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Introduction

This contribution discusses recent progress in our investigation of reconstruction of geometric
objects from point clouds such as laser scanner data.

We first focus on a class of simple surfaces, which includes surfaces of revolu-
tion, cylindrical surfaces, and helical surfaces. The basic idea behind the reconstruction process
is to find a motion which generates this surface. The algorithm works by fitting a velocity vector
field to a given point cloud. This procedure is of a line-geometric nature and can be formulated
as an approximation problem in line space. It basically amounts to solving a general eigenvalue
problem. By locally applying this method we can reconstruct other types of surfaces as well —
composite surfaces, and pipe or profile surfaces.

The second part of this addresses a geometric positioning problem, namely the
optimal matching of a cloud of points (obtained by discrete measurements) to a CAD model.
We further discuss related problems in Computer Vision and Robotics.

1 Kinematics

Consider the motion of a rigid body in space. If x is a point in Euclidean three-space, the symbol
v(x) denotes the velocity vector of that point of the moving body which is at this moment at
position x. Thus v(x) is a time-dependent vector attached to the point x. It is well known that
at some instant £, a smooth motion has a velocity vector field of the form

v(x) =C+c xx, (1)

with vectors ¢, €. Thus the velocity vector field (or the infinitesimal motion) at some instant ¢
is uniquely determined by the pair (c,¢).

Of special interest are the wuniform motions, whose velocity vector field is
constant over time. It is well known that apart from the trivial uniform motion, where nothing
moves at all and all velocities are zero, there are the following three cases:

1. Uniform translations have ¢ = o, but € # o, i.e., all velocity vectors equal €.

2. Uniform rotations with nonzero angular velocity about a fixed axis. We have ¢-¢ = 0, but

c #o.



3. Uniform helical motions are the superposition of a uniform rotation and a uniform trans-
lation parallel to the rotation’s axis. They are characterized by c - € # 0.

If w is the angular velocity of the rotation, and v the velocity of the translation, then p =
v/w is called the pitch of the helical motion. We use the convention that w is nonnegative,
that p > 0 for right-handed helical motions, and that p < 0 for left-handed ones.

Formally, p = 0 means a uniform rotation and p = oo is a translation.

All possible pairs (c,€) actually occur, so we can use these three cases to classify the type of
velocity vector field at one instant of an arbitrary smooth motion: Infinitesimal translations are
characterized by ¢ = o, and infinitesimal rotations by ¢ - € = 0. The remaining velocity vector
fields are said to belong to infinitesimal helical motions. At all instants, the velocity vector field
of a smooth motion belongs to one of the three cases, if it is nonzero.

It turns out that it is useful to study path normals of motions, i.e. lines that
are orthogonal to the velocity vector of one of their points. Here it is convenient to describe lines
by their Plicker coordinates. If a line G contains a point p and is parallel to the vector v, then
the pair (g,g) = (v,p X v) is called its Pliicker coordinate vector. It is easy to see that g does
not depend on the particular choice of p. The Plucker coordinate vector is unique only up to
scalar multiples. Its two components g, g are not independent, but fulfill the relation g-g = 0.
A point x is contained in G if and only if x X g equals g.

Connections between Pliicker coordinates of lines and velocity vector fields are
shown by the following two lemmas. For a more detailed treatment, see [13].

Lemma 1 A line with Plicker coordinates (g,8) is a path normal of a smooth motion (c,<), if
and only ifc-g+c-g=0.

Lemma 2 If (c,€) represents the velocity vector field of a uniform rotation or helical motion,
then the Plicker coordinates (g,g) of the axis, the angular velocity w and the pitch p are recon-
structed by

p=c-c/c’, w=llel, (g8)=/(c,c~—pec) (2)

2 Reconstruction of simple surfaces

Reconstruction of surfaces is an important aspect of Reverse Engineering (cf. [15]). Here we first
consider the reconstruction of ‘simple’ surfaces from point clouds. ‘Simple’ means ‘invariant’ in
the sense defined below (Sec. 2.1). This reconstruction process consists of two steps, the first
of which determines a motion which is associated with the surface. In a second step we find a
curve which generates the given surface when the motion of step 1 is applied to it.

2.1 Invariant surfaces

A curve which undergoes a motion, generates a surface. If this motion is uniform, i.e., its velocity
vector field is constant, the surface is called invariant with respect to this motion. In this case
the uniform motion transforms the surface into itself.

Examples of such surfaces are surfaces of revolution, cylindrical surfaces (gen-
erated by an arbitrary base curve), and helical surfaces. The converse is also true: all invariant
surfaces are of these three types, and they are generated by a uniform motion.

There is a small number of multiply invariant surfaces: A cylinder of revolution
is generated alternatively by a rotation about its axis, by a translation parallel to the generator
lines, or even by any helical motion which is a superposition of both. A plane is generated by
any translation parallel to the surface and by any rotation whose axis is orthogonal to it. A



sphere is generated by (and also invariant with respect to) all rotations whose axes contain the
center.

This connection between surfaces and motions can be used for reconstruction
of such invariant surfaces. The idea of the procedure is that surface normals are path normals for
the underlying motion which generates the surface. If there is more than one possible motion,
the surface normals must be path normals for all of them.

2.2 Fitting a velocity vector field to surface normals

We assume that we are given a point cloud pi,p2,.-.,pn representing a surface, and that we
have already estimated normal vectors nq, no, ..., ny at these points. The Plicker coordinates of
the surface normals N1, Ny, ... are therefore given by (n;, n;) with n; = p; xn;. A velocity vector
field (c,€) where the surface normals are path normals must fulfill the equation ¢-n; +¢-n; =0
for all <. Thus we can fit a ‘best’ velocity vector field to the surface normals if we choose
normalized unit vectors n; and minimize

F(e,e)=) (ec-m+c-n)® = min, ([e]| =1). (3)

F is a quadratic function of six real arguments, and the side condition ||c|| = 1 is also quadratic.
We can therefore rewrite Equ. (3) in the form

(c,e)T-K-(c,€) > min, (c,©)T-D-(c,e) =1, (4)

with two (6 x 6)-matrices K and D. The matrix D has nonzero entries only in its upper left
3 x 3 corner. The solution of this problem is straightforward. The minimum is assumed for
(e, €) which fulfills

(K —AD) - (¢,€) = (0,0), |lc| =1, det(K —AD)=0, A minimal. (5)

This means that we have to choose the smallest solution X of the cubic equation det(K —AD) =0
and solve the equation (K — AD)(c,€) = (0, 0). Details can be found in [8, 10, 12, 13].

The resulting velocity vector field v(x) = € + ¢ x x fits the given surface
normals best in the sense that F' is minimized as above. We can compute axis and pitch of the
underlying uniform motion using Equ. (2). If the pitch is very small (c-¢ < c?), we have a
uniform motion very close to a rotation, and if the pitch is very large (c-€ > ¢?) and/or the axis
is very far away (€2 — c-€ > ¢?), we have hit a uniform motion very close to a translation. In
both cases we may want to consider a restricted fitting problem: To compute a uniform rotation
which fits the input data best, we minimize F' under the side conditions ||c|| =1, ¢-€ = 0. To
find a uniform translation, we minimize F' under the side condition ¢ = 0, |[€|| = 1.

Another phenomenon which might occur is that there is not one well-defined
smallest solution A of Equ. (5), but there are two or three. In this case there is a two-space or
even three-space of nearly minimizing vectors (c,€), and the point cloud belongs to a multiply
invariant motion, i.e., to a cylinder and or a sphere.

Smallness of A has to be tested in the following way: It follows directly from
Equ. (5) that F'(c,€) = A. If the diameter of the point cloud is of magnitude ¢, the Pliicker
coordinates (n;,m;) of the normals are of magnitude (1,d). The solution vector (c,€) is of
magnitude (1,d), which follows from Equ. (1). Thus F is of magnitude N - 62, and X is to be
compared with N62. The magnitude of A gives information about how well the velocity field fits
the input data.



2.3 Fitting special velocity vector fields

If we have reason to expect a cylinder or sphere which fits the input data, it is not necessary
to perform the general minimization algorithm. In the cylindrical case, the direction € of the
rulings is orthogonal to the surface normals, so it can be found by solving

F'(e) =) (¢-n;)* - min, |[c] =1. (6)

Spherical input data mean that the surface normals intersect the sphere’s center. If this center
is denoted by m, the Pliicker coordinates of the normals must equal (n;,n;) = (n;, m x n;).
Thus m may be reconstructed by solving

F"(m) = Z(ﬁz —m x n;)? = min. (7)

These are quadratic problems with (in part) quadratic side conditions, so their solution is
straightforward. The quality of the approximation may be tested by the magnitude of ¢ - n; in
the cylindrical case and by the uniformity of ||p; — m|| in the spherical case. More details can
be found in [8, 10, 12, 13].

2.4 Surface reconstruction

The actual surface which fits the input data is reconstructed from the point cloud in a second
step. We will first describe the procedure for surfaces of revolution. Suppose we have found a
uniform rotation by fitting a velocity vector field to the input data. The axis of this rotation is
computed with Equ. (2). Then we choose a half-plane bounded by the axis and rotate all data
points p; about the axis until they hit this half-plane. Thus we get new points q;, contained
in a certain half-plane. If the points p; can be approximated by a surface of revolution ®, then
the points q; can be approximated by a curve ¢, which in turn generates ®. This is illustrated
in Fig. 1.

It is obvious how to modify the procedure for helical surfaces and for cylindrical
ones: In both cases we choose a plane orthogonal to the trajectory of a point with respect to
the underlying uniform motion. The case of the helical surface in its full generality is not as
easy to implement as the other two cases.

3 Composite Reconstruction

There are surfaces which are locally well approximated by the surfaces of Sec. 2. One class of
such surfaces are smooth surfaces which have a kind of ‘osculating’ simpler surface, analogously
to an osculating circle. Pipe surfaces, which are generated as the envelope of a moving sphere,
are locally well approximated by tori. Profile surfaces, which are generated by a planar curve,
whose plane is rolling on a developable surface, are locally well approximated by surfaces of
revolution.

A second class are surfaces composed of several different pieces of simple sur-
faces. This includes most surfaces of parts used e.g. in mechanical engineering. Surfaces which
do not consist of pieces of planes, cylinders, spheres, surfaces of revolution, and helical surfaces
are rare in many areas of application.

To reconstruct either type of surface in a satisfactory manner, we have to
consider the problem of deciding which subsets of a given point cloud are well approximated
by the simple surfaces of Sec. 2. A solution is provided by a suitable region growing algorithm,
which grows an initially small subset until no simple surface fits well enough. Fig. 2 illustrates
the reconstruction of a profile surface.
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Figure 1: Reconstruction of a surface of revolution. Left: data points, estimates of normal
vectors. Center: points projected into a half-plane and a curve approximating this point set.
Right: final surface of revolution.

Figure 2: Reconstruction of a profile surface (from left to right). 1. Original point cloud.
2. Subsets which have good approximation by a surface of revolution. 3. Reconstruction of
generator curve. 4. Smooth profile surface.

4 Surface Inspection

There is an application of these methods to the problem of optical inspection of parts by light
sections. This topic belongs to Computer Vision (see [3, 7]). There a sequence of thin planar
sheets of light illuminates curves on the surface of the part. The optical information gathered
from these curves is used for inspection or reconstruction of the surface. This method only
works well if the angle a enclosed by the surface normal and the light plane does not differ too
much from zero: If the light planes have width §, then the width of the illuminated curve is
approximately §/ cos « (cf. Fig. 3).

4.1 Light planes by least squares

It is therefore important to choose the light planes such that for all surface points the angle « is
bounded by a certain constant. This can be achieved as follows: If the surface to be inspected
happens to be a surface of revolution with axis A, we could choose the light planes incident
with A, and we would have oo = 0 always. If the surface is cylindrical, we could choose the light
planes orthogonal to the generator lines, with the same result. This motivates to approximate
the given surface by a surface of revolution with axis A, or by a cylindrical surface with generator
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Figure 3: The principle of the light section method (courtesy M. Hofer)

lines parallel to a line L, and to choose the light planes incident with A or orthogonal to L,
respectively.

The normal vectors of the given surface enter the approximation in an essential
way. However, it lies in the nature of a least squares method that the approximation is good
only in the mean, and not necessarily good enough for each single data point.

4.2 Light planes by medial axis transform

For the case of parallel light planes, the following approach of Smith et al. [14] overcomes this
difficulty: The existence of a light plane such that a < ¢ for all surface points is equivalent to
the existence of a unit vector v which encloses an angle 7/2 — a > ¢ = 7/2 — ¢ with all unit
normal vectors +n of the surface.

In order to make ¢ minimal, i.e., ¢ maximal, we consider the set of all unit
normal vectors £n of the given surface (the symmetrized Gauss image), compute the spherical
medial axis of the complement, and choose v such that its distance to the symmetrized Gauss
image is maximal. The spherical medial axis is intimately connected with the planar medial
axis via the stereographic projection. An algorithm based on this relationship is developed in
[14]. Fig. 4 illustrates this method.

Figure 4: Computation of optimal light section plane. Left: Surface with planar sections (al-
ready optimal); Center: Symmetrized Gauss image with largest spherical circle contained in the
complement; Right: Stereographic projection of the Gauss image and spherically largest circle.



5 The Registration Problem

Suppose that we are given a large number of 3D data points that have been obtained by some
3D measurement device (laser scan, light sectioning, ...) from the surface of a technical object.
Furthermore, let us assume that we also have got the CAD model of this workpiece. This CAD
model shall describe the ‘ideal’ shape of the object and will be available in a coordinate system
that is different to that of the 3D data point set. For the goal of shape inspection it is of
interest to find the optimal Euclidean motion (translation and rotation) that aligns, or registers,
the point cloud to the CAD model. This makes it possible to check the given workpiece for
manufacturing errors and to classify the deviations.

Another application of the registration problem is the multiple matching of
different 3D laser scanner images of some 3D object. To reconstruct the shape of a given
workpiece one may, e.g., place it on a turntable and obtain several overlapping images from
different viewpoints. The 3D point sets of different views will be given in different coordinate
systems, their position in a common ‘object’ coordinate system is known only approximately.
Now the key task is to simultaneously match, or register, the different point sets such that they
optimally fit in their overlapping regions.

In both of the applications mentioned above one fits a given 3D point set to a
geometric entity, which is either a CAD model or another 3D point set. In neither case a point-
to-point correspondence is known. A well-known standard algorithm to solve such a registration
problem is the iterative closest point (ICP) algorithm of Besl and McKay [1]. In Sec. 5.1 we will
briefly summarize this algorithm which is based on the representation of 3D Euclidean motions
by unit quaternions. The use of quaternions for determining the ‘best’ motion can already be
found in [5, 6]. For an excellent overview on the recent literature on this topic we refer to [4].
In Sec. 5.2 we will propose an approach alternative to the ICP algorithm which is based on
instantaneous kinematics. This method shows a faster convergence behavior and is, unlike the
ICP algorithm, applicable also for the simultaneous matching of multiple point sets.

5.1 The ICP algorithm

The point set (‘data’ shape) is rigidly moved (registered, positioned) to be in best alignment
with the CAD model (‘model’ shape). This is done iteratively:

In the first step of each iteration, for each point of the data shape the closest
point in the model shape is computed. This is the most time consuming part of the algorithm
and can be implemented efficiently e.g. by using an octree data structure. As result of this first
step one obtains a point sequence Y = (y1,y2,...) of closest model shape points to the data
point sequence X = (x1,Xg,...). Each point x; corresponds to the point y; with the same
index.

In the second step of each iteration the rigid motion M is computed such that
the moved data points M (x;) are closest to their corresponding points y;, where the objective
function to be minimized is

D llye — M (x|
(2

This least squares problem can be solved explicitly, see e.g. [1, 6]. The translational part of M
brings the center of mass of X to the center of mass of Y. The rotational part of M can be
obtained as the unit eigenvector that corresponds to the maximum eigenvalue of a symmetric
4 x 4 matrix. The solution eigenvector is nothing but the unit quaternion description of the
rotational part of M.

After this second step the positions of the data points are updated via Xyew =
M(Xqq)- Now step 1 and step 2 are repeated, always using the updated data points, as long



as the change in the mean-square error falls below a preset threshold. The ICP algorithm
always converges monotonically to a local minimum, since the value of the objective function is
decreasing both in steps 1 and 2.

5.2 Registration with instantaneous kinematics

In the ICP algorithm the data points x; are moved towards their closest points y; on the model
surface. Instead of moving x; towards y; it is a more natural idea to move x; towards the tangent
plane of the model surface in y;. As we do not know the corresponding point to x; on the model
surface anyhow, it is better to bring x; close to the tangent plane of y; in each iteration step,
instead of aiming at y; directly. Especially in low curved surface regions the tangent plane in
a surface point approximates the surface well and one obtains a much faster convergence of the
registration process using the tangent planes compared to the standard ICP algorithm.

Our proposed algorithm will work as follows: the first step is similar to that
of the ICP algorithm. For each data point x; € X determine the nearest point y; of the model
surface shape and determine the tangent plane there. Let n; denote a unit normal vector of this
tangent plane in y;. Because y; is the nearest point to x; on the surface, x; lies on the surface
normal in y;, i.e. x; = y; + d;n; with d; denoting the oriented distance of x; to y;.

In the second step we would like to move the points x; towards the respective
tangent planes in y;. Here it is appropriate to use instantaneous kinematics, an idea that already
appeared in a similar form in [2]. Let v(x) = € 4+ ¢ X x denote a velocity vector field according
to Equ. (1). The distance of the point x; + v(x;) to the tangent plane at y; with unit normal
vector n; is given by d; + n; - v(x;), where d; again denotes the oriented distance of x; to y;.
The objective function to be minimized is

D (di+mi- (€4 xx))?, (8)

i

which is quadratic in the unknowns (¢, €). The unique solution can be given explicitly by solving
a system of linear equations.

Note that the transformation which maps x; to x; + v(x;) is an affine map
and not a rigid Euclidean motion. Nevertheless, the vector field determined by (¢, €) uniquely
determines a uniform helical motion M. The axis G and the pitch p of M are computed via
Equ. (2). The motion we apply to x; is the superposition of a rotation about this axis G through
an angle of a = cot(||c||) and a translation parallel to G by the distance of p - a.

Similar to the ICP algorithm we update the data points via Xpew = M (Xo1q)
and repeat the procedure until the change in mean-square error 3 d? falls below a preset thresh-
old.

Figure 5 shows an example for the registration of a point cloud to a surface. In
order to better visualize the spatial position of the point data, a transparent surface is associated
with the data point set. This transparent surface does not enter the computation in any way,
it is only displayed for reasons of visualization. The pictures show the data point set in its
initial position, after the first iteration step, and in its final position after 7 iterations. In this
example the error tolerance reached in the final position will be obtained with the standard
implementation of the ICP algorithm only after 45 iterations. This is because in the ICP
algorithm the data points move towards their nearest position on the surface in each iteration
step. A displacement of the data point set in tangential direction to the model surface therefore
needs many iterations.

It is straightforward to extend the objective function (8) to a weighted scheme.
There are 3D measurement devices that supply for each data point a tolerance for the occurring
measurement errors. These can be included in the objective function to downweight outliers.



Figure 5: Matching of a point cloud to the corresponding CAD model: Left: initial position of
data points and CAD model, Center: position of data points after first iteration step, Right:
final position after seven iterations.
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