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Abstract. Linear curve subdivision schemes may be perturbed in various
ways, e.g. by modifying them such as to work in a manifold, surface, or group.
The analysis of such perturbed and often nonlinear schemes “T” is based on
their proximity to the linear schemes “S” which they are derived from. This
paper considers two aspects of this problem: One is to find proximity inequal-
ities which together with Ck smoothness of S imply Ck smoothness of T . The
other is to verify these proximity inequalities for several ways to construct the
nonlinear scheme T analogous to the linear scheme S. The first question is
treated for general k, whereas the second one is treated only in the case k = 2.
The main result of the paper is that convergent geodesic / projection / Lie
group analogues of a certain class of factorizable linear schemes have C2 limit
curves.

1. Introduction

Curve subdivision schemes in general consist of repeated refinement of control
polygons. Especially well studied are the linear schemes with rules for defining
the control points at the finer level as finite linear combinations of control points
in the coarser level — see e.g. [7], [24], and [12].

This paper is a sequel to [22], which defines a wide class of curve subdivision
schemes on manifolds, and analyzes convergence and C1 smoothness. The analy-
sis of such a nonlinear scheme is performed by its proximity to the corresponding
linear scheme from which it was derived. In that sense the nonlinear scheme is a
certain perturbation of the linear one. We give upper bounds on the magnitude
of the perturbation which are sufficient for Ck smoothness of the limit curves of
a nonlinear scheme, if the original linear scheme has the same property.

As a main example for such a perturbation we consider the schemes “T” defined
in surfaces, Lie groups, and Riemannian manifolds, which are analogous to curve
schemes “S” defined in a vector space. Convergence and C1 smoothness of these
scheme are treated in [22]. The second part of the present paper deals with a
certain class of factorizable linear schemes, where we can show that S and T are
close enough for T to produce C2 limit curves, for all control polygons for which
the subdivision process converges.
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Perturbations introduced by discretization and imcomplete computation via
iterative algorithms are studied in [23] together with Computer graphics appli-
cations.

For an overview on previous work on nonlinear subdivision schemes and prox-
imity, we refer the reader to the introduction of [22]. Here we only mention that
analysis by proximity to a linear scheme is a technique which was used before
in various situations, such as in the papers [11] and [4]. Smoothness analysis of
other nonlinear subdivision schemes which occur in the literature (e.g. [25] and
[20]) is mainly along different lines.

The outline of this paper is as follows: After introducing notation and present-
ing basic facts concerning linear schemes, Section 2 proceeds with the smooth-
ness analysis of nonlinear schemes. We introduce convergence, smoothness, and
proximity conditions, which generalize those of [22]. We show that in case that
proximity of order k − 1 holds for a linear scheme S and a nonlinear scheme T ,
we can prove Ck smoothness of limit curves generated by T , for a wide class of
Ck linear schemes S. Section 3 briefly discusses special cases of proximity con-
ditions. A major part of the paper is Section 4, where we show that a certain
class of nonlinear curve subdivision schemes and their analogous linear schemes
fulfill a first order proximity condition. Section 5 combines results of previous
sections and concludes C2 smoothness for certain projection schemes, and certain
geodesic schemes in surfaces, Riemannian manifolds, and Lie groups.

2. Convergence and Smoothness Analysis

2.1. Notation and basics on linear schemes. We consider sequences p =
(pi)i∈Z of points, which are also referred to as polygons. A subdivision scheme
S is a mapping which takes a point sequence p as input, and which has another
point sequence Sp as output. We assume that there is an integer dilation factor
N such that for all polygons p, q the relation qi = pi+1 for all i implies that
(Sq)i = (Sp)i+N .

We focus on subdivision schemes whose definition uses the notion of average
or affine combination. We shall presently see that this is not a restriction. We
use the notation

(2.1) avα(x, y) := (1 − α)x + αy.

For instance, degree n B-spline subdivision “S(n)” according to [14] has N = 2
and is recursively defined by one splitting step and n averaging steps:

(S(0)p)2i = (S(0)p)2i+1 = pi,(2.2)

(S(m)p)i = av1/2((S(m−1)p)i, (S(m−1)p)i+1), m = 1, . . . , n.

For a linear scheme there exists a sequence a = (ai)i∈Z such that

(2.3) Spj =
∑

i aj−Nipi.
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a is called the mask of S, and is said to be finite if only finitely many ai’s are
nonzero. The subdivision scheme is affinely invariant, if

(2.4)
∑

i aj−Ni = 1, j = 0, . . . , N − 1.

Any convergent curve subdivision scheme is affinely invariant (cf. [7]). It is not
difficult to show (cf. [22]) that the rules of the scheme can be expressed in terms
of repeated affine averages:

Theorem 1. Any affinely invariant linear subdivision rule S with finite mask is
expressible via the “av” operator.

This representation of affinely invariant linear subdivision schemes, which is
not unique, will be used to define nonlinear schemes on manifolds analogous to
linear schemes (see Section 4). An explicit example is furnished by (2.2).

2.2. The limit of a subdivision scheme. For a polygon p, we use the notation
∆p for the sequence of differences: ∆pi = pi+1 − pi. Further we define

(2.5) ‖p‖∞ = sup
i

‖pi‖, d(p) = ‖∆p‖∞.

The limit of a sequence of polygons which are getting denser and denser is best
dealt with via the limit of a sequence of functions: for a sequence p of points,
define Fj(p) to be the piecewise linear function which is linear in the intervals
[iN−j, (i + 1)N−j] (i ∈ Z), and which has the property that Fj(p)(iN−j) = pi. If
T is a subdivision scheme, we use the notation

(2.6) f = F0(p), Tf = F1(Tp), T 2f = F2(T
2p), . . .

Then

(2.7) T∞f = lim
j→∞

T jf

is the limit curve, which is also denoted by T∞p. It is obvious from construction
that

(2.8) ‖p − q‖∞ = ‖Fj(p) −Fj(q)‖∞.

2.3. Convergence and smoothness conditions. This subsection introduces
conditions called ‘convergence’ and ‘smoothness’ conditions. It will be seen later
that indeed they are the main ingredients in our proofs concerning the conver-
gence of a nonlinear subdivision scheme, and the continuity and smoothness of
its limit curves.

The ‘mixed’ condition in Def. 2 below uses polynomials P (x) with the prop-
erty that P (n) ≥ 0 for all nonnegative integers n. We call such polynomials
nonnegative for short. It is obvious that sum, positive multiples, and products
of nonnegative polynomials are again nonnegative polynomials, and so is the
summation polynomial R of a nonnegative polynomial P , which is defined by
R(n) =

∑n
i=0 P (i).
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Definition 1. A subdivision scheme S is said to satisfy a convergence condition
with factor µ0 < 1, if

(2.9) d(Slp) ≤ µl
0d(p) for all l, p.

Definition 2. A linear scheme S with dilation factor N is said to satisfy a
smoothness condition of order k with factors µ0, . . . , µk < 1, if in addition to
(2.9) for all l, p,

(2.10) d(N lj∆jSlp) ≤ µl
jd(∆jp), j = 1, . . . , k.

A not necessarily linear scheme S with dilation factor N is said to satisfy a mixed
smoothness condition of order k, if (2.9) holds and there are µ1, . . . , µk < 1, such
that for all l, p

(2.11) d(N jl∆jSlp) ≤ µl
jPj(l)d(p), j = 1, . . . , k,

where Pj is a nonnegative polynomial.

The smoothness condition of (2.10) is well known in the smoothness analysis
of linear subdivision schemes. Mixed conditions of the type (2.11) appear in our
smoothness analysis of nonlinear schemes below. In fact, a sequence dominated
by µlP (l) for a polynomial P , is also eventually dominated by a constant times
µl+ε, for any ε > 0. We thus could avoid using the “mixed conditions” altogether
and work solely with the well known exponential decay of (2.10).

Most of our statements consider polygons p whose points are contained in some
subset M of R

n, and fulfill the condition d(p) < ε. Such a class of polygons is
denoted by PM,ε. The statements employ a scheme “S”, which is linear and whose
properties are known, and another scheme “T”, which is to be analyzed (S is to
aid the analysis). We will encounter the situation that smoothness conditions are
true only for p ∈ PM,δ for some δ > 0.

2.4. Smoothness of linear schemes. The smoothness conditions (2.9) and
(2.10) guarantee the smoothness of a linear scheme [7, 12]. In this subsection we
show how to compute the factors µi for linear schemes. Following [7, 8], we use
the concept of k-th derived scheme Sk of a linear subdivision scheme S, which is
recursively defined by the equations S0 = S and Si(∆p) = N∆Si−1p, leading to
Si∆

ip = N i∆iSp. For the convenience of the reader, we repeat some definitions
and results here. In the analysis of linear schemes, it is customary to define the
formal Laurent series a(z), p(z), Sp(z), and ∆p(z) with coefficients taken from the
sequences a (the mask of the scheme), p (the control polygon), Sp (the subdivided
control polygon), and ∆p (the difference polygon), respectively. For example, we
have a(z) =

∑
aiz

i. These are called the generating functions of the respective
sequences, and a(z) is called the symbol of S. We have Sp(z) = a(z)p(zN) and
∆p(z) = (1 − z)p(z)z−1. It follows immediately that the symbol a[1](z) of the
derived scheme S1 equals a[1](z) = a(z)NzN−1/(1 + · · · + zN−1). If (2.4) holds
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(i.e., S is affinely invariant), then this division is possible without remainder (i.e.,
the derived scheme exists).

For any subdivision scheme S, m rounds of subdivision yield yet another
scheme, Sm. If S has dilation factor N , then the dilation factor of Sm equals
Nm. It follows from the formulas above that the symbol c(z) of Sm is given by

c(z) = a(z)a(zN) · · · a(zNm−1

). In this paper, the norm ‖S‖ of S is the sup-norm,

(2.12) ‖S‖ = sup‖p‖∞≤1 ‖Sp‖∞.

In the following we assume that the mask a is of finite support, and we have

(2.13) ‖S‖ = maxN
j=1

∑
i |aj−Ni|

Knowledge of the norms of the derived schemes yields factors µj as required by
(2.9) and (2.10): We use d(∆jp) = ‖∆j+1p‖∞ and compute

d(N j∆jSp) =
1

N
‖Sj+1∆

j+1p‖∞ ≤
1

N
‖Sj+1‖ d(∆jp).(2.14)

It follows that we may let

µj =
1

N
‖Sj+1‖.(2.15)

The B-spline subdivision rule of degree n according to (2.2) has N = 2 and the
symbol

(2.16) a(z) = (1 + z)n+1/(2z)n, n ≥ 0.

Its first derived scheme is the (n−1)-st degree B-spline scheme. Equations (2.13)
and (2.15) show that convergence and smoothness conditions up to degree n− 1
are fulfilled with factors µi = 1/2. It is not difficult to see that this is an optimal
value. For the convenience of the reader, a proof is included below.

Lemma 1. For an affinely invariant scheme S, the decay rate µj of (2.15) obeys
µj ≥ 1/N .

Proof. This is an immediate consequence of ‖Sj+1‖ ≥ 1, which is shown in two
steps: First, ‖S‖ ≥ 1, because otherwise S would be contractive and not affinely
invariant. Second we show that, in general, ‖S1‖ ≥ ‖S‖, which by iteration
implies ‖Sj+1‖ ≥ ‖S‖ ≥ 1. The symbols a(z) of S and a[1](z) of its derived scheme
S1 have the relation a(z) = N−1z1−N ã(z) with ã(z) = (1+ · · ·+zN−1)a[1](z). The

scheme S̃ with symbol ã(z) has norm ‖S̃‖ = N‖S‖. The inequality ‖S‖ ≤ ‖S1‖
now follows from

‖S̃‖ = max
k=1...N

∑

l∈Z

|ãk−Nl| ≤ max
k=1...N

∑

l∈Z

N−1∑

j=0

|a
[1]
k−Nl−j| =

N−1∑

i=0

∑

l∈Z

|a
[1]
i−Nl| ≤ N‖S1‖.

�

A crucial result in the convergence analysis of linear schemes is



6 JOHANNES WALLNER

Lemma 2. For an affinely invariant linear scheme S of finite mask there is a
constant C such that for all p and j > 0 we have

(2.17) ‖Fj+1(Sp) −Fj(p)‖∞ ≤ Cd(p).

This follows e.g. from Equations (3.8)–(3.10) of [7]. For the convenience of
the reader we give a proof here. It uses the following fact: Polynomial division
of

∑m
j=0 ajz

j by zN − 1 yields the remainder
∑N−1

j=0 (
∑

i∈Z
aj+iN)zj, where we let

aj = 0 in case j < 0 or j > m.

Proof. Let U denote the piecewise linear interpolatory subdivision rule with the
same dilation factor N as the given scheme S and symbol u(z) = (1 + z +
· · · zN−1)2/(NzN−1) =

∑
i uiz

i. By construction, Fj+1(Up) = Fj(p) for all j, p.
The mask of S is denoted by a(z). Because of (2.4),

∑
i(al−Ni − ul−Ni) = 0 for

all l, which implies that u(z)−a(z) is divisible by 1−zN . So we let u(z)−a(z) =
e(z)(1 − zN)/zN , where e(z) is the symbol of some subdivision scheme E. As
∆p(z) = (1 − z)p(z)/z, we have (S − U)p = E∆p for all p. It follows that
‖Fj+1(Sp)−Fj(p)‖ = ‖Fj+1(S−U)p‖ = ‖(S−U)p‖∞ = ‖E∆p‖∞ ≤ ‖E‖·‖∆p‖∞.
We see that we can let C = ‖E‖. �

2.5. Proximity conditions. In this subsection we present the inequalities which
quantify the differences between linear subdivision schemes “S” of known proper-
ties and nonlinear schemes “T” to be analyzed. The conditions consist of several
inequalities: one measuring the distance of schemes S, T (the actual proximity),
and another one, which relates the coefficients µi of (2.10) to the exponents used
in the proximity condition. We first give a general definition and immediately
afterwards specialize it.

In order to explain why the proximity conditions of Def. 3 have the form
presented here, a few comments are perhaps in order. In [22], C1 smoothness
of nonlinear subdivision schemes is shown by means of a proximity inequality of
the form ‖Spi − Tpi‖ ≤ C · d(p)2, where C e.g. depends on the surface we work
in. For C2 smoothness, inequalities which bound ‖∆Tpi − ∆Spi‖ are needed.
While it would have been nice to give an upper bound in terms of d(∆p)2 or
d(p)d(∆p), it turned out that an upper bound uses a linear combination of d(p)3

and d(p)d(∆p). The fact that the upper bounds which are needed in order to
establish higher order smoothness do not appear to have a simple form, led to
consider the most general bounds available – any linear combination of products
of the quantities d(p), d(∆p), and so on.

While [22] considered only an upper bound of the form ‖Spi − Tpi‖ ≤ d(p)α0

with α0 = 2, the present paper allows such exponents to vary freely. Indeed the
C1 theory remains true for any exponent α0 > 1, provided the decay rate µ0 is
not too big (I am indebted to Adi Levin for this remark). As α approaches 1, the
maximum possible decay rate µ0 nears 1/N . It is only to be expected that for
higher order smoothness there is an analogous relation between the exponents
used in comparing S and T on the one hand, and the decay rates µi of S on
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the other. The precise form of that relation (see (2.19) below) ensures that the
proofs of Th. 5 and Th. 6 go through. Thus (2.19) might look artificial. There is
however a reason that in some sense (2.19) is “right”: This is the fact that the
inequality in question appears to be just sufficient for both of the proofs.

Definition 3. Subdivision schemes S, T satisfy a general proximity condition
(GPC) of order k−1, if for every j with 0 ≤ j < k there exist C > 0 and a finite
collection Aj of points α = (α0, . . . , αj) ∈ R

j+1 with αi ≥ 0 and α0 + · · ·+αj > 1
such that for j = 0, . . . , k, and for all polygons in a certain class PM,δ,

(2.18) ‖∆jSp − ∆jTp‖∞ ≤ C
∑

α∈Aj
d(p)α0 · · · d(∆jp)αj ,

and such that S satisfies (2.9), (2.10) and there are strict upper bounds µ∗
i on the

decay rates µi of (2.9) and (2.10) satisfying

(2.19)
( µ∗

0

N0

)α0

· · ·
( µ∗

j−1

N j−1

)αj−1

≤
µ∗

j

N j
, α ∈ Aj−1, 1 ≤ j ≤ k.

Note that if S, T satisfy a GPC of order k, they satisfy a GPC of any lower
order. The special cases A0 = {(2)} and A1 = {(3, 0), (1, 1)}, which correspond
to curves on surfaces (see Section 4) are given below in Def. 4.

The meaning of the inequality (2.19) is roughly as follows: According to Lemma
1, the decay rates µi in the smoothness conditions are not smaller than 1/N , which
is in some sense an optimal value (it is achieved by the Lane-Riesenfeld schemes).
Other schemes may have values close to 1. Equation (2.19) says that the closer
the coefficients µi are to 1, the higher the exponents αi must be.

Definition 4. Subdivision schemes S, T satisfy a proximity condition of order 0
if there is C > 0 such that for all polygons in a certain class PM,δ,

Tp ∈ PM,δ, ‖Sp − Tp‖∞ ≤ Cd(p)2, and(2.20)

µ∗2
0 ≤

µ∗
1

N
.(2.21)

Subdivision schemes S, T satisfy a proximity condition of order 1, if (2.20) and
(2.21) hold, and if

‖∆Sp − ∆Tp‖∞ ≤ C[d(p)d(∆p) + d(p)3], and(2.22)

µ∗3
0 ≤

µ∗
2

N2
, µ∗

0µ
∗
1 ≤

µ∗
2

N
.(2.23)

In [22], the proximity condition (2.20) is established for certain analogues of
linear schemes. The second part of the present paper is concerned with showing
that (2.22) holds for analogues of a certain class of “factorizable” linear schemes.
Depending on its decay rates µi, such a linear scheme may or may not fulfill
(2.23). In case it does not, there is still the possibility that by replacing the
linear scheme S by an iterated scheme Sm, the general proximity condition is
satisfied. The phenomenon that for purposes of smoothness analysis one has
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to consider iterated schemes Sm rather than S itself is common also for linear
schemes.

We therefore ask: If S, T fulfill a proximity condition, is the same true for the
iterates Sm, Tm? In order not to overburden the reader, we give an answer only
for a special case:

Lemma 3. If S, T fulfill (2.20) for all p with d(p) ≤ δ, then the same is true for
the iterates Sm, Tm, provided the first derived scheme S1 exists (which is true for
all affinely invariant schemes). An analogous result is true for (2.22), provided
the derived scheme S2 exists.

Proof. The existence of S1 and S2 means that there are µ0, µ1 with d(Sp) ≤ µ0d(p)
and d(∆Sp) ≤ µ1d(∆p). The result is shown by induction. Assume that it is true
for Sm−1 and Tm−1. The letter C is used indiscriminantly for any constant. We
use d(p) ≤ δ to deduce d(p)k ≤ d(p)δk−1 and the inequality d(q) ≤ d(p)+2‖p−q‖
to compute ‖Smp−Tmp‖ ≤ ‖Smp−STm−1p‖+‖ST m−1p−Tmp‖ ≤ ‖S‖‖Sm−1p−
Tm−1p‖+Cd(T m−1p)2 ≤ Cd(p)2+C(d(Sm−1p)+2‖T m−1p−Sm−1p‖)2 ≤ Cd(p)2+
C(µm

0 d(p) + 2Cd(p)2)2 ≤ d(p)2(C + Cδ + Cδ2). The computation for (2.22) is
similar but slightly more complicated. �

The condition that α0 + · · · + αj > 1 used in Def. 3 is sometimes fulfilled
automatically:

Lemma 4. If 1/N < µ∗
i , . . . , µ

∗
j ≤ 1 and (2.19) holds, then α0 + · · · + αj > 1.

Proof. We let µ∗
i = N−mi and note that (2.19) now reads

(2.24) α0(m0 + 0) + · · · + αj−1(mj−1 + (j − 1)) ≥ mj + j.

The assumption 1/N < µ∗
i ≤ 1 implies that 0 ≤ mi < 1. We look for points

α
(i) = (0, . . . , 0, αi, 0, . . . , 0) with 0 ≤ i < j on the coordinate axes of R

j for
which (2.24) is an equality and show that in that special case αi > 1:

(2.25) αi(mi + i) = mj + j =⇒ αi =
mj + j

mi + i
> 1.

We see that the distance of the points α
(0), . . . ,α(j−1) from the origin is > 1.

It follows that within the sector α0, . . . , αj ≥ 0, the halfspace
∑

0≤i<j αi ≥ 1

contains the halfspace given by (2.24) in its interior. Consequently,
∑

0≤i≤j αj ≥∑
0≤i<j αj > 1. �

2.6. Convergence from proximity. In this section we review and partly ex-
tend results of [22] which concern convergence of perturbed schemes. The proofs
are omitted, since the extension consists of replacing the exponent 2 by the ex-
ponent α, and the proofs are completely analogous to the proofs given in [22].

Theorem 2. Suppose that S, T satisfy

(2.26) ‖Sp − Tp‖ ≤ d(p)α, α > 1,
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and S satisfies a convergence condition with factor µ0 < 1 for all p ∈ PM,ε. Then
there is δ > 0 and µ0 < 1 such that T satisfies a convergence condition with factor
µ0 for all p ∈ PM,δ. By choosing δ small enough, we can achieve that |µ0 −µ0| is
arbitrarily small.

Theorem 3. Assume that S and T meet the conditions of Th. 2. In the notation
of Th. 2, for all p ∈ PM,δ and f = F0(p), the sequence T jf converges to a
continuous limit in the sup norm.

The following result compares the limits of a linear scheme and its nonlinear
analogue. The uniform boundedness of ‖Si‖ mentioned in the statement of the
theorem is guaranteed if S is a convergent scheme.

Theorem 4. We assume that S and T fulfill the conditions of Th. 2, and that
‖Si‖ is uniformly bounded by A > 0. Then for p ∈ PM,δ,

(2.27) ‖S∞p − T∞p‖∞ ≤
AC

1 − µ̄α
0

d(p)α.

2.7. Deriving smoothness conditions for nonlinear schemes. In the fol-
lowing we establish that mixed smoothness conditions according to Def. 2 follow
from the GPC of Def. 3.

Theorem 5. Suppose that S satisfies the k-th order smoothness condition of Def.
2 and that S, T satisfy an order k − 1 GPC according to Def. 3, for all p ∈ PM,ε.
Further assume that in the notation of Def. 3, µ∗

0 ≤ 1. Then there is δ > 0 such
that T satisfies a mixed k-th order smoothness condition according to Def. 2 with
factors µi < µ∗

i , for all p in PM,δ.

Proof. We use the notation of Def. 2 and Def. 3: The smoothness condition uses
the factors µ0, . . . , µk with µi < µ∗

i , and the proximity is encoded in exponent
collections A0, . . . ,Ak−1. We want to show that there are factors µ̄j < µ∗

j and

nonnegative polynomials P j such that

(2.28) d(N jl∆jT lp) ≤ µl
jP j(l)d(p), P j(i) ≥ 0 if i ≥ 0

holds for j = 0, . . . , k, any l > 0, and all p with d(p) < δ. By Th. 2 and the
assumption µ0 < 1, this is true in the case k = 0. We proceed by induction, i.e.,
we assume that (2.28) holds for j = 0, . . . , k − 1. We let

(2.29) dl = d(Nkl∆kT lp), q = T l−1p.

The proximity condition (2.18) of order k − 1 shows that for any l ≥ 1,

dl = d(Nkl∆kTq) ≤ d(Nkl∆kSq) + 2 · Nkl‖∆kSq − ∆kTq‖(2.30)

≤ d(Nkl∆kSq) + 2 · 2 · Nkl‖∆k−1Sq − ∆k−1Tq‖

≤ µk d(Nk(l−1)∆kq) + 4NklC
∑

α∈Ak−1

∏
j d(∆jq)αj

=: µkdl−1 + h.
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We have used that for all p, q the relations d(p) ≤ d(q) + 2‖p− q‖∞ and ‖∆p‖ ≤
2‖p‖ hold.

The induction assumption (2.28) on the quantities d(∆jT l−1p) for j = 0, . . . , k−
1 is now used to replace them by their upper bounds. In this process, N kl, as it
occurs in h, is spread over several factors. We use the symbols |α| =

∑k−1
j=0 αj

and w(α) =
∑k−1

j=0 jαj for α ∈ Ak−1.

h = 4C
∑

α∈Ak−1
Nkl−(l−1)w(α)

∏k−1
j=0 d(N j(l−1)∆jT l−1p)αj(2.31)

≤ 4NkC
∑

α∈Ak−1
N (l−1)(k−w(α))

∏k−1
j=0(µ

l−1
j d(p)P j(l − 1))αj

≤ 4NkC
∑

α∈Ak−1
(Nk

∏k−1
j=0(µj/N

j)αj)l−1d(p)|α|P̃ (l − 1).

Here P̃ is the polynomial P̃ =
∏k−1

j=0 P
dαje

j . P̃ is nonnegative. Let µ̃k :=

Nk maxα∈Ak−1

∏
(µj/N

j)αj . By the induction assumption µ̄j < µ̄∗
j (j = 0, . . . , k−

1), (2.19) implies that µ̃k < µ∗
k. Recall that d(p) < δ:

h ≤ 4NkC
∑

α∈Ak−1
µ̃l−1

k d(p)|α|P̃ (l − 1)(2.32)

≤ d(p)µ̃l−1
k · 4NkC

∑
α∈Ak−1

δ|α|−1P̃ (l − 1) = µ̃l−1
k d(p)P ∗

k−1(l),

with a nonnegative polynomial P ∗
k−1. We are going to show by induction that

(2.33) dl ≤ µl
kd0 + d(p)

∑l

j=1
µl−j

k P ∗
k−1(j)µ̃

j−1
k .

Indeed (2.33) is true for l = 0. If (2.33) is true for l − 1, then

dl ≤ µkdl−1 + h ≤ µk

[
µl−1

k d0 + d(p)
∑l−1

j=1 µl−1−j
k P ∗

k−1(j)µ̃
j−1
k

]

+ µ̃l−1
k d(p)P ∗

k−1(l) = µl
kd0 + d(p)

∑l
j=1 µl−j

k P ∗
k−1(j)µ̃

j−1
k .

This concludes the proof of (2.33). We define µk := max{µk, µ̃k} < µ∗
k and

consider the polynomial Pk defined by
∑j

i=1 P ∗
k−1(i) = Pk(j), which is nonegative.

With these definitions, (2.33) implies that

(2.34) dl ≤ µl
kd0 + µl−1

k d(p)
∑l

j=1
P ∗

k−1(j) = µl
kd0 + d(p)µl−1

k Pk(l).

Since d(∆kp) ≤ 2kd(p), (2.34) implies the inequality

(2.35) dl ≤ µl
k

[
d(∆kp) + d(p)Pk(l)/µk

]
≤ µl

k(2
k + Pk(l)/µk)d(p),

for d(p) < δ. We let P k(l) = 2k + µ−1
k Pk(l), and the proof is complete. �

It is obvious that for any given µ0, . . . , µk with µ0 < 1 and exponent collections
A0, . . . ,Ak−1 we can choose µ∗

0, µ
∗
1, . . . such that general proximity holds true, if

we do not have to obey any further inequalities concerning the magnitude of µ∗
i .

It follows that with Th. 5 we can derive a mixed smoothness condition for any
nonlinear scheme T which satisfies (2.18).
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2.8. Smoothness of limit curves. It is well known that Ck smoothness of the
limit curve T∞f as defined by (2.7) follows from existence of the limits

(2.36) lim
l→∞

Fl(N
jl∆jT lp), j = 0, . . . , k,

with respect to the sup norm, provided those limits are continuous Such a limit
then equals the j-th derivative of the curve T∞f . It is obviously sufficient to
prove the result in the case k = 1 (see e.g. [3]). We state this result in a form
which directly applies to our setting.

Lemma 5. Assume that the sequence pl of polygons has the property that liml→∞

Fl(p
l) = f with respect to the sup norm. We let

(2.37) gj,l := Fl(N
jl∆jpl).

If gj,l is a Cauchy sequence, and liml→∞ d(N jl∆jpl) = 0 for j = 1, . . . , k, then f
is Ck with f (j) = liml→∞ gj,l (with respect to the sup norm).

Theorem 6. If under the conditions of Th. 5, µ∗
0, . . . , µ

∗
k ≤ 1 and the symbol of

S is divisible by (1 + z + · · ·+ zN−1)k+1, then the limit curves T∞p are Ck for all
polygons p such that T lp converges.

Proof. The case k = 0 is Th. 3. The case k = 1 has been shown in [22]. Here we
show the general case k > 0 by using the proximity condition of order k − 1:

‖∆k−1Sp − ∆k−1Tp‖ ≤ C
∑

α∈Ak−1

∏
d(∆jp)αj .(2.38)

By Th. 5, a mixed smoothness condition holds for T : there are nonnegative
polynomials Pj and factors µj for j = 1, . . . , k such that

(2.39) ‖∆jT lp‖ ≤ N−jlPj(l)µ
l
jd(p),

such that µi < µ∗
i (i = 0, . . . , k). For a linear subdivision scheme S and its k-

th derived scheme Sk, a smoothness condition of order k in the sense of Def. 2
which holds for S is nothing but a continuity condition for Sk. According to our
assumptions, the symbol of Sk is divisible by 1 + z + · · ·+ zN−1, so Sk is affinely

invariant. By Lemma 2, there is a constant C̃ such that

(2.40) ‖Fj+1(Sk∆
kp) −Fj(∆

kp)‖∞ ≤ C̃d(∆kp).

We consider the sequence Fl(N
kl∆jT lp). With q := T lp,

‖Fl+1N
k(l+1)∆kT l+1p −FlN

kl∆kT lp‖∞

≤ ‖Fl+1N
k(l+1)∆k(T − S)q‖ + ‖(Fl+1N

k∆kS −Fl∆
k)Nklq‖

≤ 2Nk(l+1)‖∆k−1(T − S)q‖ + ‖(Fl+1Sk −Fl)∆
kNklq‖ = (∗) + (∗∗)

We use (2.38) and (2.39) and compute for any α ∈ Ak−1:

Nk(l+1)
∏

j d(∆jq)αj = Nk(l+1)
∏

j[N
−jld(N jl∆jT lp)]αj(2.41)

≤ Nkd(p)|α|(Nk−w(α)
∏

j µ
αj

j )l
∏

j(Pj(l))
αj
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(2/3,1/3) (2/3,1/3)
(1,1)

(3,0)

Figure 1. Admissible factors (µ∗
0, µ

∗
1) (left) and (µ0, µ1) (center)

in the (m0,m1)-plane (see text) for the proximity conditions of Def.
4. Right: Admissible exponents α0, α1 for µ∗

0 = µ∗
1 = 1/N , µ2 < 1.

(2.38) and (2.19) show that (2.41) implies

(∗) ≤ 2CNk
∑

α∈Ak−1
d(p)|α|µl

k

∏
j(Pj(l))

αj .

In order to estimate (∗∗), we use (2.40) and (2.39)

(∗∗) ≤ C̃Nkld(∆kq) ≤ C̃µl
kPk(l)d(p).

As µ∗
k ≤ 1, we have shown that Fl(N

jl∆jT lp) (l → ∞) is a Cauchy sequence for
j = 1, . . . , k. Furthermore, the smoothness condition which holds for T says that
liml→∞ d(N jl∆jT lp) = 0 for j = 0, . . . , k. Thus Lemma 5 applies, and the proof
is complete. �

3. Examples

The next sections treat subdivision in manifolds, which is an important context
where nonlinear analogues of linear schemes occur. Before that, we dicuss some
facts which easily follow from the results obtained so far.

3.1. Proximity of orders 0 and 1. If a linear scheme S is given, (2.19) in
the general proximity condition and the inequalities µ∗

0, . . . , µ
∗
k ≤ 1 required by

Th. 6 put restrictions on the exponents αi used in the GPC. On the other hand,
if a certain way of perturbing linear schemes is known to yield inequalities like
(2.18) or (2.20) or (2.22), such that the exponents αi are known, we might ask
which linear schemes have factors µi meeting the requirements of (2.19). By
letting µi = N−mi , (2.19) turns into the linear inequality (2.24). The inequalities
µi ≥ 1/N from Lemma 1 and the requirements µi < 1 yield 0 < mi ≤ 1.

We first have a look at the zero order proximity condition of Def. 4. The
requirement µ1 < 1 is fulfilled by letting µ∗

1 = 1, and we arrive at the two
equivalent conditions

(3.1) µα0

0 < 1/N ⇐⇒ α0 > 1/m0.
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We see that for any smooth scheme S there is a general proximity condition
of the form ‖Sp − Tp‖∞ ≤ d(p)α0 which ensures smoothness of the scheme T .
Conversely, if such a condition is given, it applies to S only if µ0 ≤ N−1/α0 .

As to first order proximity conditions, we force µ2 < 1 by letting µ∗
2 = 1. Then

(2.19) yields

(3.2) α0m0 − α1(m1 + 1) > 2, for all (α0, α1) ∈ A1.

In the concrete case of the zero order and first order proximity stated in Def. 4,
the inequalities (3.1) and (3.2) for α0 = 2 and α1 ∈ {(1, 1), (3, 0)} define a certain
domain for admissible factors µ∗

0, µ
∗
1 and µ0, µ1 which are depicted in Figure 1,

left and center.
The other way round, for a given scheme with, e.g., µ0 = µ1 = 1/N , the

admissible exponents α0, α1 used in the GPC are shown by Fig. 1, right.

3.2. Sharpness of the proximity conditions. The general proximity condi-
tion, especially (2.19) is sufficient for Ck smoothness of a scheme T , provided the
scheme S fulfills the requirements of Th. 6, but it is possible that (2.19) can be
improved so as to be less restrictive. In the following we show that for the case of
B-spline schemes and a special type of proximity, the inequalities (2.19) are nec-
essary for Ck smoothness: It is easy to see that in the case µ0 = · · · = µk = 1/N
and

(3.3) ‖∆jSp − ∆jTp‖ ≤ Cd(∆jp)α, j = 1, . . . , k − 1,

any α > 1 implies Ck smoothness of T , but α = 1 does not. A counterexample
is given by the B-spline schemes of (2.2): Let S = S(k+1), T = S(k) and consider
the symbols a(z) = (1 + z)k+2/(2z)k+1 and b(z) = (1 + z)k+1/(2z)k of S and T ,
respectively, as in (2.16). With U = S − T the j-th derived scheme Uj has the
symbol u[j](z) = e(j)(z)(1 − z2)/z2 with e(j)(z) = z((1 + z)/2z)k−j. This implies
that Ujp = E(j)∆p, where E(j) has the symbol e(j)(z). We compute

(3.4) ∆jSp − ∆jTp = ∆jUp =
1

2j
Uj∆

jp =
1

2j
E(j)∆j+1p

It follows that

(3.5) ‖∆jSp − ∆jTp‖ ≤
1

2j
‖E(j)‖d(∆jp), j = 0, . . . , k.

As S is Ck, but T is not, (3.5) cannot be a valid proximity condition implying
Ck smoothness.

3.3. Examples of perturbed schemes of Ck smoothness. Suppose that S
is a linear scheme with Ck limits and whose (k +1)-st derived scheme exists, i.e.,
whose symbol is divisible by (1 + z + · · · + zN−1)k+1, as required by Th. 6. A
perturbed scheme T of the form

(3.6) Tpi = Spi + Q(p, i)d(p)α, ‖Q(p, i)‖ ≤ C,
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with α > 1 and arbitrary bounded Q satisfies the inequality

(3.7) ‖∆jTp − ∆jSp‖ ≤ 2j‖Sp − Tp‖ ≤ 2jCd(p)α.

We consider the factors µi = 1
N
‖Si+1‖ which appear in the smoothness conditions

for S, let µi = N−mi and look at (2.19) for the special case that the exponent
lists have the form A0 = {(α)}, A1 = {(α, 0)}, . . . , Ak−1 = {(α, 0, . . . , 0)} (i.e.,
we reformulate (3.7) to fit the formalism of Def. 3). S and T fulfill a general
proximity condition of order k − 1, if, according to (2.19), µ∗α0

0 ≤ µ∗
jN

−j for
0 ≤ j < k, i.e., if

(3.8) α0m0 > mj + j, j = 0, . . . , k − 1, α0m0 > k.

This is equivalent to α > (j + mj)/m0 for j = 0, . . . , k − 1 and α > k/m0. With
1/N ≤ µj < 1 this is further equivalent to

(3.9) α > k/m0 = k log N/| log µ0|.

We see that if α fulfills the inequality (3.9), T has Ck limit curves.

4. Curve schemes and their analogous schemes in manifolds

This section continues the discussion of proximity conditions in [22], which
was solely concerned with zero order proximity. The representation of affinely
invariant linear subdivision schemes in terms of averages, which exists in general
by Th. 1 and is for the B-spline schemes demonstrated by (2.2), is used to define
nonlinear schemes on manifolds in two different ways.

One way is to replace affine averages by geodesic averages. The second consists
of projecting affine averages onto the manifold. These constructions of nonlinear
schemes from linear ones apply to surfaces, to certain Lie groups, in particular
to the Euclidean motion group, and to abstract Riemannian manifolds.

A general analysis of certain subdivision schemes on abstract Riemannian man-
ifolds is done in [17], [16], and [18], where the geodesic analogues of the second
and third degree B-spline schemes are shown to converge to smooth curves with
Lipschitz derivatives, and that the limit curves of the second degree algorithm
are not even piecewise C2 in general.

4.1. Geodesic averages in surfaces and geodesic subdivision. Here we re-
view briefly the construction of analogous geodesic and group schemes in surfaces
and matrix groups, which is presented in more detail in [22].

We replace the straight lines of affine space by the geodesic lines in a surface
or Riemannian manifold and the average of two points by a corresponding point
on the geodesic. We study this concept first for surfaces only. The reason for
this is that our method of analyzing smoothness of nonlinear schemes requires
comparison with linear schemes, and for our proofs the ambient space where a
surface is immersed in is necessary. We consider abstract Riemannian manifolds
only in the very end.
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The surfaces we deal with and the Euclidean spaces they are contained in have
arbitrary dimensions, especially because of the proof of Cor. 1 later. Curva-
ture theory of such surfaces employs the vector-valued second fundamental form
“II(v, w)” of two tangent vectors v, w attached to a point p ∈ M (cf. [6], § 6.2).
Its definition is as follows: Suppose that c(t) is a curve in M with c(t0) = 0 and
ċ(t0) = v, and further suppose that w(t) is a tangent vector field along the curve
c(t) such that w(t0) = w. Then

(4.1) IIp(v, w) = (dw/dt)⊥ |t=t0 ,

where the symbol “⊥” means the component of a vector orthogonal to the sur-
face’s tangent plane TpM . It can be shown that IIp is well defined, bilinear, and
symmetric. The well known defining property “c̈ orthogonal to the surface” of a
geodesic line c(t) obviously can be reworded as

(4.2) c̈(t0) = IIc(t0)(ċ(t0), ċ(t0))

(let v = ċ(t0) and w(t) = ċ(t)). Following § 2 of [22], we define

Definition 5. If c is the unique shortest geodesic which joins x and y, then we
let

(4.3) g-avα(x, y) := c(αt), if c(0) = x, c(t) = y.

The geodesic analogue T of an affinely invariant linear scheme S, which is ex-
pressed in terms of averages, is defined by replacing each occurrence of the av
operator by the g-av operator.

Note that both affine and geodesic averages fulfill the relations

(4.4) av1−α(y, x) = avα(x, y), g-av1−α(y, x) = g-avα(x, y).

4.2. Averages in matrix groups. This subsection extends the concept of ge-
odesic subdivision to matrix groups, such that, e.g. for the group of Euclidean
motions, the helical motions appear as geodesic-like curves (cf. [2] or [13]). This
means e.g. that the geodesic midpoint of two positions of a rigid body is found by
first determining the shortest helical motion which transforms the first position
(at time t = 0) into the other (at time t = τ), and then evaluating this helical
motion half way in between, i.e., at t = τ/2.

In general, we use the left translates of one-parameter subgroups of matrix
groups and general Lie groups as geodesics. In terms of the matrix exponential
function, these curves can be written as

(4.5) c(t) = g exp(tv),

where gv is tangent to the group in the point c(0) = g. This is discussed in more
detail in sections 2.3 and 6.3 of [22]. We are able to treat matrix groups in the
same way as surfaces, if we can show that the geodesics in matrix groups fulfill a
differential equation similar to the surface case.
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Remark: The usage of the word ‘geodesic’ in the Lie group context does not
mean that the Lie group carries a metric such that the geodesics defined by (4.5)
are geodesics in the Riemannian sense. ♦

Definition 6. A Lie group of n × n matrices is called of constant velocity, if
there is a Euclidean metric in the n2-dimensional space of matrices, such that the
geodesics defined by (4.5) are traversed with constant velocity.

It is shown in [22] that all subgroups of the orthogonal group, indeed all com-
pact groups, and also the Euclidean motion group, are of constant velocity. As
to a differential equation of geodesics, that paper contains the following

Lemma 6. Assume that G is a Lie group of n× n matrices. Then the geodesics
are precisely the solution curves of the differential equation

(4.6) c̈ = Bc(t)(ċ(t), ċ(t)), with Bg(v, w) =
1

2
(vg−1w + wg−1v).

4.3. Projection subdivision. The method of projection is a very general way
of introducing nonlinearity.

Definition 7. Consider a submanifold M of R
n. A generalized projection P

onto M is a smooth mapping onto M defined in a neighbourhood of M , such that
P (x) = x for all x ∈ M .

How smooth exactly P must be depends on the application. One example of
a projection is the orthogonal projection onto M .

Definition 8. The projection analogue T of an affinely invariant linear scheme
S, which is expressed in terms of averages, is defined by replacing each occurrence
of the av operator by “Pav”.

Examples of projections which are readily computable are the gradient flow
towards general level set surfaces [23], and orthogonal projection onto selected
surfaces like spheres, tori, or the Euclidean motion group (see [1, 23]). A further
application of the projection method is the perturbation of subdivision schemes
by obstacles [23].

4.4. Taylor’s formula. Verification of proximity conditions for subdivision schemes
on manifolds is based on Taylor’s formula. For the convenience of the reader, we
repeat it here, using the notation we employ later: If P : U ⊂ R

n → R
m is a

mapping of sufficient smoothness, then for all x and h such that the line segment
connecting x and h lies in the domain of P , we have

P (x + h) = P (x) +
k∑

j=1

1

j!
dj

xP (h, . . . , h︸ ︷︷ ︸
j

) +
dk+1

x+θhP (h, . . . , h)

(k + 1)!
,(4.7)
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with 0 < θ < 1. The k-th derivative dk
xP of P in the point x is a k-linear mapping.

If the vector ui has coordinates (ui1, . . . , uin), then

dk
xP (u1, . . . , uk) =

n∑
i1,...,ik=1

u1i1 · · · ukik

∂kP (x)

∂xi1 · · · ∂xik

.

The operator norm of the k-th derivative is defined as

(4.8) ‖dkP‖ := max{‖dkP (u1, . . . , uk)‖ | ‖ui‖ ≤ 1}.

We give some lemmas, which are needed later. The first one is quoted from [22].

Lemma 7. Assume that c is a curve with ‖ċ‖ = 1 and ‖c̈‖ ≤ C. Then

‖c(0) + tċ(0) − c(t)‖ ≤
Ct2

2
, |t| − Ct2/2 ≤ ‖c(t) − c(0)‖,(4.9)

t < 1/C =⇒ |t| ≤ 2‖c(t) − c(0)‖.(4.10)

Lemma 8. Assume that c is a curve with ‖
...
c ‖ < C ′. Then

‖α(c(t) − c(−t)) − (c(αt) − c(−αt))‖ ≤
∣∣α + α3

3

∣∣C ′t3.(4.11)

Proof. With a Taylor expansion of degree three the left hand side in (4.11)

expands to ‖α t3

6
(
...
c (θ1t) +

...
c (−θ2t) − α2...c (θ3αt) − α2...c (−θ4αt))‖ with factors

θi ∈ (0, 1). This implies (4.11). �

4.5. Auxiliary inequalities concerning geodesic subdivision. It has been
shown in [22] that a linear affinely invariant subdivision scheme with finite mask
and its analogous geodesic scheme fulfill the inequality (2.20), both for a surface
and for a matrix group of constant velocity. In this paper we are concerned with
first order proximity conditions, i.e., especially with verification of (2.22).

We consider a surface M contained in the Euclidean vector space R
n, which is

equipped with geodesics — either in the sense of elementary differential geometry,
or in the matrix group sense. In both cases, geodesics are the solution curves of
a differential equation of the form

(4.12) c̈(t) = Bc(t)(ċ(t), ċ(t)),

where Bx is either the second fundamental form of (4.2) or the expression defined
by (4.6). Bx is supposed to depend smoothly on the point x. This is trivial for the
group case, and follows from C3 smoothness of the surface under consideration in
the Riemannian case. Recall that Bx in both cases is symmetric and bilinear, and
that solution curves are traversed with constant velocity. We use the orthogonal
projection πx onto the tangent space TxM in order to extend the definition of Bx

of (4.12) to arguments not necessarily tangent to the surface M :

(4.13) Bx(v, w) := Bx(πx(v), πx(w)).

Thus Bx becomes an n×n matrix smoothly dependent on x. Differentiation of Bx

is understood component-wise. This way of extending the second fundamental
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form from the tangent space of the surface under consideration to entire ambient
space has been used for averaging e.g. in [21].

We consider such open subsets U of M where there exist constants D,D′ with
the property that

x ∈ U, u, v, w ∈ TxM, ‖u‖, ‖v‖, ‖w‖ ≤ 1(4.14)

=⇒ ‖Bx(v, w)‖ ≤ D, ‖(∂uB)x(v, w)‖ ≤ D′.

Clearly D,D′ exist locally in M , and globally if M is compact. In the surface case
the existence of global constants D and D′ means that normal curvatures and
change of normal curvatures, respectively, are bounded. In the case of a matrix
group of constant velocity, it is shown in [22] that there is a global constant D,
which can be chosen as any D with the property that for all v, w ∈ R

n×n,

(4.15) ‖vw‖ ≤ D ‖v‖ ‖w‖.

Lemma 9. If c(t) = expp(tv) with ‖ċ‖ = 1, then with D from (4.14),

(4.16) ‖c̈‖ ≤ D.

The proof is easy and can be found in [22]. The following result analogously
estimates the norm of the third derivative of geodesics:

Lemma 10. If c(t) = expp(tv) with ‖ċ‖ = 1, then ‖
...
c ‖ locally has an upper

bound D′′, which in general is given by

(4.17) D′′ := D′ + 2D2,

Proof. We differentiate (4.12) and get
...
c = (∂ċB)(ċ, ċ) + 2Bc(c̈, ċ) = (∂ċB)(ċ, ċ) + 2Bc(Bc(ċ, ċ), ċ),

With D,D′ from (4.14), (4.17) follows immediately. �

Remark: For geodesics in matrix groups which have the property that left trans-
lations x 7→ gx are isometric with respect to some Euclidean metric in the
space R

n×n of matrices, we show that there is a global constant D′′. The Eu-
clidean motion group falls within this category [22]. The geodesic is of the
form c(t) = g exp(tv), for some matrix v tangent to the given group. Then
ċ(t) = g exp(tv)v = c(t)v and

...
c (t) = g exp(tv)v3 = c(t)v3. By left invariance

of the metric, we have ‖ċ(t)‖ = ‖v‖. It was assumed that geodesics are tra-
versed with unit velocity, so ‖v‖ = 1. It follows that ‖

...
c ‖ = ‖c(t)v3‖ = ‖v3‖ ≤

D‖v2‖ · ‖v‖ ≤ D2‖v‖3 ≤ D2, with D from (4.15). ♦

Lemma 11. Assume that (4.14) holds true with D > 0 and an open set U , and
that the points x, y are joined by a unique shortest geodesic of length ≤ 1/D. If
the geodesic segment used in g-avα(x, y) is contained in U , then with β = 1 − α,
we have

‖ avα(x, y) − g-avα(x, y)‖ ≤ 2D min(|α| + α2, |β| + β2)‖x − y‖2.



SMOOTHNESS ANALYSIS OF SUBDIVISION SCHEMES BY PROXIMITY 19

PSfrag replacements

v

x

y z

w

v
′

w
′

c c̃

Figure 2. Illustration of the proof of Lemma 14.

The proofs of this and the following result are given in [22].

Lemma 12. Let U and D be as in (4.14). Consider an affinely invariant subdi-
vision scheme S with finite mask and its analogous geodesic scheme T . Let the
class P ′

U,δ consist of all polygons p in U with d(p) < δ and which have the property
that all geodesic segments used in subdividing according to T are contained in U .

Then S and T fulfill (2.20) for all polygons p ∈ P ′
U,δ. The constant C in (2.20)

depends on T , D, and δ.

Lemma 14 below is the basis for comparing difference sequences of sequences
generated by linear and by geodesic subdivision. Its proof makes use of

Lemma 13. Assume that D is chosen such that (4.14) holds (i.e., ‖B‖ ≤ D),
that ‖v − v′‖, ‖w − w′‖ ≤ d, and that ‖v‖ ≤ ε1, ‖w‖ ≤ ε2. Then ‖B(v + w, v −
w) − B(v′ + w′, v′ − w′)‖ ≤ 4Dd(ε1 + ε2 + d).

Proof. We have v′ +w′ = v +w + r and v′−w′ = v−w + s with ‖r‖, ‖s‖ ≤ 2d. It
follows that B(v′+w′, v′−w′) = B(v+w, v−w)+B(v+w, s)+B(r, v−w)+B(r, s).
Thus ‖B(v + w, v − w) − B(v′ + w′, v′ − w′)‖ is bounded from above by ‖B(v +
w, s)‖+‖B(r, v−w)‖+‖B(r, s)‖ ≤ D ·(ε1+ε2)·2d+D ·2d·(ε1+ε2)+D ·2d·2d. �

Lemma 14. Assume that α, β ∈ R have the property that either

(4.18) α = β or α = 1 − β.

Then locally there are constants C, δ > 0, depending on α, β, on the constants D
of (4.14) and D′′ of Lemma 10, such that whenever the geodesic distances of the
three points x, y = x + v, z = x + w are smaller than δ, we have the estimate

h = g-avα(x, y) − g-avβ(x, z) − avα(x, y) + avβ(x, z),(4.19)

=⇒ ‖h‖ ≤ C
[
(‖v‖ + ‖w‖) · ‖v − w‖ + ‖v‖3 + ‖w‖3)

]
.

Proof. The geodesics used in averaging are denoted by c and c̃: c̃(0) = c(0) = x,
c(τ) = y, c̃(σ) = z. We use a Taylor expansion with a remainder term of degree
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3:

h = c(ατ) − c̃(βσ) − ((1 − α)x + αc(τ)) + ((1 − β)x + βc̃(σ))

=
α2 − α

2
τ 2c̈(0) −

β2 − β

2
σ2¨̃c(0))

+
1

3!

(
α3τ 3...c (θ1τ) − ατ 3...c (θ2ατ)

)
−

1

3!

(
. . .

)
,

where 0 ≤ θ1, . . . , θ4 ≤ 1. We denote the second degree and third degree terms
on the right hand side of the above equation by “(∗∗)” and “(∗∗∗)”, respectively.
Symmetric bilinear mappings B have the property that B(a, a)−B(b, b) = B(a−
b, a + b). We compute

v′ := τ ċ(0), w′ := σ ˙̃c(0) =⇒ τ 2c̈(0) − σ2¨̃c(0) =

= Bx(v
′, v′) − Bx(w

′, w′) = Bx(v
′ + w′, v′ − w′).(4.20)

We want to apply Lemma 7 to the curves c and c̃ in order to get estimates for
‖τ ċ(0) − v‖ and ‖σ ˙̃c(0) − w‖. As both c and c̃ are geodesics and traversed by
unit velocity, the geodesic distance of the point c(0) and c(t) equals t, and the
same for c̃. According to Lemma 7 this means that by choosing δ < 1/D we can
achieve that

(4.21) |τ | < 2‖v‖, |σ| < 2‖w‖, ‖v′ − v‖ ≤ Dτ2

2
, ‖w′ − w‖ ≤ Dσ2

2

(from left to right, this is (4.10), (4.10), (4.9), and (4.9)). The expression in
(4.20) is now estimated by means of Lemma 13, with d = 2D max(‖v‖, ‖w‖)2,
ε1 = ‖v‖, ε2 = ‖w‖:

(4.22) ‖τ 2c̈(0) − σ2¨̃c(0)‖ ≤ ‖B(v + w, v − w)‖ + 4Dd(ε1 + ε2 + d).

By our assumption, α2 − α = β2 − β. It follows that there is a constant C ′,
dependent on D, α, β and δ such that

(4.23) (∗∗) ≤
∣∣α2−α

2

∣∣D‖v − w‖(‖v‖ + ‖w‖) + C ′ max(‖v‖, ‖w‖)3.

As to (∗∗∗), we use (4.21) to conclude that

(4.24) (∗∗∗) ≤ 8D′′

3
max(|1 + α|, |1 + β|)|α2 − α|(‖v‖3 + ‖w‖3).

By combining the estimates for the second and the third degree terms, we get
(4.19) and the proof is complete. �

4.6. Proximity conditions for geodesic B-spline schemes. We now con-
sider B-spline subdivision S = S(3) according to (2.2). S(3) is the first B-spline
scheme which is C2. From the proximity inequality for S(3) we will get proximity
inequalities for a wide class of schemes, which is described by Def. 9 below. Let
T be the geodesic analogue of S(3). In the first three rounds of the recursion in
(2.2), geodesic averaging takes place within the same geodesic lines which connect
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Figure 3. Illustration of the proof of Lemma 15.

the points of the original polygon p. It follows that the geodesic analogue of S(3)

defined by the recursion (2.2) has the explicit representation

Tp2i = g-av1/2(pi, pi+1),(4.25)

Tp2i+1 = g-av1/2(g-av1/4(pi+1, pi), g-av1/4(pi+1, pi+2));

and of course for S(3) we have

S(3)p2i = av1/2(pi, pi+1),(4.26)

S(3)p2i+1 = av1/2(av1/4(pi+1, pi), av1/4(pi+1, pi+2)).

Lemma 15. Consider the subdivision scheme S = S(3) defined by (2.2) (the cubic
B-spline scheme), and its analogous geodesic scheme T . Then for all open sets U
where there exist constants D and D′′ according to (4.14) and Lemma 10, there
is δ > 0 such that that S and T fulfill (2.22) for p ∈ PU,δ.

Proof. We employ the definition of T given by (4.25). ∆Tpi is computed differ-
ently depending on whether Tpi is on an edge of the original polygon or not. We
consider only one of these two cases, because changing the sense of direction in p
exchanges these two cases, and T is invariant with respect to this transformation.

We use geodesics ci with ci(0) = pi, ci(τi) = pi+1, and also the geodesics c̄
which parametrize the same curve segment the other way round, i.e., c̄i(0) = pi+1,
c̄i(τi) = pi. Let α = 1/4 and introduce the points x, y, z, x̃, ỹ, z̃:

x = g-avα(pi+1, pi), y = g-avα(pi, pi+1), z = g-avα(pi+1, pi+2),(4.27)

x̃ = avα(pi+1, pi), ỹ = avα(pi, pi+1), z̃ = avα(pi+1, pi+2).(4.28)

It follows that

Sp2i = av1/2(x̃, ỹ), Sp2i+1 = av1/2(x̃, z̃),(4.29)

Tp2i = g-av1/2(x, y), Tp2i+1 = g-av1/2(x, z).(4.30)
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We use the triangle inequality to split ‖∆Sp2i − ∆Tp2i‖ into two parts:

‖∆Sp2i − ∆Tp2i‖ = ‖Sp2i+1 − Sp2i − Tp2i+1 + Tp2i‖(4.31)

= ‖ av1/2(x̃, z̃) − av1/2(x̃, ỹ) − g-av1/2(x, z) + g-av1/2(x, y)‖

≤‖ av1/2(x, z) − av1/2(x, y) − g-av1/2(x, z) + g-av1/2(x, y)‖ (∗)

+ ‖ av1/2(x̃, z̃) − av1/2(x̃, ỹ) − av1/2(x, z) + av1/2(x, y)‖ (∗∗)

Lemma 14 with α = β = 1/2 implies the inequality

(∗) ≤ C
[
(‖y − x‖ + ‖z − x‖)‖(y − x) − (x − z)‖(4.32)

+ ‖y − x‖3 + ‖z − x‖3
]
.

By Lemma 12, S and T fulfill (2.20). This implies that each of the three vectors

(x − y) − ∆pi/2, (x − pi+1) − (−∆pi)/4, (z − pi+1) − ∆pi+1/4,

is bounded by a constant times d(p)2. It follows that there is a constant C ′ such
that

‖
[
(y − x) − (x − z)

]
−

[
(−∆pi/2) − (−∆pi/4 − ∆pi+1/4)

]
‖(4.33)

= ‖
[
(y − x) − (x − z)

]
−

1

4
∆2pi‖ ≤ C ′d(p)2,

which implies that

(4.34) ‖(y − x) − (x − z)‖ ≤ C ′d(p)2 + d(∆p)/4.

Consequently (4.32) implies that there is a constant C ′′ such that

(4.35) (∗) ≤ C ′′
[
d(p)d(∆p) + d(p)3)

]
.

Lemma 14 with α = β = 1/4 and the points pi+1, pi and pi+2 yields

‖(x − z) − (x̃ − z̃)‖ ≤ C
[
(‖∆pi‖ + ‖∆pi+1‖) · ‖∆

2pi‖(4.36)

+ ‖∆pi‖
3 + ‖∆pi+1‖

3)
]
.

In order to estimate (x − y) − (x̃ − ỹ), we use the geodesic c defined by c(t) =
ci(t+ τi/2). We note that

...
c is bounded according to (4.17) and appeal to (4.11):

‖(x − y) − (x̃ − ỹ)‖ = ‖(c(τi/4) − c(−τi/4))(4.37)

−
1

2
(c(τi/2) − c(−τi/2))‖ ≤ Cτ 3

i .

By Lemma 7, τi ≤ 2‖∆pi‖, if the geodesic distance of the points pi and pi+1 is
bounded appropriately. Thus we get

(∗∗) ≤
1

2
(‖(y − x) − (ỹ − x̃)‖ + ‖(x − z) − (x̃ − z̃)‖)(4.38)

≤ C ′′′′(d(p)3 + d(p)d(∆p)).

The two estimates for (∗) and (∗∗) together show (2.22) for S and T . �



SMOOTHNESS ANALYSIS OF SUBDIVISION SCHEMES BY PROXIMITY 23

4.7. Proximity inequalities and geodesic averages. After considering the
subdivision rule S(3) above, this subsection is a further step towards our aim of
showing proximity inequalities of a wider class of subdivision rules. It is concerned

with schemes S, T , which arise from schemes S̃, T̃ by adding one further round
of averaging to each.

Lemma 16. Assume that S̃ and T̃ are subdivision schemes which meet (2.22).

Suppose that S̃ has derived schemes S̃1 and S̃2. Define S, T by one further step
of averaging:

(4.39) Spi = avα(S̃pi, S̃pi+1), Tpi = g-avα(T̃ pi, T̃ pi+1),

Then for all open sets U where there exist constants D and D′′ according to
(4.14) and Lemma 10, resp., there is δ > 0 such that S and T fulfill (2.22) for
all p ∈ PU,δ.

Proof. We introduce the points

(4.40) qi = avα(T̃ pi, T̃ pi+1).

It follows directly from Lemma 14 with β = 1 − α that there is a constant C ′

such that for all p with d(T̃ p) small enough we have

(4.41) ‖∆qi − ∆Tpi‖ ≤ C ′(d(T̃ p)d(∆T̃ p) + d(T̃ p)3).

We want to express the bound in terms of p rather than T̃ p. We are going to use

that S̃ and T̃ obey both (2.20) and (2.22), and that S̃ has derived schemes S̃1

and S̃2, whence d(S̃p) ≤ µ̃0, d(∆S̃p) ≤ µ̃1d(∆p).

d(T̃ p) ≤ d(S̃p) + 2‖T̃ p − S̃p‖ ≤ µ̃0d(p) + 2Cd(p)2

d(∆T̃ p) ≤ d(∆S̃p) + 2‖∆T̃ p − ∆S̃p‖

≤ µ̃1d(∆p) + 2C(d(p)d(∆p) + d(p)3).

Inserting this in (4.41) yields an upper bound which is a polynomial in d(p) and
d(∆p). Via d(p) ≤ δ and therefore d(p)k ≤ d(p)δk−1 we get

(4.42) ‖∆qi − ∆Tpi‖ ≤ C ′′(d(p)d(∆p) + d(p)3).

Further,

‖∆Spi − ∆qi‖ = ‖(1 − α)∆S̃pi + α∆S̃pi+1 − (1 − α)∆T̃ pi − α∆T̃ pi+1‖

≤ (|1 − α| + |α|) ‖∆S̃p − ∆T̃ p‖.

We use (4.41) and (2.22) to show that

‖∆Spi − ∆Tpi‖ ≤ ‖∆Spi − ∆qi‖ + ‖∆qi − ∆Tpi‖(4.43)

≤ ((|1 − α| + |α|)C + C ′′)(d(p)d(∆p) + d(p)3).

The proof is complete. �
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4.8. Proximity for projection subdivision. The part of this paper concerning
projection subdivision is shorter than the analogous part on geodesic subdivision.
The reason for this is that the proofs are analogous, once some basic inequalities
are established.

We require the existence of upper bounds for the norms of the projection’s
derivatives. In compact subsets, upper bounds always exist in analogy to the
constant D of (4.14).

We consider an open subset U of R
n (the space where the surface under con-

sideration is contained in), where there are constants D,D′, D′′ ≥ 0 such that

x ∈ U =⇒ ‖dxP‖ ≤ D, ‖d2
xP‖ ≤ D′, ‖d3

xP‖ ≤ D′′.(4.44)

The following is an immediate consequence of (4.44):

Lemma 17. If c(t) = P (x + tv) with ‖v‖ = 1, then ‖c̈‖ < D′ and ‖
...
c ‖ < D′′,

with D′, D′′ from (4.44).

Lemma 18. Assume that U , D, D′ are as in (4.44), and that the straight line
segment which contains the points x, y, (1 − α)x + αy is contained in U . With
β = 1 − α,

(4.45) ‖ avα(x, y) − Pavα(x, y)‖ ≤
D′

2
min(|α| + α2, |β| + β2)‖x − y‖2.

The proofs of this and the following result can be found in [22].

Lemma 19. (the projection analogue of Lemma 12) Let U , D, and D′ be as in
(4.44). Consider an affinely invariant subdivision scheme S and its analogous
projection scheme T . Let the class P ′

U,δ consist of all surface polygons p with
d(p) < δ, and such that the line segments used in averaging in the application of
T are inside U .

Then S and T fulfill (2.20) for all polygons p ∈ P ′
U,δ. The constant C in (2.20)

depends on T , D, D′, and δ.

In order to show that (2.22) holds (which is part of the first order proximity
condition), we proceed in a way analogous to the geodesic case. The next lemma
is the projection variant of Lemma 14.

Lemma 20. Choose α, β with α(1 − α) = β(1 − β), and an open subset U such
that in U exist constants D, D′, D′′ according to (4.44). Then there are constants
C,C ′, δ > 0, depending on α, β, D, D′, D′′, such that for all points x, y = x+ v,
z = x + w the estimate

Pavα(x, y) − Pavβ(x, z) − avα(x, y) + avβ(x, z)(4.46)

≤ C(‖v‖ + ‖w‖) · ‖v − w‖ + C ′(‖v‖3 + ‖w‖3),

is true, provided ‖v‖, ‖w‖ < δ.
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Proof. The proof is similar to the proof of Lemma 14, but easier. We denote
the combination of averages used in (4.46) by the symbol h and apply Taylor’s
formula to the curves defined by c(t) = P (x + tv0), c̃(t) = P (x − tw0), where v0

and w0 are unit vectors parallel to v and w, resp. We assume that c(τ) = y and
c̃(σ) = z and get h = c(ατ)− c̃(ασ)− ((1− α)x + αc(τ)) + ((1− β)x + βc̃(σ)) =
α2−α

2!
(τ 2c̈(0) − σ2¨̃c(0)) + 1

3!
(α3τ 3...c (θ1τ) − ατ 3...c (θ2ατ) + . . . ),where 0 < θi < 1.

The second degree term may be estimated as follows:

‖τ 2c̈(0) − σ2¨̃c(0)‖ = ‖d2
xP (v, v) − d2

xP (w,w)‖(4.47)

= ‖d2
xP (v − w, v + w)‖ ≤ D′‖v − w‖(‖v‖ + ‖w‖).

The third degree remainder term above is obviously bounded by

(4.48) max(
∣∣α3+α

3

∣∣,
∣∣β3+β

3

∣∣)D′′(‖v‖3 + ‖w‖3),

which concludes the proof. �

Next we consider a projection analogue “T” of S(3) based on the representation
(4.26). It is given by

Tp2i = Pav1/2(pi, pi+1),(4.49)

Tp2i+1 = Pav1/2(Pav1/4(pi+1, pi), Pav1/4(pi+1, pi+2)).

Note that (4.49) is not the direct projection analogue of the recursive definition
(2.2). The difference is that the projection is applied after every averaging step,
instead just once, after all averagings. We use (4.49) instead of the direct pro-
jection analogue because we want to treat projection subdivision in a way as
analogous as possible to geodesic subdivision.

Lemma 21. Assume that S is the cubic B-spline scheme S = S(3) defined by
(4.26) and T is its projection analogue (4.49). Assume that the open set U is
chosen as in Lemma 20. Then there is δ > 0 such that S and T fulfill (2.22) for
all p ∈ PU,δ.

Proof. We turn the proof of Lemma 15 into a proof of this result, if we make the
following replacements: (i) g-av Pav; (ii) references to Lemma 14 references
to Lemma 20; (iii) with τi = ‖∆pi‖, we let ci(t) = P (pi + t∆pi/τi), c̄i(t) =
ci(τi − t), and c(t) = c(t + τi/2); (iv) an upper bound for

...
c is furnished not by

(4.17), but by Lemma 17; (v) we may use τi = ‖∆pi‖ instead of appealing to
Lemma 7 in order to get an upper bound for τi in terms of ‖∆pi‖. �

Lemma 22. Assume that S̃ and T̃ are subdivision schemes which meet the in-
equality (2.22). Suppose that S̃ has derived schemes S̃1, S̃2. Define S, T by one
further step of averaging:

(4.50) Spi = avα(S̃pi, S̃pi+1), Tpi = Pavα(T̃ pi, T̃ pi+1),

If U is chosen as in Lemma 20, there is δ > 0 such that that S and T fulfill
(2.22) for all p ∈ PU,δ.
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Proof. We turn the proof of Lemma 16 into a proof of Lemma 22 by making the
same substitutions as in the proof of Lemma 21. �

Before the start of the next section, let us summarize what was achieved in
Section 4: We have defined geodesic schemes, geodesic-like schemes in matrix
groups of constant velocity, and projection schemes. We repeated some known
properties concerning zero order proximity. The major part of this section was
to establish the inequality (2.22) for certain nonlinear analogues of certain linear
schemes, thus verifying in part the necessary conditions of Th. 5. The next
subsection collects the results obtained so far, and summarizes them in a few
theorems.

5. C2 Smoothness of factorizable subdivision rules

5.1. Factorizable subdivision rules. The lemmas above do not so easily allow
results concerning C2 smoothness of limit curves which are as general as the
results in [22]. Until now, we have shown that cubic B-spline subdivision and its
nonlinear analogues meet the inequality (2.22), and we have also shown that once
such a property is established, further rounds of averaging do not destroy it. It
follows that we can prove smoothness results for the following class of subdivision
schemes:

Definition 9. The class “F” of subdivision rules is generated as follows:
1. The cubic B-spline scheme S(3)p is in F .
2. If S ∈ F , then Sm ∈ F for all integers m > 0.
3. If S ∈ F and Aα is the averaging operator (Aαp)j := avα(pj, pj+1), then

AαS ∈ F .
4. If S ∈ F and σj is the shift operator (σjp)i := pi−j, then σjS ∈ F .

Applying one round of averaging with factor α to the polygon p is a “subdivi-
sion” process Aα with dilation factor N = 1. It has the symbol

(5.1) aα(z) = ((1 − α) + αz−1) =
1 − α

z

(
z −

α

α − 1

)
.

It immediately follows that any affinely invariant subdivision rule with symbol

(5.2) a(z) = Czm(1 + z)4(z − β1) · · · (z − βn), m ∈ Z, C ∈ R, βi 6= 1

is contained in the class F . Especially all the B-spline schemes S(n) with n ≥ 3
are.

Any subdivision rule S in the class “F” is defined by taking the cubic B-spline
scheme and applying a finite number of the operations described in Def. 9 to it.
This leads to

Definition 10. The canonical representation of the linear scheme S ∈ F in
terms of averages is defined recursively in terms of the steps in Def. 9:

1. If S = S(3)p, use (4.26) to represent S in terms of averages.
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2. If S = S
m
, apply the representation of S in terms of averages m times.

Thus if T is the analogue of S, T
m

is the analogue of S
m
.

3. If S = AαS, add the averaging step avα to the representation of S.
4. If S = σjS, shift the indices in S’s representation in order to get a repre-

sentation of S.

As has already been mentioned, the B-spline schemes of degree n ≥ 3 are con-
tained in the class “F”. In general, the interpolatory Dubuc-Deslauriers schemes
[5] are not, but it has been shown in [22] that the four-point scheme with weight
1/16 of [10] has this property. The C2 four-point scheme of [9] with weight w > 0
has the symbol

(5.3) a(z) =
1

4
(1 + z)3z−1(1 + 4w(−5(z2 +

1

z2
) + 8(z +

1

z
) − 6))).

For w = 1/128, this scheme is contained in the class “F”.

Lemma 23. If S is a subdivision scheme in the class “F”, represented in terms
of averages in the canonical way of Def. 10, and T is its analogous geodesic or
projection scheme, then S and T obey (2.22) for all p with d(p) small enough.

Proof. This is shown by recursion over the construction of S. The numbers refer
to Def. 9 and Def. 10.

1. If S = S(3), the result consists of Lemma 15 and Lemma 21.

2. If the result applies to S and T , then Lemma 3 shows that it applies to
S = S

m
and T = T

m
also.

3. All schemes constructed iteratively have the property that their first and
second derived schemes exist. If S = AαS, and the result is true for S, then
Lemma 16 and Lemma 22 show that it is true also for S.

4. An index shift is irrelevant for proximity. �

Our aim is a result on the C2 smoothness of nonlinear schemes “T” analogous to
schemes “S” of class “F” (Th. 7 below). For that, we need the general proximity
condition of Def. 4. The previous result establishes its hard part, namely (2.22).
It quantifies the error we make when constructing a scheme T analogous to S.
The remaining part, Equ. (2.23) refers to properties of S and will be dealt with
in the next subsection.

5.2. Subdivision in Surfaces, Lie groups, and Riemannian manifolds.

This final subsection combines the previous results concerning subdivision on
surfaces and matrix groups, and also extends them to Riemannian manifolds and
abstract Lie groups. We give a small extra definition, which collects properties
of subdivision schemes which our results apply to.

Note that for all schemes in the class “F”, the derived schemes S1, S1, S3 exist,
because it does for the B-spline scheme S(3), and none of the operations described
by Def. 9 destroy this property. It follows that the factors µ0, µ1, µ2 according to
(2.15) exist.
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Definition 11. A scheme S with dilation factor N is called 2-admissible, if it is in
the class “F”, if there is an iterate Sm, such that the coefficients µ̃i = 1

Nm‖Sm
i+1‖

(which correspond to the smoothness condition of Sm) obey the inequalities

µ̃3
0 < 1/N 2m, µ̃0µ̃1 < 1/Nm, µ̃2 < 1.

Lemma 24. If a scheme S is 2-admissible, then, in the notation of Def. 11, there
are µ∗

i with µ̃i < µ∗
i for i = 0, 1, 2 and µ∗

2 = 1, such that the inequalities (2.21)
and (2.23) are fulfilled with the dilation factor Nm instead of N .

Proof. We let µ̃i = (Nm)−mi . We have 1/Nm ≤ µ̃i < 1, so 0 < mi ≤ 1. Because
of the previous inequalities, the point (m0,m1) is a member of the planar domain
defined by m0 > 0, m1 > 0, m0 ≤ 1, m1 ≤ 1, m0 > 2/3,m0 + m1 > 1, which is
visualized in Fig. 1, center. It elementary that for any such point (m0,m1), there
is a point (m∗

0,m
∗
1) such that mi < m∗

i in the planar domain defined by m∗
0 ≥ 0,

m∗
1 ≥ 0, m∗

0 < 1, m∗
1 < 1, 2m∗

0 ≥ m∗
1 +1, m∗

0 +m∗
1 ≥ 1, which is visualized in Fig.

1, left. All points of that latter domain fulfill m∗
0 ≥ 2/3. It follows that there are

µ∗
i = N−m∗

i for i = 0, 1, such that both (2.21) and (2.23) are fulfilled. �

The B-spline schemes S(n) for n ≥ 3 are 2-admissible, because Def. 11 is fulfilled
with m = 1, N = 2, µ0 = µ1 = µ2 = 1/2. The interpolatory four-point scheme of
[10] is not 2-admissible, because its powers fail to fulfill a second order smoothness
condition, as it is not C2. The C2 four-point scheme with weight w of [9], whose
symbol is given by (5.3), is 2-admissible for w = 1/128, because then S is in the
class F (as mentioned above), and S2 has µ̃2 < 1, µ̃0µ̃1 < 1/4, and µ̃0 < 4−2/3.

We are ready to state our results concerning the C2 smoothness of subdivision
in surfaces, which are an extension of the C1 results of [22].

Theorem 7. Assume that S is a 2-admissible scheme represented in terms of
averages in the canonical way of Def. 10, and T is its analogous geodesic scheme,
where “geodesic” is understood in the surface or in the matrix group sense. If
T lp (l → ∞) converges to a limit curve T∞f , then this limit curve is C2.

Proof. As S has finite mask and convergence of T is assumed, we have d(T lp) → 0
locally. By [22], S and T fulfill (2.20), and by Lemma 23, they fulfill (2.22). In
view of Lemma 3, so do Sn and T n for any n. The assumption of 2-admissibility
together with Lemma 24 now shows that there is m > 0 such that Sm, Tm fulfill
the proximity conditions of Def. 4. The derived schemes (Sm)i = (Si)

m exist by
assumption for i = 1, 2, 3, so we are able to refer to Th. 6 and conclude that
T∞p = (T m)∞p is a C2 curve. �

These results can be extended to abstract Riemannian manifolds and to a cer-
tain class of abstract Lie groups by using Nash’s embedding theorem for Riemann-
ian manifolds [15] and by considering Lie groups which are locally isomorphic to
matrix Lie groups of constant velocity. The proofs are completely analogous to
the proofs in [22], where results are extended to these two abstract settings.
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Corollary 1. Theorem 7 applies to geodesic subdivision in Riemannian mani-
folds.

In order to extend Th. 7 to abstract Lie groups, we repeat the following defi-
nition of [22]:

Definition 12. A Lie group is called of constant velocity, if it is locally isomor-
phic to a matrix Lie group of constant velocity.

See [19] for an introduction into Lie groups and the concept of local isomor-
phism of groups, which is the same as isomorphism of the corresponding Lie
algebras.

Corollary 2. Theorem 7 holds in Lie groups of constant velocity.

As to projection subdivision, the following is an analogue of Th. 7. The proof
is exactly the same.

Theorem 8. Assume that S is a 2-admissible scheme represented in terms of
averages in the canonical way, and T its analogous projection scheme. If T lp
(l → ∞) converges to a limit curve T∞f , then this limit curve is C2.
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