right translates. This is achieved by
letting the group act by inversion. ♦

7. Appendix B: Proofs of Results in Section 3

7.1. Convergence and Continuity. The proof of Theorem 2 concerning the
convergence condition which follows from proximity works by induction:

Proof of Theorem 2: We start from (22) and want to show that there is µ0 < 1
such that

d(T lp) ≤ µl
0d(p) for all l, p with d(p) < δ.(64)

We let dl := d(T lp). By (51) and (36),

dl ≤ d(ST l−1p) + 2Cd(T l−1p)2.(65)

We use (22) to get the recursion formula

dl ≤ µ0dl−1 + 2Cd2
l−1.(66)

We choose δ > 0 such that

µ0 := µ0 + 2Cδ < 1.(67)
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We show that if d(p) = d0 < δ, then

dl+1 ≤ µ0dl.(68)

Clearly (68) implies (64). (68) is clear for l = 0 because of the choice of δ:

d1 ≤ d0(µ0 + 2Cd0) ≤ (µ0 + 2Cδ)d0 = µ0d0.(69)

If we assume that (68) holds true for dl−1, then

dl ≤ µ0dl−1 + 2Cd2
l−1 ≤ µl−1

0 d(p)(µ0 + 2Cµl−1
0 d(p))(70)

≤ µl−1
0 d(p)(µ0 + 2Cδ) ≤ µl

0d(p).

This shows that (68) must also be true for dl. Thus, by induction we have shown
(64). The statement about the difference µ0 − µ0 is clear from (67). �

The fact that convergence conditions ensure convergence, as they do for linear
schemes, is stated by Theorem 3. Its proof depends on the fact that for a linear
convergent scheme S of finite mask the rate of convergence towards its limit is
well known: There is a constant C, depending only on S and neither on j nor on
p, such that

‖Fj+1(Sp) −Fj(p)‖∞ ≤ Cd(p).(71)

This follows e.g. from Equations (3.8)–(3.10) of [10].

Proof of Theorem 3: We use (71) and (36) together with (39) to compute

‖T j+1f − T jf‖∞ ≤ ‖Fj+1(T
j+1p) − Fj+1(ST

jp)‖∞
+‖Fj+1(ST

jp) − Fj(T
jp)‖∞ ≤ C0d(T

jp)2 + Cd(T jp).

By Theorem 2, this expression is bounded by a factor times µj, with µ < 1. It
follows that T jf is a Cauchy sequence with respect to the maximum norm, i.e.,
the limit curve exists and is continuous. �

Proof of Lemma 3: We use the functions T kf with f = F0(p) and want to
show that T∞f(t) ∈ K for all t in the parameter domain.

Choose a sequence tk with lim tk = t such that |tk − t| < N−k and T kf(tk) is
one of the points of T kp. Our construction is such that T kf(tk) ∈ K. We have

‖T∞f(t) − T kf(tk)‖ ≤ ‖T∞f(t) − T kf(t)‖ + ‖T kf(t) − T kf(tk)‖(72)

≤ ‖T∞f(t) − T kf(t)‖ + d(T kp).

Because both ‖T∞f(t) − T kf(t)‖ and d(T kp) converge to zero, we have

T∞f(t) = limT kf(tk).(73)

It follows that T∞f(t) ∈ K, as K is closed. �

We come to the proof of the approximation result of Theorem 4:
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Proof of Theorem 4: We assume that S meets a convergence condition of the
form (22) with factor µ0. By Theorem 2, T does likewise, with factor µ. We show
that

‖Slp− T lp‖∞ ≤ Cd(p)2
l−1∑

i=0

‖Si‖µ2(l−1−i).(74)

This is obvious for l = 0, if we define an empty sum to be zero. For l > 0, we
assume that (74) holds for l − 1 and perform an induction step:

‖Slp− T lp‖∞ ≤ ‖Slp− Sl−1Tp‖∞ + ‖Sl−1Tp − T l−1Tp‖∞(75)

≤ ‖Sl−1‖ ‖Sp − Tp‖∞ + Cd(Tp)2
l−2∑

i=0

‖Si‖µ2(l−2−i)

≤ ‖Sl−1‖Cd(p)2 + Cµ2d(p)2

l−2∑

i=0

‖Si‖µ2(l−2−i),

which equals the right hand side of (74). Thus we have

l−1∑

i=0

‖Si‖µ2(l−1−i) ≤ A
l−1∑

i=0

µ2(l−1−i) ≤ A
∞∑

i=0

µ2(l−1−i) =
A

1 − µ2

=⇒ ‖Slp− T lp‖∞ ≤ CA

1 − µ2d(p)
2(76)

for all l. Now (40) follows and the proof is complete. �

7.2. Smoothness Properties. Proof of Theorem 5: We assume that (23)
holds. By Theorem 2, we know that there is δ > 0, such that

d(T lp) ≤ µl
0d(p),(77)

if d(p) < δ. We want to show that there is µ1 < 1, and a linear polynomial P 1

with nonnegative coefficients such that

d(N l∆T lp) ≤ µl
1P 1(l)d(p)(78)

for all p with d(p) < δ. Analogous to the proof of Theorem 2, we let

dl = d(N l∆T lp), q = T l−1p.(79)

Equations (51) and (52) together with the proximity condition show that

dl = d(N l∆Tq) ≤ d(N l∆Sq) + 2 ·N l‖∆Sq − ∆Tq‖∞(80)

≤ d(N l∆Sq) + 2 · 2 ·N l‖Sq − Tq‖∞
≤ µ1 d(N

l−1∆q) + 4N lCd(q)2.
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In view of Theorem 2, we can now replace d(q) by an upper bound, and obtain

4N lCd(q)2 ≤ 4N lC(µl−1
0 d(p))2 = 4NC(Nµ2

0)
l−1d(p)2(81)

Convergence of the subdivision process was an assumption, so we can without
loss of generality assume that d(p) is arbitrarily small. In view of Theorem 2, we

may also assume that |µ0 − µ0| is so small that with (41) we have µ0 < 1/
√
N .

This implies that

Nµ2
0 =: µ̃1 < N(

1√
N

)2 = 1.(82)

Thus

4CN ld(q)2 ≤ µ̃l−1
1 d(p)2P0,(83)

with a positive constant P0. From (80), we get

dl ≤ dl−1µ1 + P0d(p)
2µ̃l−1

1 .(84)

Repeated application of (84), starting with l = 1, implies that

dl ≤ µl
1d0 + P0d(p)

2
∑l−1

j=0
µl−j−1

1 µ̃j
1.(85)

Defining

µ1 := max{µ1, µ̃1} < 1,(86)

we get

dl ≤ µl
1d0 + d(p)2µl−1

1 lP0.(87)

There is C ′ > 0 such that δC ′ < µ1, so that we have d(p)2µl−1
1 ≤ d(p)C ′µl

1. Now
(87) implies the inequality

dl ≤ µl
1

[
d(∆p) + C ′d(p)lP0

]
≤ µl

1(2 + C ′lP0)d(p),(88)

for d(p) < δ. We let P 1(x) = 2 + P0C
′x, and the proof is complete. �

The smoothness condition (23) does not express the existence of a first deriv-
ative as such, but rather its continuity. For linear schemes, however, it is known
that these conditions ensures C1 smoothness of limit curves. We show now that
this is true also for nonlinear schemes, provided they are in proximity to linear
ones.

It is well known that C1 smoothness of the limit curve T∞f as defined by (38)
follows from existence of the limit

lim
l→∞

Fl(N
l∆T lp),(89)

with respect to the maximum norm, provided this limit is continuous. It then
equals the derivative of the curve T∞f (cf. [31], §3.1.4). For the convenience of
the reader, we give this result in a form which directly applies to our setting.
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Lemma 8. Assume that the sequence pl of polygons has the property that liml→∞Fl(p
l) =

f with respect to the maximum norm. We let

gl := Fl(N
l∆pl).(90)

If gl is a Cauchy sequence, and lim d(N l∆pl) = 0, then f is C1 with f ′ = liml→∞ gl

(with respect to the maximum norm).

Proof. The derivatives f ′
l are piecewise constant and in general not continuous.

The functions gl linearly interpolate the values (fl)
′
+ at each point of discontinuity

of (fl)
′, and

‖f ′
l − gl‖∞ ≤ d(N l∆pl).(91)

The sequence gl is a Cauchy sequence by our assumption, and the previous equa-
tion shows that f ′

l is also. Especially for all t the pointwise limit lim f ′
l (t) exists.

Thus, for any finite a, b, the dominated convergence theorem yields (see [27]):

f(b) − f(a) = lim(fl(b) − fl(a)) = lim
∫ b

a
f ′

l =
∫ b

a
lim f ′

l .(92)

Equ. (92) expresses the fact that f ′ = lim f ′
l . Equation (91) implies that f ′ =

lim gl, so f ′ is continuous. �

Proof of Theorem 6: The case k = 0 is Theorem 3. For k = 1 we consider the
derived scheme S1 and proceed analogously. The defining equation (25) implies
that the smoothness condition of (23) which is supposed to hold for S, is nothing
but a convergence condition of the form (22) for the derived scheme S1. Analogous
to the proof of Theorem 3 we rewrite (71) for S1:

‖Fj+1(S1∆p) −Fj(∆p)‖∞ ≤ Cd(∆p).(93)

By Theorem 5, a mixed smoothness condition of the form (24) holds for T . We
verify that Lemma 8 applies to the polygons T lp. We define βl by

‖Fl+1(N
l+1∆T l+1p) −Fl(N

l∆T lp)‖∞(94)

≤ ‖Fl+1(N∆T − S1∆)N lT lp‖∞ + ‖(Fl+1S1 −Fl)∆N
lT lp‖∞

≤ (2N)‖(T − S)(N l∆T lp)‖∞ + Cd(∆N lT lp)

≤ (2N)C ′N l(µ0d(p))
2l + Cµl

1P1(l)d(p) =: βl.

For (94), we have used (36), (22), and (24). By (41), µ2
0N < 1, and

∑
l βl < ∞.

This shows that the sequence gl := Fl(N
l∆T lp) is a Cauchy sequence. T satisfies

a smoothness condition by Theorem 5, which implies that d(N l∆T lp) → 0. Thus
Lemma 8 applies, and the limit curve T∞f is C1. �
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8. Appendix C: Proofs of Results in Section 4

8.1. Preliminary Results. We first show some simple lemmas, which are needed
later. The first one is concerned with the distance of endpoints of a curve which
is traversed with unit velocity:

Lemma 9. Assume that c is a curve with ‖ċ‖ = 1 and ‖c̈‖ ≤ C. Then

‖c(0) + tċ(0) − c(t)‖ ≤ Ct2

2
, |t| − Ct2/2 ≤ ‖c(t) − c(0)‖,(95)

t < 1/C =⇒ |t| ≤ 2‖c(t) − c(0)‖.(96)

Proof. Taylor’s formula c(t) = c(0) + tċ(0) + t2

2
c̈(ϑt) with ϑ ∈ [0, 1] implies that

‖c(t) − c(0) − tċ(0)‖ = ‖ t
2

2
c̈(ϑt)‖,(97)

‖c(t) − c(0)‖ = ‖tċ(0) − c̈(ϑt)‖ ≥ ‖t · c‖ − ‖c̈(ϑt)‖(98)

Equation (97) and (98) immediately imply (95).
The function φ(t) := t − Ct2/2 is monotonically increasing for t ∈ [0, 1/C]

with φ(1/C) = 1/2C =: Lmax. φ is also concave in this interval (and its inverse
function φ−1 is convex), so φ(t) ≥ t/2 if t ∈ [0, 1/C], and φ−1(L) ≤ 2L, if it exists
in [0, 1/C].

As ψ(t) := ‖c(t) − c(0)‖ has the property that ψ(t) > φ(t), it follows that
ψ(t) ≤ L implies φ(t) ≤ L, and (by monotonicity and concavity)

t ≤ min(φ−1(L), 1/C) ≤ min(2L, 1/C).

This implies (96). �

The next lemma already points towards comparing linear and nonlinear aver-
ages.

Lemma 10. Assume that c is a curve with ‖c̈‖ < C. Then

‖ avα(c(0), c(t)) − c(αt)‖ ≤ |α| + α2

2
Ct2.(99)

Proof. We use Taylor’s formula and find that the left hand side of (99) expands
to 1

2
‖αt2c̈(ϑt) − α2t2c̈(ϑ′αt)‖ with ϑ, ϑ′ ∈ [0, 1], which implies the upper bound

given by (99). �

8.2. Geodesic subdivision. The next lemma uses the norm of the bilinear map-
ping B used in the differential equation of geodesics to give a simple upper bound
of their second derivatives. It follows directly from from (42) and (43).

Lemma 11. If c(t) = expp(tv) with ‖ċ‖ = 1, then

‖c̈‖ ≤ D,(100)

with D from (43).
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Figure 6. Proof of Lemma 5

We the above lemmas, the proof of Lemma 4 is easy.

Proof of Lemma 4: We assume that c is the minimal geodesic with c(0) = x,

c(t) = y. By (99) and (100), an upper bound is given by D |α|+α2

2
t2. Because

of the symmetry of the geodesic average expressed by (12), this relation remains
true if we replace α by 1−α. Thanks to Lemma 9, t ≤ 2‖x−y‖, which completes
the proof. �

The proof of Lemma 5 proceeds by induction.

Proof of Lemma 5: By Theorem 1, the scheme S is expressible in terms of
averages. If S is defined by N different rules, each of which involves the average
operator at most once in the form

SpiN+j = avαj
(pi+rj

, pi+sj
),(101)

then Lemma 4 implies immediately that there is a constant C such that

‖TpiN+j − SpiN+j‖ ≤ Cd(p)2.

As to two or more steps of averaging, we perform an induction step. We assume
that points x and x′ are defined in a linear and a nonlinear way, respectively, by

x = avα(y, z), x′ = g-avα(y′, z′),(102)

as illustrated by Fig. 6. We also assume that

‖y − z‖ ≤ Cd(p), ‖y − y′‖, ‖z − z′‖ ≤ C ′d(p)2.(103)

Our aim is to show that also x and x′ meet a proximity condition. By induction,
this would show that S and T are in proximity.

We introduce x′′ = avα(y′, z′) (see Fig. 6) and use Lemma 4 again:

‖x− x′‖ ≤ ‖x′ − x′′‖ + ‖x− x′′‖ ≤ C ′′‖y′ − z′‖2 + ‖ avα(y − y′, z − z′)‖
≤ C ′′(‖y − y′‖ + ‖y − z‖ + ‖z − z′‖)2 + C ′′′ max(‖y − y′‖, ‖z − z′‖).

Thus, by (103) and d(p) < δ,

‖x− x′‖ ≤ C ′′′′d(p)2.

This is what we wanted to show. �
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8.3. Projection subdivision. The following is an immediate consequence of
the definition of D′ by (48):

Lemma 12. If c(t) = P (x+ tv) with ‖v‖ = 1, then ‖c̈‖ < D′.

We now turn to the proof of the lemmas already stated above.

Proof of Lemma 6: We consider the curve c(t) = P (x + vt) with x + vτ = y
and τ = ‖y − x‖ and apply Lemma 9. It follows that the left hand expression

of (49) is bounded by (|α| + α2)D′ τ2

2
. Exchanging x and y yields an analogous

estimate with 1 − α instead of α. �

Proof of Lemma 7: This is very similar to the proof of Lemma 5. We replace
the reference to Lemma 4 by a reference to Lemma 6. �
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