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Abstract. If M and N are submanifolds of Rk, and a, b are points in Rk, we
may ask for points x ∈ M and y ∈ N such that the vector −→ax is orthogonal
to y’s tangent space, and vice versa for −→by and x’s tangent space. If M,N are
compact, critical point theory is employed to give lower bounds for the number
of such related pairs of points.

1. Overview

This short paper investigates the number of solutions of a certain problem in
the elementary differential geometry of curves and surfaces:

Def. 1. We assume that the vector space Rk is endowed with a positive definite
scalar product 〈 , 〉, and that M and N are compact Cr submanifolds of Rk. We
choose a, b ∈ Rk. Points x ∈ M and y ∈ N are said to be related, if the tangent
spaces TxM and TyN have the properties

−→
ax ⊥ TyN and

−→
by ⊥ TxM.(1)

Theorem 1. The number of related pairs of points is ≥ 2 if not both M,N are
points. It is ≥ 3 if neither of M,N has dimension zero.

In general the number of related pairs of points is greater or equal the Lyuster-
nik-Schnirel’man category of M×N .

Theorem 2. Generically the number of related pairs of points is greater or equal

2 + |χ(M)χ(N)− 1− (−1)dimM+dimN |,(2)

where χ denotes the Euler characteristic.

Cor. 1. Generically there are at least four pairs of related points if
(i) both M and N are boundaries of compact subsets of Rk; or
(ii) at least one of M,N is of odd dimension, and the other one is not a point.

Def. 2. Genericity as mentioned in Th. 2 and Cor. 1 means that the set of
(a, b) ∈ (Rk)2 such that those statements are not true has Lebesgue measure zero.
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Figure 1. The case dimM = dimN = 1, χ(M×N) = 0.

The results above are illustrated in Fig. 1 The relation defined by Def. 1 was
motivated by studying error propagation in geometric constructions [6], where it
turned out to be related to computing the interval 〈K,L〉, where K and L are
connected smooth or polyhedral subsets of Rk.

After some preparations in §§2.1–4.1 we will give proofs of Th. 1, Th. 2 and
Cor. 1 in §4.2.

2. Facts

2.1. Critical points and singular values. We assume that M,N are Cr mani-
folds and f : M → N is Cr (r ≥ 2). We use the symbol f∗(x; v) for the differential
of f applied to the tangent vector (x; v) ∈ TxM . f(x) is called a singular value
of f if rk f∗(x; · ) < dimN . By Sard’s theorem (see [10, 9]), the set of critical
values is a Lebesgue zero set in N , if r ≥ max{1, dim(M)− dim(N) + 1}.

We assume now that f : M → R is C2. x ∈ M is said to be critical for f
if the linear form f∗(x; · ) is zero, in which case the Hessian f∗∗ is defined by
f∗∗(x; v, w) := ∂s∂t(f ◦ x)(0, 0), where x(t, s) is an M -valued C2 surface with
x(0, 0) = x, ∂tx(0, 0) = v, and ∂sx(0, 0) = w. The Hessian is a symmetric
bilinear form. A critial point is called degenerate if there exists v such that
f∗∗(x; v, · ) = 0. Otherwise the number of negative squares in f∗∗ is called the
index of f at x and is denoted by indxf . f is called a Morse function if its critical
points are nondegenerate.

2.2. Topology. We assume now that both M,N are compact and continue the
discussion of 2.1. Reeb’s theorem says that if f has only two critical points
(degenerate or not), then M is homeomorphic to a sphere [7]. The Lyusternik-
Shnirel’man category of M is the smallest number of contractible open subsets
of M which cover M . It serves as a lower bound for the number of critical points
of a smooth function defined in M [11].

If f is a Morse function, then
∑

x critical(−1)indxf = χ(M), the Euler character-
istic of M [8].
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Recall that χ(M×N) = χ(M) × χ(N). If M = ∂K, with K compact, then
χ(M) = 2χ(K) if dimM is even; for all M of odd dimension χ(M) = 0.

A sphere is not homeomorphic to M×N if dimM, dimN > 0. For these
topological facts, see e.g. [1].

3. Differential geometry

Curve and surface theory in pseudo-Euclidean spaces which carry an indefinite
metric is a special case of the general theory of Cayley-Klein spaces as elaborated
in part in [4].

The results in this section are well known in the positive definite case, where
they are often shown together [8]. As in the indefinite case principal curvatures
are not generally available, we give proofs which work without regard to definite-
ness as far as possible.

3.1. Distance functions. We assume that Rl is endowed with a possibly indef-
inite scalar product 〈 , 〉. Let M be a C2 submanifold of Rl. We use the symbols
TM and ⊥M for tangent and normal bundle, respectively, and consider them
embedded into R2l. We define endpoint map E and distance function dp by

E : ⊥M → R
l, (x;n) 7→ x+ n, dp : M → R, x 7→ 〈x− p, x− p〉.

Lemma 1. x ∈M is critical for dp|M ⇐⇒ p = E(x;n) with n ∈ ⊥xM .

Proof. We let n = x − p and consider v ∈ TxM . Then dp∗(x; v) = 2〈n, v〉.
Obviously dp∗ is the zero mapping if and only if n ∈ ⊥xM , i.e., p = E(x, n). �

Lemma 2. x ∈ M is a degenerate critical point for dp|M ⇐⇒ p = E(x;n) is
a singular value of E.

Proof. We extend x and n to C2 functions defined in U ⊂ R2 such that

x : U →M, n : U → R
l, x(0, 0) = x, n(0, 0) = n,(3)

n(t, s) ∈ ⊥x(t,s)M, ∂tx(0, 0) = v, ∂sx(0, 0) = w, ∂sn(0, 0) = w′,(4)

and note that ((x;n); (w,w′)) ∈ T(p,n)(⊥M). We compute

∂s
〈
n, ∂tx

〉
= 0 =⇒

〈
∂sn, ∂tx

〉
+
〈
n, ∂t∂sx

〉
= 0.(5)

Now we can express dp∗∗ in terms of E∗: dp∗∗(x; v, w) = ∂t∂s〈x − p, x − p〉
∣∣
s,t=0

=

2
(〈
∂tx, ∂sx

〉
−
〈
x− p, ∂t∂sx

〉)∣∣
s,t=0

= 2
〈
v, w

〉
+ 2
〈
∂sn, ∂tx

〉∣∣
s,t=0

= 2
〈
∂s(x+ n), v

〉∣∣
s=0

=

2
〈
E∗
(
(x;n); (w,w′)

)
, v
〉
. We see that x is degenerate ⇐⇒ there exists v such

that E∗(T(x;n)⊥M) ∈ v⊥, i.e., E∗ does not have full rank at (x;n). �
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3.2. Curvatures. If TxM ∩ ⊥xM = 0, both orthogonal projections π and π′

onto TxM and ⊥xM , respectively, are well defined, and the restriction of 〈 , 〉
to TxM is nonsingular. The second fundamental form IIx at x is defined by
IIx(v, w) = π′(∂s∂tx), if x(t, s) and n(t, s) are as in (3) and (4). It is a vector-
valued symmetric bilinear form. (5) implies that 〈IIx(v, w), n〉 = 〈−w′, v〉. The
Weingarten mapping σx,n : w 7→ −π(w′) is well defined by the previous formula.

It is selfadjoint and its eigenvalues κ
(n)
i (if any) are called principal curvatures

with respect to n. Obviously σx,λn = λσx,n, and κ
(λn)
i = λκ

(n)
i . In that way the

principal curvatures are linear forms in the one-dimensional subspace [n] ∈ ⊥xM
(For the existence of eigenvalues of selfadjoint mappings, see [5], Th. 5.3.)

Lemma 3. Suppose that TxM∩⊥xM = 0 and p = E(x, n). Then x is degenerate

⇐⇒ there is a tangent vector w with w = σx,n(w) ⇐⇒ a curvature κ
(n)
i = 1.

Proof. dp∗∗ is symmetric. So x is degenerate ⇐⇒ ∃w∀v : dp∗∗(w, v) = 〈E∗((x;n);
(w,w′)), v〉 = 〈w + w′, v〉 = 0 ⇐⇒ π(w + w′) = 0 ⇐⇒ w = σx,n(w). �

Remark: The singular values of the endpoint map depend only on the subspaces
⊥xM . As “⊥” is actually a Cr mapping of Grassmann manifolds, the points
where TxM ∩ ⊥xM 6= 0 are not as special as Lemma 3 suggests. ♦

4. Critical points of the scalar product

4.1. The metric in product space.

Lemma 4. Related pairs (x, y) ∈ M×N are precisely the critical points of the
function f : M×N → R, f(x, y) = 〈x− a, y − b〉.

Proof. We compute f∗((x, y); (v, w)) = 〈x−a, w〉+〈v, y−b〉. This linear mapping
of (v, w) is zero if and only if 〈v, y − b〉 = 〈x− a, w〉 = 0 for all v, w. �

In order to apply the previous lemmas concerning distance functions, we intro-
duce the following indefinite scalar product on (Rk)2:

〈 , 〉pe : (R2k)2 → R 〈(v1, v2), (w1, w2)〉pe :=
1

2

(
〈v1, w2〉+ 〈v2, w1〉

)
.(6)

Lemma 5. We have f = d(a,b)|(M×N), where d(a,b)(x, y) = 〈(a, b)−(x, y), (a, b)−
(x, y)〉pe to M×N is a distance function with respect to 〈 , 〉pe.

The tangent and normal spaces of M×N are given by T(x,y)(M×N) = TxM ×
TyN , ⊥(x,y)(M×N) = ⊥yN ×⊥xM .

Proof. Expand the definitions. �

4.2. Proofs.

Proof. (of Th. 1) The function f of Lemma 4 is C2, has a maximum (x1, y1) and
a minimum (x2, y2). By Lemma 4, criticality of (x, y) is equivalent to x and y
being related, so the first statement of Th. 2 follows.
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If dimM, dimN ≥ 1, then M×N is not homeomorphic to a sphere and Reeb’s
theorem shows that there are at least three pairs of related points.

The last statement follows directly from the result on the Lyusternik-Shnirel’-
man category quoted in §2.2. �

Proof. (of Th. 2) By Sard’s theorem, almost all (a, b) (in the sense of Lebesgue
measure) are not singular values of the endpoint map with respect to 〈 , 〉pe and
f = d(a,b)|(M×N) is a Morse function (by Lemma 5 and Lemma 2). With C as
its set of critical points, we have

χ(M×N) =
∑

(x,y)∈C
(−1)ind(x,y)f .

The indices of the maximum and minimum are known: ind(x1,y1)f = 0, and
ind(x2,y2)f = dim(M×N). As the number of remaining critical points must fulfil

#C − 2 ≥
∣∣∣χ(M)χ(N)−

2∑
i=1

(−1)ind(xi,yi)
f
∣∣∣,

the statement follows. �

Proof. (of Cor. 1) We assume the generic case, i.e., f is a Morse function.
(i) If M and N are boundaries, then χ(M)χ(N) ∈ 4Z As dimM = dimN =

k − 1, we have a lower bound of 2 + |χ(M)χ(N)− 1− (−1)2(k−1)| ≥ 4.
(ii) We assume without loss of generality that dim(M) is odd, so χ(M) = 0.

With the notations of the previous proof, we let C ′ = C \ {(x1, y1), (x2, y2)}.
The case that N is of dimension zero is trivial, and in all other cases we already
know that M×N is not homeomorphic to a sphere, so #C ≥ 3 and #C ′ ≥ 1.
Regardless of dimN ×M , 1 + (−1)dimN×M is even, so the equation∑

(x,y)∈C

(−1)ind(x,y)f = 1 + (−1)dimN×M +
∑

(x,y)∈C′
(±1) = χ(M)χ(N) = 0

implies that #C ′ is even, i.e., #C ′ ≥ 2 and #C ≥ 4. �

Remark: There are many relations between critical points and the topology of
manifolds, which could be used to improve Cor. 1. However, this discussion
would lead us too far. See e.g. [8] for computing the homotopy type of a compact
manifold from a Morse function, and [3, 11, 2] for results on the Lyusternik-
Shnirel’man category and its relation to the minimum number of critical points.

♦
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