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Abstract

In this paper we discuss the self-intersections of offset curves and sur-
faces and show how to determine the maximum offset distance such
that the offset does not locally nor globally self-intersect including
boundary effects. Examples illustrate the applicability of the analysis.

Keywords: offset curves and surfaces, self-intersections, offset strip,
auto-normal chords, coincident boundary points.

1 Introduction

Offset curves/surfaces, also known as parallel curves/surfaces, are defined
as the locus of points which are at constant distance d along the normal
vector from the generator (also called progenitor) curve/surface. Offsets are
widely used in various applications, such as tool path generation for 2.5D
pocket machining, 3D NC machining, definition of tolerance regions, rapid
prototyping, brush stroke representation and in feature recognition through
construction of skeletons or medial axes of geometric models. Literature
surveys on these topics can be found in [4], [10].

An offset is in general more complex than its progenitor. It may self-
intersect locally when the absolute value of the offset distance exceeds the
minimum radius of curvature in a concave region. Also, an offset may inter-
sect globally when the distance between two distinct points on the progenitor
reaches a local minimum. These local and global self-intersections can be
visualized as machining a part using a cylindrical/spherical cutter whose
radius is too large for 2.5D/3D milling.
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In a recent survey paper, Maekawa [4] raises some important outstand-
ing issues in the area of offset surfaces. One of them is concerned with
determining the maximum offset distance such that the offset surface does
not locally nor globally self-intersect including boundary effects. So far the
discussion in the literature [6] was based on “Given a curve/surface and
an offset distance, does the offset curve/surface self-intersect? If so, where
does it self-intersect?” However in some applications, we may encounter the
problem “Given a plane curve/surface, what is the maximum offset distance
such that its offset does not self-intersect?” In Maekawa et al. [8] it is dis-
cussed how to find the maximum possible radius of the pipe surface, which
is the envelope of the smooth one-parameter family of spheres with radius r
centered at the spine curve, such that it will not self-intersect. The method
can be easily applied to find the maximum offset distance without self-inter-
section by setting the spine curve as the given planar progenitor curve. In
this paper we investigate a method to find the maximum offset distance such
that the offset surface does not locally nor globally self-intersect including
boundary effects.

The paper is organized as follows: Section 2 reviews the planar case. Part
of this section serves as a motivation for Section 3 where the surface case is
presented. Section 4 deals with some special cases of surfaces that arise often
in applications. Section 5 describes the algorithm of the computation of self-
intersections of the offset surface. Section 6 provides illustrative examples
and finally, in Section 7 some concluding remarks are provided.

2 Planar Curves

In this section we review the case of plane curves and set up the stage for
the next section. Consider a planar regular smooth curve

c:I =R t—c(t), (de/dt # o)
with its unit normal vector field
t = n(t), (In@)[ =1, n(t) - de/dt(t) = 0).

Note that —n is also a normal vector field of c. If ¢ is C”, then n is C"7!,
and thus if ¢ is at least continuously differentiable, then n is continuous.

Definition 2.1 Let ¢ be as above. Then, the offset curve c,(r) at distance

r 15 defined by
co(r) : t — c(t) + rn(t).



The strip between ¢ and c,(r), which shall be called the offset strip of width
r, is defined as the union of all c,(p) with 0 < p <.

Fig. 1 shows a curve with its offset and offset strip.
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Figure 1: Curve ¢ with a non-convex edge, offset curve ¢,(r) with singular-
ities, and offset strip (grey).

We define the term self-intersection to be either self-intersection of the
offset strip or self-intersection of the offset curve. Eventually we shall deter-
mine

e a value 7y such that for 0 < r < r; both the offset curve and the
offset strip have no self-intersections, but for » > r, the offset strip
has self-intersections.

e a value r. such that for 0 < r < r. the offset curves c¢,(r) have no
self-intersections, but at or immediately after » = r. the offset curves
¢,(r) have self-intersections.

2.1 Self-Intersections of Offset Curves

By introducing the endpoint map
E:(u,v) = c(u) +vn(u) =c,(u) (uel), (1)

we see that if £ is one-to-one for all values v < r, then the offset strip of
width r is free of self-intersections. Moreover, for sufficiently small r, E is
always 1-1, provided that the curve has only convex edges. In this case we
can always expect r.,7s > 0. We will restrict ourselves to curves which have
only convex edges.



2.1.1 Auto-normal chords

We now proceed with the discussion of the different possibilities for self-
intersections. For r > 0 we note that if E(u,v), restricted to 0 < v < r,
is still regular (which is equivalent to the offset c,(v) being regular for all
v < r), then a self-intersection can occur if at some value r, the offset curve
(or the offset strip) touches itself in an interior point of the curve.

Figure 2: A curve which is in oriented contact with itself (left). A curve
which touches itself, but is not in oriented contact with itself (right).

If curves are oriented (i.e., are equipped with a unit normal vector field),
then we say that they are in oriented contact, if they touch each other in
a point, and their unit normal vectors coincide in this point. The notion
of oriented contact extends to contact of a curve with itself: If a curve
touches itself, and the two normal vectors coincide, we say that the curve is
in oriented contact with itself (see Fig. 2).

Since the curve c is oriented, so is c,(r) (because the normal vectors
in corresponding points are the same as for ¢). If c,(r) touches itself, this
contact cannot be oriented contact, because then also the original curve
¢ would have been in oriented contact with itself — this contradicts our
assumption that c¢ is one-to-one.

So we always have the following geometrical configuration (see Fig. 3):
The first (in the sense of the offsetting parameter r) two curve points p, p’
whose offset points q, q’ coincide, have parallel tangents and the line segment
joining p, p’ is the shortest auto-normal chord of the curve. An aut&)normal
chord of the curve is deﬁnﬂ> as the line segment pp’ such that pp' is the
oriented normal at p and p’p is the oriented normal at p’. There is also a
second geometric characterization of this. Define the cut locus curve of a
curve ¢ as the set of centers of oriented circles that are in oriented contact
with c in at least two different points, together with all limit points of this set
[?]. It turns out that the centers of curvature in points of extremal curvature



Figure 3: Curve c, offset curve c,(r), cut locus a, and auto-normal chord
PP'. Case ‘00".

are exactly these limit points. When we speak of the distance between the
curve and its cut locus, then this distance is always the radius of a circle
which was used in the definition. It equals the distance between its center,
and the points where it touches the curve. Obviously the midpoint q = q’ of
the smallest auto-normal chord pp’ of ¢ is contained in the cut locus curve
of c.

If all offset curves for smaller parameter values are free of self-intersec-
tions, then r is the value of the smallest distance between the curve and its
cut locus.

2.1.2 Coincident points at the boundary

Upon increasing the value of r and looking for self-intersections of c,(r) it
may happen that a boundary point q of ¢,(r) coincides with another point
q’ of c,(r) (see Fig. 4). (In the generic case q' is an interior point of ¢,(r),
but it could also be a boundary point).

The above occurs if the cut locus of ¢ has its endpoint at q = q'. In that
case the distance pq = p’q’ equals the parameter r of the offset curve; and
if all offset curves for smaller parameter values are free of self-intersections,
then r is the value of the smallest distance between the curve and its cut locus,
this minimum being attained in two points, one of which is a boundary point
of the curve.



Figure 4: Boundary of offset strip touches curve.

2.1.3 Singular points of the offset curve

Finally, it may happen that while increasing r, the offset curve becomes
singular for r = 79, namely at a point p = c(ty) of extreme curvature. If
the curvature is not constant in a neighborhood of p, then a local analysis
shows that there is an interval (r,7 4 €) such that for all parameter values
in this interval, the offset curve has self-intersections (see Fig. 5). If the
curvature is constant, i.e., the curve is locally a circle, then the offset curve
co(ro) is itself locally constant. The curves c,(r), 7 > rp may or may not
have self-intersections.

Figure 5: Behavior of involute e and offset curve.

Since the centers of curvature at curvature maxima are contained in the
cut locus curve, the latter serves as the basic ingredient of the final statement



on self-intersections of curves:

Theorem 2.1 The value r. equals the smallest distance between the curve
c and its cut locus curve a. The type of self-intersection at r. is determined
by the pairs p;,q; of points on ¢ and a, where the minimum is actually
attained:

1. A point p; may be a curvature mazimum,

2. a pair (p;,q;) may be formed from the endpoints of a smallest auto-
normal chord, both being interior extremal values of the distance be-
tween the curve and its cut locus,

3. a pair (p;,q;) may be such that at least one of the p’s is a boundary
extremum of the distance between curve and cut locus.

2.2 Self-Intersection of the offset strip

In this subsection we shall show that there are several different cases of self-
intersection of the offset strip, besides two cases which occur only with zero
probability and which are limit cases of the previous ones.

The boundary of the offset strip consists of the curve c itself, of the offset
curve ¢,(r), and of line segments joining the boundary points of ¢ with the
respective boundary points of ¢,(r). In the following enumeration of cases,
these three components of the boundary will be denoted by the letters ‘C’,
‘O’, and ‘B’, respectively. The vertices where ‘O’ and ‘B’ meet, are denoted
by ‘V’, and the endpoints of the curve c, where ‘C’ and ‘B’ meet, by ‘E’.

If the curve c has no self-intersections, then the offset strip has neither if
r is small enough. We consider the smallest r such that the offset strip has a
self-intersection. In this situation a component of the boundary (one of ‘C’,
‘O, ‘B’, ‘V’, ‘E’) meets another one. Of the 20 hypothetical combinations,
the following occur in practice:

OO Here the offset curve touches itself, which is the case discussed above
(see Fig. 3).

CO The offset curve ¢, touches the base curve ¢ (see Fig. 7a).

BO The offset curve touches a boundary component which is a straight line
(see Fig. 8a)

CV A vertex of the offset strip is contained in the curve ¢ (see Fig. 6). This
case contains ‘BC’ as a limit.



EO The offset meets the base curve in an endpoint (see Fig. 6 with c,(r)
and c interchanged) Cases ‘EV’ and ‘BE’ are limit cases of this.

BV A vertex of the offset strip is contained in a boundary component which
is a straight line (see Fig. 8b).

OV A vertex of the offset strip is contained in a ‘distant’ part of the offset
curve ¢, (see Fig. 4). Case ‘VV’ is a limit case of this.

The remaining cases do not occur.

Figure 6: A vertex of the offset strip meets the original curve (case ‘CV”).
If ¢ and c,(r) are interchanged, this shows case ‘EO’.

We describe an algorithm to determine the value of r;.

1. Determine the number r. according to Th. 2.1, using the cut locus
curve of c. This first step looks for intersections of the types ‘O0O’,
‘OV’, and ‘VV’.

2. Counsider the modified cut locus curve which is defined as the locus of
centers of oriented circles which touch the curve ¢ in two points, but
are not in oriented contact (see e.g. the curve a in Fig. 7b). Let r/,
equal the smallest distance of the modified cut locus to the curve c.

This second step looks for self-intersections of the types ‘CO’ and ‘EO’.

3. Consider the rays N; which emanate from the end points E; of the
curve ¢, and whose direction is given by the normal vector there. In-
tersect ¢ with all rays IN;, which gives points X, ..., X;,, contained
in V;. Let d;; = X;;FE; and find the smallest value r, = min; ; d;;.

This third step looks for self-intersections of type ‘CV’ and ‘BC’.

4. Counsider the rays N; as before, and compute the intersection points
Xij, if they exist. Let d;j = X;jE;, and let 7}, = min;4; max(d;j, ;Z)

This fourth step looks for self-intersections of type ‘BV’.



Figure 7: (a) The offset curve c,(r) meets the curve c (case ‘CO’). (b)
Modified cut locus curve a of curve c.

(a) (b)
Figure 8: Self-intersection of the offset strip. (a): Case ‘BO’, (b); Case ‘BV".

5. Consider the rays N; as before. For all rays N;, find the rays ﬁij,
which emanate from a point c(#;;) of the curve ¢, whose direction is
given by the unit normal there, and which are orthogonal to the ray
N;. If it exists, the intersection of N; and IV;; is denoted by X;;.

Let
" ~ i N i1 " . i
dij = XijBi,  dij = Xije(tiy), rp = min dj;.
dij <dij

This fifth step looks for self-intersections of type ‘BO’.

Theorem 2.2 The value s equals min(re, ., ry, v, r), where the various
values are computed by the algorithm above.



3 Surfaces

Let M C R? be a smooth orientable surface, which is piecewise curvature
continuous and has a piecewise curvature continuous boundary. To each
point p € M we assign the unit normal vector n(p).

We restrict ourselves to surfaces having only convex edges, because the
offset surface will always have self-intersections, if M possesses a concave
edge. In a boundary point p of OM there is a certain set N(p) of unit
normal vectors, depending on the smoothness on the boundary. If we do not
want to round off the offset at the boundary, we assign to each boundary
point the unit normal vector orthogonal to the limit tangent plane there.

We want to give a parametrization to the set of normal vectors: If the
surface, in its smooth parts, is parametrized by a regular smooth function
g(u,v) = (91(u,v), g2(u,v), g3(u,v)), then the normal vector at p = g(u,v)
is given by n(p) = +£0g/0u x 0g/0v / ||0g/du x 0g/dv||.

We can also define a new object, the unit normal bundle 1 1M of M. It
consists of all pairs (p;n) where n is a unit normal vector at the point p. It
has a smooth parametrization and makes it possible to define the endpoint
map E and the offset surface My(r) of M at distance r:

Definition 3.1 For M as above and r € R, we define
E: 1 1M xR— R, E((p;n),r)=p+rn
and M,(r) to be the image of E.

We also define the offset strip of width r as the union of all M,(d) for
0<d<r.

3.1 Self-intersections of Offset Surfaces

As in the planar case, we want to find values rj; and rg of the offset pa-
rameter such that the offset surfaces M,(r) have no self-intersections for
r < ru, and have self-intersections at or immediately after » = rps; and
that the offset strip of width r has no self-intersections for r < r, but has
self-intersections for some r > r,.

Again, it can be shown that there exists ry such that the endpoint map
is one-to-one when restricted to positive values r < rg. Like in the planar
case we let r grow from r = 0 until a singularity occurs.

We define the cut locus surface as the set of all centers of spheres which
touch M in at least two points, together with the limit points of this set.
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The discussion is similar to the planar case. We discuss compact C?
surfaces without boundary (closed surfaces) and find values of r such that
M,(r) is nonsingular and free of self-intersections. Surfaces with boundary
are studied in [13].

3.1.1 Smooth Surfaces

If the surface is closed, we can identify its unit normal bundle 1M with
M. For q € M consider the normal line [ to M that goes through q. It
consists of all points q 4+ ¢t n(q), where n(q) is the unit normal vector of M
at q.

Lemma 3.1 The endpoint map E : (p,t) — p+tn(t) has nullity > 0 (that
is, its Jacobian matriz is noninvertible) if and only if t = 1/K;(p), where
K;(p) are the nonzero principal curvatures of M at p.

Intuitively, the point p + (1/K;(p))n(p) is a point in R® where nearby
normals intersect (cf. ([9], p. 34, Lemma 6.3).

The proof of this is an exercise in differential geometry: consider the
spherical map n : p — n(p) from M to the unit sphere S?, and its differential
dn. The principal curvatures are defined as the eigenvalues of —dn. There
are tangent vectors vy and vo such that dn(v;) = —K;v;. Then the endpoint
map (p,t) — p + ¢tn(p) has nullity > 0 at (p,t) = (p,1/K;): We evaluate
its differential dE' = dp + tdn(p) + dt n(p) at the tangent vector (dp, dt) =
(vi,0), which gives dEu(v;,0) = v; + (1/K;)(—=K;v;) = 0.

Because the E-images of the tangent vectors (dp, dt) with dt = 0 span the
tangent space of the offset surface M,(r), we have also shown the following:

Lemma 3.2 The parametrization p — p~+rn(p) of the offset surface M,(r)
s singular at p if and only if r equals one of the two principal curvature
radii 1/K; of p.

We will consider how to find the maximum r so that M,(r) will not self-
intersect in a global manner, i.e., M,(r) is an embedded two-dimensional
submanifold of R3. For this, we define the map

G:MxM-=R Gkxy)=|x-y|?

Obviously, G(x,y) > 0, for x # y. Second, note that G has a critical
value r > 0 since M x M is compact. To see that, consider x,y € M with
G(x,y) = r. Then n(x) = £n(y) and the vector x — y is parallel to both
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n(x) and n(y). (Otherwise there would be curves on M passing through x
and y such that the squared distance is not stationary at the pair (x,y)).
We claim that if

v =inf{r > 0| r is a critical value of G} (2)

then + is positive. For if v were to be zero, we would then have that, for
each arbitrarily small positive ¢ there exists a pair of points (x4,ys) so that

L Ixs — ysll <9,
2. The vector x5 — y; is parallel to both n(xs),n(ys).

Choose a sequence of §’s converging to zero. We may assume (since M
is compact) that the sequence (x4,y5) converges to (a,a) with a € M.
If § is small enough, x;5,ys have to belong to the same component of M,
because unions of components are closed. There is a neighborhood U of
a, a local coordinate system around a and a C? function h defined in a
neighborhood V' of 0 in R? such that that M N U is the graph surface
{(u1, w2, h(u1,u2) | (u1,u2) € V} and (0,0,h(0,0)) = a. Now the normal
vector field is continuous, and

||(u1,u2,h(u1,u2)) - (ullaU’IQah(ullvu,Z))“ > “(Ul,UQ,O) - (U’IlaU’IQaO)Ha

which contradicts the existence of x5,ys. We now consider a » > 0 such
that

1. For each point x € M neither principal curvature of M at x is equal
to £1/r, and

2. 2r < /7, where v is as in (2).

and show that in this case M,(r) is nonsingular and has no self-intersections:

Suppose that r satisfies condition 1 above and it is the first positive
number for which the obvious mapping M — M, is not one-to-one. Then
there exist x # y for which x + rn(x) = y + rn(y). This implies x —y =
r(n(y) — n(x)). We claim that in this case (x,y) is a critical point of
G: For if not, the locally 2-dimensional manifold M,(r) has a transverse
self-intersection at E(x), and that contradicts the minimality of r. Thus,
|x — y|| = |2r], and (2r)? is a critical value of G, so condition 2 is violated.
This shows the following;:

Theorem 3.3 Let M be a compact orientable C? surface without bound-
ary. Then M,(r) is nonsingular and without self-intersections, if r satisfies
conditions 1 and 2 as above.

We will see that in this case r; equals either the minimum of 1/Kj or /7/2.
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3.1.2 Singular Points in Offset Surfaces

Notice that if E becomes singular for some value of r, then the offset strip
of width r has a self-intersection because a mapping which is singular and
maps all lines ((p;n),r), (p;n) fixed, to a straight line in space, cannot be
1-1. We also have

1. If E becomes singular in a smooth point p of M, this is caused by the
fact that o equals the smallest principal curvature radius 1/K;(p).

2. If FE becomes singular in a point (p;n) of the unit normal bundle, such
that p is located in an edge e of M, then this is caused by the fact
that ro equals the normal curvature radius r(e,n) of this edge with
respect to the surface normal n (see [13]).

In both cases it is possible to show that the center of the ‘offending’ curvature
is contained in the cut locus surface.

Unlike the curve case, it is not as easy to determine when M,(r) actu-
ally has self-intersections, i.e., where the endpoint map L1 M — M,(r) is
not injective. Even if M,(r) has a singularity, the endpoint map may still
injective. For values r > d, the offset surface M,(r) could again be regular
and free of self-intersections (consider a sphere, a cylinder, or any tubular
surface and their interior offsets). All we can say is that if M,(r) is singular,
the offset strip has self-intersections for values > d.

3.1.3 Auto-normal chords

Like the planar case, the offset surface M,(r) is oriented (per definition) by
the normal vectors inherited from M. Again it is not possible that M,(r)
touches itself, but is not in oriented contact. So for all coincident interior
points g = q' of M,(r), the corresponding points p,p’ in M define the
shortest auto-normal chord of M. For smooth surfaces without boundary,
this has been shown above. For other surfaces, see [13].

It is also clear that q = q' is located in the cut locus surface, and when
disregarding the boundary values of the distance function, the pairs pq and
p’q are local interior minima of the distance function between M and its
cut locus surface, and among those local minimal they are the ones where
the smallest value of the distance is attained..

If M has no boundary, we have therefore the following:

Theorem 3.4 Let M be a closed surface without boundary. Then the value
rs equals the minimum distance between M and its cut locus surface. The
value ry; is greater or equal to .
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3.1.4 Coincident Boundary points

The situation is exactly the same as in the planar case. We state the corre-
sponding result:

Theorem 3.5 The value Ty equals the smallest distance between the sur-
face M and its cut locus surface. The type of self-intersection at ryr is
determined by the pairs p;,q; of points like in the curve case.

3.1.5 Self-intersections of the offset strip

The offset strip has the following boundary: The offset surface M,(r), the
surface M itself (if we did not consider a two-sided offset); and a strip
S of the ruled surface which consists of the surface normals in the points
of OM (see Fig. 9). Depending on the smoothness of M’s boundary, the
ruled surface strip is smooth or has edges. There are, again depending on
the smoothness of M’s boundary, many different cases of intersection or
touching of various components of the offset strip’s boundary. We will not
attempt to enumerate them completely. Most of them are straightforward
generalizations of two-dimensional cases.

Figure 9: Offset strip of a surface with its boundary.

Touching of M and M,(r), can, like in the curve case, be tested by
considering the modified cut locus surface. This also includes the boundaries
of M and M,(r). The only case which did not occur in the two-dimensional
problem is the case of self-intersection of S. We are going to describe how
to compute this self-intersection.

Suppose that S meets itself in the point

q=p+ron(p) =p’ +ryn(p)
with p,p’ € OM and r{ < ro: When growing the offset strip, at r = r{ it

begins to intersect S, while not intersecting itself, but at r = rg it finally
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intersects itself. Thus for finding the maximum 7 such that this type of self-
intersection does not happen, we have to compute the complete intersection
curve of S with itself.

For each p € OM there is a value A(p) such that p+ A(p)n(p) is the first
(in the sense of \) intersection point of the ray p + tn(p), (¢t > 0) with S.
If there is no such point, we let A\(p) = co. If A(p) < o0, i.e., there actually
is an intersection, there is another value X'(p) and another point p’ € OM
such that

p +A(p)n(p) = p' + X (p) n(p).

and the maximum rg is found by

: !
rs = goin max(A(p), \'(p))-
In order to understand the algorithm better, we show how to intersect two
ruled surfaces Si(u,v) = c¢i(u) + vni(uw) and Sa(u,v) = ca2(u) + vna(u). To
intersect S with itself, we then let S; = Sy = S.
We start at a parameter value v and intersect the line /;(u) : ¢i(u) +
vny(u) with Sz, by looking for a parameter ug such that the line ly(u’) :
c2(u') + vng(u') intersects [;. This is done by solving

det(ca(u') — €1 (u),ny(u), ng(u')) = 0. (3)

(This absolute value of this equals the distance of the lines /1 (u) and l2(u')
multiplied by |n;(u) x ny(u')||.) Having found the solution u', we let
p = ci(u), p’ = co(u') and easily calculate A and A" such that S;(u,\) =
SQ (u', )\I).

4 Special cases

For convex and star-shaped! surfaces we have some information concerning
the auto-normal chords [11]:

e If a conver surface is oriented such that its normals point to the out-
side, then the offset surface is regular and the endpoint map is always
one-to-one for all » > 0, because there are no auto-normal chords and
all principal curvatures are negative.

LA surface is star-shaped if it is the boundary of a star-shaped body. A star-shaped
body S is a subset of Euclidean space which has a point o in its interior such that the
straight line segment op is in S for all p € S.
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o If a star-shaped surface M is oriented such that its normals point to the
outside, then there are no auto-normal chords and the offset surface
M,(r) is regular and one-to-one as long as r is less than the principal
curvature radii in all points of M.

o If a conver surface M is oriented such that its normals point to the
inside, consider a sphere of maximum radius R inscribed in M. If
r < R, then obviously there is no auto-normal chord of length r, so
the offset M,(r) is regular and free of self-intersections if r is less
than all principal curvature radii of M. Note that when reversing the
orientation of M, all principal curvatures and also their reciprocals,
the radii, are multiplied by —1.

The maximum inscribed sphere, in principle, either touches M in two
points or its center equals a principal curvature center. Blaschke has
shown that the former case is not possible [2], so there remains the
latter case which shows that M,(r) has a singularity before having
self-intersections.

e If a star-shaped surface M is oriented such that its normals point to
the inside, consider the convex core ¢ of M. It is defined as the set
of points p such that M is star-shaped with respect to p. It is easily
seen to be convex. Every auto-normal chord of M gives rise to two
parallel tangent planes of M with C' lying between them.

Second, consider a sphere of maximum radius R inscribed into C.
Clearly no auto-normal chord of M has length less or equal . Thus
the offset surfaces M, with r < R are nonsingular and free of self-
intersections if r is less then all principal curvature radii of M.

5 Algorithm

5.1 Singular Points on Offset Surface

Local self-intersections of the offset surface occur when the positive offset
distance exceeds the maximum absolute value of the negative minimum prin-
cipal curvature on the generator surface or the absolute value of the negative
offset distance exceeds the maximum value of the positive maximum princi-
pal curvature on the generator surface. A detailed formulation and a robust
method for finding extrema of principal curvatures can be found in [7].
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5.2 Auto-Normal Chords

The shortest auto-normal chord problem is to find two different points on
the generator surface whose surface normals point in opposite directions
and that have a minimum distance. The absolute minimum of the distance
function is trivially attained for all pairs of equal points, but their normal
vectors point to the same direction. All pairs of points where the distance
function attains a local minimum have the property that their normal vectors
point either to the same or to the opposite direction. This means that we
can look for all stationary points of the distance function, thereby avoiding
the trivial solutions, afterwards single out those pairs whose normal vectors
behave in the desired way, and choose the one which minimizes the distance.

We assume that the generator surface is given by a NURBS surface,
which can be split into rational Bézier surfaces by knot insertion. The
minimum distance problem can be decomposed into the minimum distance
between two points on different surfaces and the minimum distance between
two points on the same surface. The first problem is solved by Zhou et al.
[14], so we focus on the second problem here.

Let the generator surface be given by g(u,v) = (g1(u,v), g2(u,v), g3(u,v)).
Assume the surface is nonsingular, i.e. |(0g/0u) x (9g/0v)| # 0, and that
0g/0u and 0g/0v are continuous.

The squared distance function between two points p = g(u,v) and q =
g(s,t) on the generator surface with parameters (u,v) and (s,t) is given by

D(s,t,u,v) = |g(37t) - g(uav)|2 = (g(svt) - g(uav)) ’ (g(sat) - g(uav)) (4)

where (s,t) # (u,v). The stationary points of D(s,t,u,v) satisfy the follow-
ing equations

Ds(S,t,U,U) = Dt(S,t,’U,,U) = Du(satauav) = DU(S,t,U,U) =0 (5)

which can be rewritten using (4) as

The geometrical interpretation of equations from (6) to (9) is that the line
connecting the two points p = g(u,v) and q = g(s,t) is orthogonal to the

(8(s,t) — g(u,v)) - gs(s, 1) =0 (6)
(8(s,t) —g(u,v)) -8t (s,t) =0 (7)
(8(s,t) — g(u,v)) - gu(u,v) =0 (8)
(8(s,t) — g(u,v)) - u(u,v) =0 (9)
(
(
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generator surface at both points. Without loss of generality we may assume
that g(s,t) is given as a rational Bézier surface, that is

_ 2z 22j=0 WijPijBim(s)Bjn(t) _ p(s,1)
B S S w BBy wist)
Substituting (10) into (6) gives
p(s,t) o p(u,v)] . [ps(sat)w(svt) — p(s,t)ws(s,t)
w?(s,t)

w(s,t)  w(u,v)
Multiplying by its own denominator we finally obtain

= 0. (11)

q - [ps(s,t)w(s,t) — p(s,t)ws (s,
q - [pe(s,t)w(s,t) — p(s,t
q - [Pu(u,v)w(u,w) — p(uv
q - [P (u,v)w(u,w) — p(u,v
with  q=p(s,t)w(u,v) — p(u,v

wy (s,t
Wy (u,v
wy (u,v
w(s,t)

~_~ ~— ~— ~—

where (s,t) # (u,v). This system of equations consists of four nonlinear
polynomial equations with four unknowns s, ¢, u, v. To find all the station-
ary points, we need to employ global solution techniques which are designed
to compute all the roots in the area of interest. One such global method is
provided by the Bernstein subdivision-based Interval Projected Polyhedron
algorithm [1, 3, 6]. The trivial solutions (s,?) = (u,v) must be excluded
from the system, otherwise a Bernstein subdivision-based interval projected
polyhedron method would attempt to solve for an infinite number of roots.
Unfortunately, the system does not involve the factors s — v and ¢ — v and
hence we cannot factor out these factors from the system. Thus, the poly-
nomial system is first solved by the Bernstein subdivision-based polynomial
solver at a coarse subdivision level (e.g. 107! ~ 1072) in a global manner.
The two rectangular sub-patches on the surface for each set of roots us-
ing the de Casteljau subdivision algorithm are extracted. Then the normal
rectangular pyramids, which bound normal vectors of Bézier patches, are
constructed [5]. If the two pyramids intersect, the associated parameter
boxes are considered as representing trivial roots and excluded from the list
of roots. Finally we restart the polynomial solver with boxes that include
the solutions and solve for them with strict accuracy (e.g. 107%).

5.3 Coincident Boundary Points

Let us consider the case of coincident points at the boundary. In the self-
intersection point, the boundary curve of the offset surface tangentially self-
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intersects the boundary curve of the offset surface. In the generic case
the self-intersection point is an interior point of the offset surface. Since
the offset surface is parallel to the generator surface, we can reduce this
condition to the orthogonality of the tangent vector of the boundary curve
of the generator surface and the normal vector of the generator surface at
its corresponding point. Therefore we have the following equations:

g(s,t) +dn(s,t) = g(u,v) + dn(u,v) (12)
[gs(s,t) x g(s,t)] - go(u,v) =0 (13)

This system consists of four scalar equations with four unknowns, namely
v, s, t and d when the boundary curve is an isoparametric curve u =0 or
1, or u, s, t and d when the boundary curve is an isoparametric v =0 or 1.
In the latter case g,(u,v) in Equation (13) is replaced by g, (u,v). We can
formulate the four scalar equations in terms of polynomials by splitting the
rational B-spline surface into rational Bézier patches and introducing the
auxiliary variable to avoid the square roots [5]. However we cannot factor
out the trivial solution (s,t) = (u,v) from the system. Maekawa et al. [5]
developed a method to handle such a case. But in this case we can employ
Newton’s method to solve the system (12) and (13), as we can provide all
the initial approximations to the roots by the following global method which
does not involve factoring out trivial solutions.

We are able to compute all the stationary points of the squared distance
function [14] between a rational Bézier boundary curve and a rational Bézier
boundary curve using the Interval Projected Polyhedron algorithm. For the
case of the stationary points of the squared distance function between a
rational Bézier boundary curve and a rational Bézier patch, we need to
consider two situations. The first situation is the case when the boundary
curve is not extracted from the iso-parametric line of the same patch, while
in the second case the boundary curve is an iso-parametric line of the patch.
The first case does not involve trivial solutions and can be solved easily by
the method described in [14]. The second case involves trivial solutions,
therefore we split the patch into two patches at the isoparametric line very
close to the boundary, i.e. 0+ € or 1 — ¢, where € is a very small positive
number. Then extract the boundary curve from the small patch and treat
it as the first case. It is implied that we use a more strict accuracy than e
in the polynomial solver. After all the stationary points are evaluated we
need to classify each stationary point as a local maximum, local minimum
or saddle point. Then we solve the system (12) and (13) by the Newton’s
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method for all the local minima as an input. The minimum d among the
solutions becomes the maximum possible upper limit of the offset distance
such that boundary point to boundary point or in the generic case boundary
point to interior point will not self-intersect.

5.4 Self-intersections of the Offset Strip

As discussed in Section 3.1.5, computation of the self-intersection of the
offset strip reduces to computing the self-intersection of a ruled surface. We
have four ruled surfaces for a four-sided patches of a tensor-product surface.
Without loss of generality, we work with the ruled surface having c;(u) =
g(u,0) as a directrix. In the self-intersection point two different generators of
the ruled surface intersect each other. This leads to the geometric condition
expressed by Equation (3). Thus, we have one equation with two unknowns,
namely v and «'. When one of the boundary generators is touching the
interior of the ruled surface, the additional condition is obtained by setting
u = 0 or 1. In general, if two different interior generators intersect each
other, it is difficult to find the minimum offset distance for self-intersection
of the offset strip.

6 Examples

6.1 Singular Points on Offset Surface

A shaded image of an offset of a bumpy wave-like surface is shown in Fig-
ure 10. The generator surface, which is in wireframe, is a bicubic integral
B-spline surface with uniform knots which consists of 4x4 Bézier patches.
The global minimum value of the minimum principal curvature is -21.018
and located at (0.5, 0.1079), (0.5, 0.8921), (0.1079, 0.5) and (0.8921, 0.5)
respectively in the yv-parametric space. Thus maximum limit of offset dis-
tance without self-intersection is d < 0.04758. The offset image in Figure 10
has this limit, and we can observe the four locations where the the minimum
principal curvature has its global minimum in the concave regions.

6.2 Auto-NNormal Chords

The generator surface (wireframe), together with its offset (shaded image),
shown in Figure 11 is a sextic-quadratic Bézier patch. The surface has
a global minimum along the auto-normal chord. We have adopted the
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method described in [5] to solve the system (6) to (9), which provides (s, t)
= (0.10593, 0.5), (u,v) =(0.89407, 0.5) and d = 0.8082.

6.3 Coincident Boundary Points

The generator surface is a quintic-cubic Bézier patch and has a global min-
imum distance between the boundary curve u=1.0 and its interior point.
First all the initial approximations to the Newton’s method to solve the sys-
tem (12) and (13) are obtained in a global manner. The stationary points
of the squared distance function between a boundary curve and an interior
point of the surface, and between two boundary curves are computed using
the Interval Projected Polyhedron algorithm. After all the stationary points
are evaluated we classify each stationary point as a local maximum, local
minimum or saddle point. Then we solve the system (12) and (13) by the
Newton’s method for all the local minima as an input. Finally the global
minimum is found to be d = 0.09346 between a point on the boundary curve
(u,v) =(1, 0.5) and an interior point (s,?) = (0.05319, 0.5). The initial ap-
proximation d = 0.08793 (u,v) =(1, 0.5), (s,t) = (0.04594, 0.5) was used,
which resulted from the minimum distance computation between the bound-
ary curve and the interior point of the surface. The Figure 12 shows the
generator surface (wireframe), its offset (shaded image) with d = 0.08793,
and the straight line connecting the minimum distance between the bound-
ary curve u=1.0 and its interior point.

6.4 Self-intersections of the Offset Strip

The generator surface is a quartic Bézier ruled surface. Since the generator
surface is a four-sided patch, we need to check for all the four ruled surfaces
for possible self-intersections. In this example the ruled surface, having
P(u,0) as a directrix, self-intersects. Thus, we have t=v=1. In this case one
of the boundary generators u = 1 touches the interior of the ruled surface.
Newton’s method converges to u'= 0.12319324. Now we can easily find A
and X' to be -0.244291, -0.226883.. In this case, an initial s close to the
final result is critical, otherwise Newton’s method may converge to different
solutions. The Figure 13 shows the generator surface (wireframe), its offset
(shaded image) with d = —0.244291.
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Figure 10: Local self-intersection

Figure 11: Auto-normal chords
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Figure 12: Coincident boundary points

Figure 13: Self-intersection of the offset strip
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