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Abstra
t

In this paper we dis
uss the self-interse
tions of o�set 
urves and sur-

fa
es and show how to determine the maximum o�set distan
e su
h

that the o�set does not lo
ally nor globally self-interse
t in
luding

boundary e�e
ts. Examples illustrate the appli
ability of the analysis.
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1 Introdu
tion

O�set 
urves/surfa
es, also known as parallel 
urves/surfa
es, are de�ned

as the lo
us of points whi
h are at 
onstant distan
e d along the normal

ve
tor from the generator (also 
alled progenitor) 
urve/surfa
e. O�sets are

widely used in various appli
ations, su
h as tool path generation for 2.5D

po
ket ma
hining, 3D NC ma
hining, de�nition of toleran
e regions, rapid

prototyping, brush stroke representation and in feature re
ognition through


onstru
tion of skeletons or medial axes of geometri
 models. Literature

surveys on these topi
s 
an be found in [4℄, [10℄.

An o�set is in general more 
omplex than its progenitor. It may self-

interse
t lo
ally when the absolute value of the o�set distan
e ex
eeds the

minimum radius of 
urvature in a 
on
ave region. Also, an o�set may inter-

se
t globally when the distan
e between two distin
t points on the progenitor

rea
hes a lo
al minimum. These lo
al and global self-interse
tions 
an be

visualized as ma
hining a part using a 
ylindri
al/spheri
al 
utter whose

radius is too large for 2.5D/3D milling.
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In a re
ent survey paper, Maekawa [4℄ raises some important outstand-

ing issues in the area of o�set surfa
es. One of them is 
on
erned with

determining the maximum o�set distan
e su
h that the o�set surfa
e does

not lo
ally nor globally self-interse
t in
luding boundary e�e
ts. So far the

dis
ussion in the literature [6℄ was based on \Given a 
urve/surfa
e and

an o�set distan
e, does the o�set 
urve/surfa
e self-interse
t? If so, where

does it self-interse
t?" However in some appli
ations, we may en
ounter the

problem \Given a plane 
urve/surfa
e, what is the maximum o�set distan
e

su
h that its o�set does not self-interse
t?" In Maekawa et al. [8℄ it is dis-


ussed how to �nd the maximum possible radius of the pipe surfa
e, whi
h

is the envelope of the smooth one-parameter family of spheres with radius r


entered at the spine 
urve, su
h that it will not self-interse
t. The method


an be easily applied to �nd the maximum o�set distan
e without self-inter-

se
tion by setting the spine 
urve as the given planar progenitor 
urve. In

this paper we investigate a method to �nd the maximum o�set distan
e su
h

that the o�set surfa
e does not lo
ally nor globally self-interse
t in
luding

boundary e�e
ts.

The paper is organized as follows: Se
tion 2 reviews the planar 
ase. Part

of this se
tion serves as a motivation for Se
tion 3 where the surfa
e 
ase is

presented. Se
tion 4 deals with some spe
ial 
ases of surfa
es that arise often

in appli
ations. Se
tion 5 des
ribes the algorithm of the 
omputation of self-

interse
tions of the o�set surfa
e. Se
tion 6 provides illustrative examples

and �nally, in Se
tion 7 some 
on
luding remarks are provided.

2 Planar Curves

In this se
tion we review the 
ase of plane 
urves and set up the stage for

the next se
tion. Consider a planar regular smooth 
urve


 : I ! R

2

; t 7! 
(t); (d
=dt 6= o)

with its unit normal ve
tor �eld

t 7! n(t); (kn(t)k = 1; n(t) � d
=dt(t) = 0):

Note that �n is also a normal ve
tor �eld of 
. If 
 is C

r

, then n is C

r�1

,

and thus if 
 is at least 
ontinuously di�erentiable, then n is 
ontinuous.

De�nition 2.1 Let 
 be as above. Then, the o�set 
urve 


o

(r) at distan
e

r is de�ned by




o

(r) : t 7! 
(t) + r n(t):
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The strip between 
 and 


o

(r), whi
h shall be 
alled the o�set strip of width

r, is de�ned as the union of all 


o

(�) with 0 � � � r.

Fig. 1 shows a 
urve with its o�set and o�set strip.
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Figure 1: Curve 
 with a non-
onvex edge, o�set 
urve 


o

(r) with singular-

ities, and o�set strip (grey).

We de�ne the term self-interse
tion to be either self-interse
tion of the

o�set strip or self-interse
tion of the o�set 
urve. Eventually we shall deter-

mine

� a value r

s

su
h that for 0 � r < r

s

both the o�set 
urve and the

o�set strip have no self-interse
tions, but for r > r

s

the o�set strip

has self-interse
tions.

� a value r




su
h that for 0 � r < r




the o�set 
urves 


o

(r) have no

self-interse
tions, but at or immediately after r = r




the o�set 
urves




o

(r) have self-interse
tions.

2.1 Self-Interse
tions of O�set Curves

By introdu
ing the endpoint map

E : (u; v) 7! 
(u) + v n(u) = 


v

(u) (u 2 I); (1)

we see that if E is one-to-one for all values v < r, then the o�set strip of

width r is free of self-interse
tions. Moreover, for suÆ
iently small r, E is

always 1{1, provided that the 
urve has only 
onvex edges. In this 
ase we


an always expe
t r




; r

s

> 0. We will restri
t ourselves to 
urves whi
h have

only 
onvex edges.
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2.1.1 Auto-normal 
hords

We now pro
eed with the dis
ussion of the di�erent possibilities for self-

interse
tions. For r � 0 we note that if E(u; v), restri
ted to 0 � v � r,

is still regular (whi
h is equivalent to the o�set 


o

(v) being regular for all

v � r), then a self-interse
tion 
an o

ur if at some value r

0

, the o�set 
urve

(or the o�set strip) tou
hes itself in an interior point of the 
urve.

PSfrag repla
ements




o

(r)




a

e

p

r

q = q

0

p

0

PSfrag repla
ements




o

(r)




a

e

p

r

q = q

0

p

0

Figure 2: A 
urve whi
h is in oriented 
onta
t with itself (left). A 
urve

whi
h tou
hes itself, but is not in oriented 
onta
t with itself (right).

If 
urves are oriented (i.e., are equipped with a unit normal ve
tor �eld),

then we say that they are in oriented 
onta
t, if they tou
h ea
h other in

a point, and their unit normal ve
tors 
oin
ide in this point. The notion

of oriented 
onta
t extends to 
onta
t of a 
urve with itself: If a 
urve

tou
hes itself, and the two normal ve
tors 
oin
ide, we say that the 
urve is

in oriented 
onta
t with itself (see Fig. 2).

Sin
e the 
urve 
 is oriented, so is 


o

(r) (be
ause the normal ve
tors

in 
orresponding points are the same as for 
). If 


o

(r) tou
hes itself, this


onta
t 
annot be oriented 
onta
t, be
ause then also the original 
urve


 would have been in oriented 
onta
t with itself | this 
ontradi
ts our

assumption that 
 is one-to-one.

So we always have the following geometri
al 
on�guration (see Fig. 3):

The �rst (in the sense of the o�setting parameter r) two 
urve points p;p

0

whose o�set points q;q

0


oin
ide, have parallel tangents and the line segment

joining p; p

0

is the shortest auto-normal 
hord of the 
urve. An auto-normal


hord of the 
urve is de�ned as the line segment pp

0

su
h that

�!

pp

0

is the

oriented normal at p and

�!

p

0

p is the oriented normal at p

0

. There is also a

se
ond geometri
 
hara
terization of this. De�ne the 
ut lo
us 
urve of a


urve 
 as the set of 
enters of oriented 
ir
les that are in oriented 
onta
t

with 
 in at least two di�erent points, together with all limit points of this set

[?℄. It turns out that the 
enters of 
urvature in points of extremal 
urvature
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Figure 3: Curve 
, o�set 
urve 


o

(r), 
ut lo
us a, and auto-normal 
hord

PP

0

. Case `OO'.

are exa
tly these limit points. When we speak of the distan
e between the


urve and its 
ut lo
us, then this distan
e is always the radius of a 
ir
le

whi
h was used in the de�nition. It equals the distan
e between its 
enter,

and the points where it tou
hes the 
urve. Obviously the midpoint q = q

0

of

the smallest auto-normal 
hord pp

0

of 
 is 
ontained in the 
ut lo
us 
urve

of 
.

If all o�set 
urves for smaller parameter values are free of self-interse
-

tions, then r is the value of the smallest distan
e between the 
urve and its


ut lo
us.

2.1.2 Coin
ident points at the boundary

Upon in
reasing the value of r and looking for self-interse
tions of 


o

(r) it

may happen that a boundary point q of 


o

(r) 
oin
ides with another point

q

0

of 


o

(r) (see Fig. 4). (In the generi
 
ase q

0

is an interior point of 


o

(r),

but it 
ould also be a boundary point).

The above o

urs if the 
ut lo
us of 
 has its endpoint at q = q

0

. In that


ase the distan
e pq = p

0

q

0

equals the parameter r of the o�set 
urve; and

if all o�set 
urves for smaller parameter values are free of self-interse
tions,

then r is the value of the smallest distan
e between the 
urve and its 
ut lo
us,

this minimum being attained in two points, one of whi
h is a boundary point

of the 
urve.
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Figure 4: Boundary of o�set strip tou
hes 
urve.

2.1.3 Singular points of the o�set 
urve

Finally, it may happen that while in
reasing r, the o�set 
urve be
omes

singular for r = r

0

, namely at a point p = 
(t

0

) of extreme 
urvature. If

the 
urvature is not 
onstant in a neighborhood of p, then a lo
al analysis

shows that there is an interval (r; r + �) su
h that for all parameter values

in this interval, the o�set 
urve has self-interse
tions (see Fig. 5). If the


urvature is 
onstant, i.e., the 
urve is lo
ally a 
ir
le, then the o�set 
urve




o

(r

0

) is itself lo
ally 
onstant. The 
urves 


o

(r), r > r

0

may or may not

have self-interse
tions.
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Figure 5: Behavior of involute e and o�set 
urve.

Sin
e the 
enters of 
urvature at 
urvature maxima are 
ontained in the


ut lo
us 
urve, the latter serves as the basi
 ingredient of the �nal statement
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on self-interse
tions of 
urves:

Theorem 2.1 The value r




equals the smallest distan
e between the 
urve


 and its 
ut lo
us 
urve a. The type of self-interse
tion at r




is determined

by the pairs p

i

;q

i

of points on 
 and a, where the minimum is a
tually

attained:

1. A point p

i

may be a 
urvature maximum,

2. a pair (p

i

;q

i

) may be formed from the endpoints of a smallest auto-

normal 
hord, both being interior extremal values of the distan
e be-

tween the 
urve and its 
ut lo
us,

3. a pair (p

i

;q

i

) may be su
h that at least one of the p's is a boundary

extremum of the distan
e between 
urve and 
ut lo
us.

2.2 Self-Interse
tion of the o�set strip

In this subse
tion we shall show that there are several di�erent 
ases of self-

interse
tion of the o�set strip, besides two 
ases whi
h o

ur only with zero

probability and whi
h are limit 
ases of the previous ones.

The boundary of the o�set strip 
onsists of the 
urve 
 itself, of the o�set


urve 


o

(r), and of line segments joining the boundary points of 
 with the

respe
tive boundary points of 


o

(r). In the following enumeration of 
ases,

these three 
omponents of the boundary will be denoted by the letters `C',

`O', and `B', respe
tively. The verti
es where `O' and `B' meet, are denoted

by `V', and the endpoints of the 
urve 
, where `C' and `B' meet, by `E'.

If the 
urve 
 has no self-interse
tions, then the o�set strip has neither if

r is small enough. We 
onsider the smallest r su
h that the o�set strip has a

self-interse
tion. In this situation a 
omponent of the boundary (one of `C',

`O', `B', `V', `E') meets another one. Of the 20 hypotheti
al 
ombinations,

the following o

ur in pra
ti
e:

OO Here the o�set 
urve tou
hes itself, whi
h is the 
ase dis
ussed above

(see Fig. 3).

CO The o�set 
urve 


r

tou
hes the base 
urve 
 (see Fig. 7a).

BO The o�set 
urve tou
hes a boundary 
omponent whi
h is a straight line

(see Fig. 8a)

CV A vertex of the o�set strip is 
ontained in the 
urve 
 (see Fig. 6). This


ase 
ontains `BC' as a limit.
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EO The o�set meets the base 
urve in an endpoint (see Fig. 6 with 


o

(r)

and 
 inter
hanged) Cases `EV' and `BE' are limit 
ases of this.

BV A vertex of the o�set strip is 
ontained in a boundary 
omponent whi
h

is a straight line (see Fig. 8b).

OV A vertex of the o�set strip is 
ontained in a `distant' part of the o�set


urve 


r

(see Fig. 4). Case `VV' is a limit 
ase of this.

The remaining 
ases do not o

ur.
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Figure 6: A vertex of the o�set strip meets the original 
urve (
ase `CV').

If 
 and 


o

(r) are inter
hanged, this shows 
ase `EO'.

We des
ribe an algorithm to determine the value of r

s

.

1. Determine the number r




a

ording to Th. 2.1, using the 
ut lo
us


urve of 
. This �rst step looks for interse
tions of the types `OO',

`OV', and `VV'.

2. Consider the modi�ed 
ut lo
us 
urve whi
h is de�ned as the lo
us of


enters of oriented 
ir
les whi
h tou
h the 
urve 
 in two points, but

are not in oriented 
onta
t (see e.g. the 
urve a in Fig. 7b). Let r

0




equal the smallest distan
e of the modi�ed 
ut lo
us to the 
urve 
.

This se
ond step looks for self-interse
tions of the types `CO' and `EO'.

3. Consider the rays N

i

whi
h emanate from the end points E

i

of the


urve 
, and whose dire
tion is given by the normal ve
tor there. In-

terse
t 
 with all rays N

i

, whi
h gives points X

i1

; : : : ;X

ir

i


ontained

in N

i

. Let d

ij

= X

ij

E

i

and �nd the smallest value r

n

= min

i;j

d

ij

.

This third step looks for self-interse
tions of type `CV' and `BC'.

4. Consider the rays N

i

as before, and 
ompute the interse
tion points

X

ij

, if they exist. Let d

0

ij

= X

ij

E

i

, and let r

0

n

= min

i 6=j

max(d

0

ij

; d

0

ji

).

This fourth step looks for self-interse
tions of type `BV'.
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Figure 7: (a) The o�set 
urve 


o

(r) meets the 
urve 
 (
ase `CO'). (b)

Modi�ed 
ut lo
us 
urve a of 
urve 
.
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Figure 8: Self-interse
tion of the o�set strip. (a): Case `BO', (b); Case `BV'.

5. Consider the rays N

i

as before. For all rays N

i

, �nd the rays

e

N

ij

,

whi
h emanate from a point 
(t

ij

) of the 
urve 
, whose dire
tion is

given by the unit normal there, and whi
h are orthogonal to the ray

N

i

. If it exists, the interse
tion of N

i

and

e

N

ij

is denoted by X

ij

.

Let

d

00

ij

= X

ij

E

i

;

e

d

00

ij

= X

ij


(t

ij

); r

00

n

= min

d

00

ij

�

e

d

00

ij

e

d

00

ij

:

This �fth step looks for self-interse
tions of type `BO'.

Theorem 2.2 The value r

s

equals min(r




; r

0




; r

n

; r

0

n

; r

00

n

), where the various

values are 
omputed by the algorithm above.
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3 Surfa
es

Let M � R

3

be a smooth orientable surfa
e, whi
h is pie
ewise 
urvature


ontinuous and has a pie
ewise 
urvature 
ontinuous boundary. To ea
h

point p 2M we assign the unit normal ve
tor n(p).

We restri
t ourselves to surfa
es having only 
onvex edges, be
ause the

o�set surfa
e will always have self-interse
tions, if M possesses a 
on
ave

edge. In a boundary point p of �M there is a 
ertain set N(p) of unit

normal ve
tors, depending on the smoothness on the boundary. If we do not

want to round o� the o�set at the boundary, we assign to ea
h boundary

point the unit normal ve
tor orthogonal to the limit tangent plane there.

We want to give a parametrization to the set of normal ve
tors: If the

surfa
e, in its smooth parts, is parametrized by a regular smooth fun
tion

g(u; v) = (g

1

(u; v), g

2

(u; v), g

3

(u; v)), then the normal ve
tor at p = g(u; v)

is given by n(p) = ��g=�u � �g=�v = k�g=�u � �g=�vk.

We 
an also de�ne a new obje
t, the unit normal bundle ?

1

M of M . It


onsists of all pairs (p;n) where n is a unit normal ve
tor at the point p. It

has a smooth parametrization and makes it possible to de�ne the endpoint

map E and the o�set surfa
e M

o

(r) of M at distan
e r:

De�nition 3.1 For M as above and r 2 R, we de�ne

E : ?

1

M � R ! R

3

; E((p;n); r) = p+ rn

and M

o

(r) to be the image of E.

We also de�ne the o�set strip of width r as the union of all M

o

(d) for

0 � d � r.

3.1 Self-interse
tions of O�set Surfa
es

As in the planar 
ase, we want to �nd values r

M

and r

s

of the o�set pa-

rameter su
h that the o�set surfa
es M

o

(r) have no self-interse
tions for

r < r

M

, and have self-interse
tions at or immediately after r = r

M

; and

that the o�set strip of width r has no self-interse
tions for r < r

s

, but has

self-interse
tions for some r � r

s

.

Again, it 
an be shown that there exists r

0

su
h that the endpoint map

is one-to-one when restri
ted to positive values r < r

0

. Like in the planar


ase we let r grow from r = 0 until a singularity o

urs.

We de�ne the 
ut lo
us surfa
e as the set of all 
enters of spheres whi
h

tou
h M in at least two points, together with the limit points of this set.
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The dis
ussion is similar to the planar 
ase. We dis
uss 
ompa
t C

2

surfa
es without boundary (
losed surfa
es) and �nd values of r su
h that

M

o

(r) is nonsingular and free of self-interse
tions. Surfa
es with boundary

are studied in [13℄.

3.1.1 Smooth Surfa
es

If the surfa
e is 
losed, we 
an identify its unit normal bundle ?

1

M with

M . For q 2 M 
onsider the normal line l to M that goes through q. It


onsists of all points q+ tn(q), where n(q) is the unit normal ve
tor of M

at q.

Lemma 3.1 The endpoint map E : (p; t) 7! p+ tn(t) has nullity > 0 (that

is, its Ja
obian matrix is noninvertible) if and only if t = 1=K

i

(p), where

K

i

(p) are the nonzero prin
ipal 
urvatures of M at p.

Intuitively, the point p + (1=K

i

(p))n(p) is a point in R

3

where nearby

normals interse
t (
f. ([9℄, p. 34, Lemma 6.3).

The proof of this is an exer
ise in di�erential geometry: 
onsider the

spheri
al map n : p 7! n(p) fromM to the unit sphere S

2

, and its di�erential

dn. The prin
ipal 
urvatures are de�ned as the eigenvalues of �dn. There

are tangent ve
tors v

1

and v

2

su
h that dn(v

i

) = �K

i

v

i

. Then the endpoint

map (p; t) 7! p+ tn(p) has nullity > 0 at (p; t) = (p; 1=K

i

): We evaluate

its di�erential dE = dp+ t dn(p) + dtn(p) at the tangent ve
tor (dp; dt) =

(v

i

; 0), whi
h gives dEu(v

i

; 0) = v

i

+ (1=K

i

)(�K

i

v

i

) = 0.

Be
ause the E-images of the tangent ve
tors (dp; dt) with dt = 0 span the

tangent spa
e of the o�set surfa
e M

o

(r), we have also shown the following:

Lemma 3.2 The parametrization p 7! p+rn(p) of the o�set surfa
eM

o

(r)

is singular at p if and only if r equals one of the two prin
ipal 
urvature

radii 1=K

i

of p.

We will 
onsider how to �nd the maximum r so that M

o

(r) will not self-

interse
t in a global manner, i.e., M

o

(r) is an embedded two-dimensional

submanifold of R

3

. For this, we de�ne the map

G :M �M ! R; G(x;y) = kx� yk

2

Obviously, G(x;y) > 0, for x 6= y. Se
ond, note that G has a 
riti
al

value r > 0 sin
e M �M is 
ompa
t. To see that, 
onsider x;y 2 M with

G(x;y) = r. Then n(x) = �n(y) and the ve
tor x � y is parallel to both

11



n(x) and n(y). (Otherwise there would be 
urves on M passing through x

and y su
h that the squared distan
e is not stationary at the pair (x;y)).

We 
laim that if


 = inffr > 0 j r is a 
riti
al value of Gg (2)

then 
 is positive. For if 
 were to be zero, we would then have that, for

ea
h arbitrarily small positive Æ there exists a pair of points (x

Æ

;y

Æ

) so that

1. kx

Æ

� y

Æ

k < Æ,

2. The ve
tor x

Æ

� y

Æ

is parallel to both n(x

Æ

);n(y

Æ

).

Choose a sequen
e of Æ's 
onverging to zero. We may assume (sin
e M

is 
ompa
t) that the sequen
e (x

Æ

;y

Æ

) 
onverges to (a;a) with a 2 M .

If Æ is small enough, x

Æ

;y

Æ

have to belong to the same 
omponent of M ,

be
ause unions of 
omponents are 
losed. There is a neighborhood U of

a, a lo
al 
oordinate system around a and a C

2

fun
tion h de�ned in a

neighborhood V of 0 in R

2

su
h that that M \ U is the graph surfa
e

f(u

1

; u

2

; h(u

1

; u

2

) j (u

1

; u

2

) 2 V g and (0; 0; h(0; 0)) = a. Now the normal

ve
tor �eld is 
ontinuous, and

k(u

1

; u

2

; h(u

1

; u

2

))� (u

0

1

; u

0

2

; h(u

0

1

; u

0

2

))k � k(u

1

; u

2

; 0)� (u

0

1

; u

0

2

; 0)k;

whi
h 
ontradi
ts the existen
e of x

Æ

;y

Æ

. We now 
onsider a r > 0 su
h

that

1. For ea
h point x 2 M neither prin
ipal 
urvature of M at x is equal

to �1=r, and

2. 2r <

p


, where 
 is as in (2).

and show that in this 
aseM

o

(r) is nonsingular and has no self-interse
tions:

Suppose that r satis�es 
ondition 1 above and it is the �rst positive

number for whi
h the obvious mapping M ! M

r

is not one-to-one. Then

there exist x 6= y for whi
h x + rn(x) = y + rn(y). This implies x � y =

r(n(y) � n(x)). We 
laim that in this 
ase (x;y) is a 
riti
al point of

G: For if not, the lo
ally 2-dimensional manifold M

o

(r) has a transverse

self-interse
tion at E(x), and that 
ontradi
ts the minimality of r. Thus,

kx� yk = j2rj, and (2r)

2

is a 
riti
al value of G, so 
ondition 2 is violated.

This shows the following:

Theorem 3.3 Let M be a 
ompa
t orientable C

2

surfa
e without bound-

ary. Then M

o

(r) is nonsingular and without self-interse
tions, if r satis�es


onditions 1 and 2 as above.

We will see that in this 
ase r

s

equals either the minimum of 1=K

i

or

p


=2.
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3.1.2 Singular Points in O�set Surfa
es

Noti
e that if E be
omes singular for some value of r, then the o�set strip

of width r has a self-interse
tion be
ause a mapping whi
h is singular and

maps all lines ((p;n); r), (p;n) �xed, to a straight line in spa
e, 
annot be

1{1. We also have

1. If E be
omes singular in a smooth point p of M , this is 
aused by the

fa
t that r

0

equals the smallest prin
ipal 
urvature radius 1=K

i

(p).

2. If E be
omes singular in a point (p;n) of the unit normal bundle, su
h

that p is lo
ated in an edge e of M , then this is 
aused by the fa
t

that r

0

equals the normal 
urvature radius r(e;n) of this edge with

respe
t to the surfa
e normal n (see [13℄).

In both 
ases it is possible to show that the 
enter of the `o�ending' 
urvature

is 
ontained in the 
ut lo
us surfa
e.

Unlike the 
urve 
ase, it is not as easy to determine when M

o

(r) a
tu-

ally has self-interse
tions, i.e., where the endpoint map ?

1

M ! M

o

(r) is

not inje
tive. Even if M

o

(r) has a singularity, the endpoint map may still

inje
tive. For values r > d, the o�set surfa
e M

o

(r) 
ould again be regular

and free of self-interse
tions (
onsider a sphere, a 
ylinder, or any tubular

surfa
e and their interior o�sets). All we 
an say is that ifM

o

(r) is singular,

the o�set strip has self-interse
tions for values > d.

3.1.3 Auto-normal 
hords

Like the planar 
ase, the o�set surfa
e M

o

(r) is oriented (per de�nition) by

the normal ve
tors inherited from M . Again it is not possible that M

o

(r)

tou
hes itself, but is not in oriented 
onta
t. So for all 
oin
ident interior

points q = q

0

of M

o

(r), the 
orresponding points p;p

0

in M de�ne the

shortest auto-normal 
hord of M . For smooth surfa
es without boundary,

this has been shown above. For other surfa
es, see [13℄.

It is also 
lear that q = q

0

is lo
ated in the 
ut lo
us surfa
e, and when

disregarding the boundary values of the distan
e fun
tion, the pairs pq and

p

0

q are lo
al interior minima of the distan
e fun
tion between M and its


ut lo
us surfa
e, and among those lo
al minimal they are the ones where

the smallest value of the distan
e is attained..

If M has no boundary, we have therefore the following:

Theorem 3.4 Let M be a 
losed surfa
e without boundary. Then the value

r

s

equals the minimum distan
e between M and its 
ut lo
us surfa
e. The

value r

M

is greater or equal to r

M

.
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3.1.4 Coin
ident Boundary points

The situation is exa
tly the same as in the planar 
ase. We state the 
orre-

sponding result:

Theorem 3.5 The value r

M

equals the smallest distan
e between the sur-

fa
e M and its 
ut lo
us surfa
e. The type of self-interse
tion at r

M

is

determined by the pairs p

i

;q

i

of points like in the 
urve 
ase.

3.1.5 Self-interse
tions of the o�set strip

The o�set strip has the following boundary: The o�set surfa
e M

o

(r), the

surfa
e M itself (if we did not 
onsider a two-sided o�set); and a strip

S of the ruled surfa
e whi
h 
onsists of the surfa
e normals in the points

of �M (see Fig. 9). Depending on the smoothness of M 's boundary, the

ruled surfa
e strip is smooth or has edges. There are, again depending on

the smoothness of M 's boundary, many di�erent 
ases of interse
tion or

tou
hing of various 
omponents of the o�set strip's boundary. We will not

attempt to enumerate them 
ompletely. Most of them are straightforward

generalizations of two-dimensional 
ases.

PSfrag repla
ements




o

(r)




a

e

p

r

q = q

0

p

0

Figure 9: O�set strip of a surfa
e with its boundary.

Tou
hing of M and M

o

(r), 
an, like in the 
urve 
ase, be tested by


onsidering the modi�ed 
ut lo
us surfa
e. This also in
ludes the boundaries

of M and M

o

(r). The only 
ase whi
h did not o

ur in the two-dimensional

problem is the 
ase of self-interse
tion of S. We are going to des
ribe how

to 
ompute this self-interse
tion.

Suppose that S meets itself in the point

q = p+ r

0

n(p) = p

0

+ r

0

0

n(p

0

)

with p;p

0

2 �M and r

0

0

< r

0

: When growing the o�set strip, at r = r

0

0

it

begins to interse
t S, while not interse
ting itself, but at r = r

0

it �nally
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interse
ts itself. Thus for �nding the maximum r su
h that this type of self-

interse
tion does not happen, we have to 
ompute the 
omplete interse
tion


urve of S with itself.

For ea
h p 2 �M there is a value �(p) su
h that p+�(p)n(p) is the �rst

(in the sense of �) interse
tion point of the ray p + tn(p), (t > 0) with S.

If there is no su
h point, we let �(p) =1. If �(p) <1, i.e., there a
tually

is an interse
tion, there is another value �

0

(p) and another point p

0

2 �M

su
h that

p+ �(p)n(p) = p

0

+ �

0

(p)n(p

0

):

and the maximum r

S

is found by

r

S

= min

p2�M

max(�(p); �

0

(p)):

In order to understand the algorithm better, we show how to interse
t two

ruled surfa
es S

1

(u; v) = 


1

(u) + vn

1

(u) and S

2

(u; v) = 


2

(u) + vn

2

(u). To

interse
t S with itself, we then let S

1

= S

2

= S.

We start at a parameter value u and interse
t the line l

1

(u) : 


1

(u) +

vn

1

(u) with S

2

, by looking for a parameter u

0

0

su
h that the line l

2

(u

0

) :




2

(u

0

) + vn

2

(u

0

) interse
ts l

1

. This is done by solving

det(


2

(u

0

)� 


1

(u);n

1

(u);n

2

(u

0

)) = 0: (3)

(This absolute value of this equals the distan
e of the lines l

1

(u) and l

2

(u

0

)

multiplied by kn

1

(u) � n

2

(u

0

)k.) Having found the solution u

0

, we let

p = 


1

(u), p

0

= 


2

(u

0

) and easily 
al
ulate � and �

0

su
h that S

1

(u; �) =

S

2

(u

0

; �

0

).

4 Spe
ial 
ases

For 
onvex and star-shaped

1

surfa
es we have some information 
on
erning

the auto-normal 
hords [11℄:

� If a 
onvex surfa
e is oriented su
h that its normals point to the out-

side, then the o�set surfa
e is regular and the endpoint map is always

one-to-one for all r > 0, be
ause there are no auto-normal 
hords and

all prin
ipal 
urvatures are negative.

1

A surfa
e is star-shaped if it is the boundary of a star-shaped body. A star-shaped

body S is a subset of Eu
lidean spa
e whi
h has a point o in its interior su
h that the

straight line segment op is in S for all p 2 S.
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� If a star-shaped surfa
eM is oriented su
h that its normals point to the

outside, then there are no auto-normal 
hords and the o�set surfa
e

M

o

(r) is regular and one-to-one as long as r is less than the prin
ipal


urvature radii in all points of M .

� If a 
onvex surfa
e M is oriented su
h that its normals point to the

inside, 
onsider a sphere of maximum radius R ins
ribed in M . If

r < R, then obviously there is no auto-normal 
hord of length r, so

the o�set M

o

(r) is regular and free of self-interse
tions if r is less

than all prin
ipal 
urvature radii of M . Note that when reversing the

orientation of M , all prin
ipal 
urvatures and also their re
ipro
als,

the radii, are multiplied by �1.

The maximum ins
ribed sphere, in prin
iple, either tou
hes M in two

points or its 
enter equals a prin
ipal 
urvature 
enter. Blas
hke has

shown that the former 
ase is not possible [2℄, so there remains the

latter 
ase whi
h shows that M

o

(r) has a singularity before having

self-interse
tions.

� If a star-shaped surfa
e M is oriented su
h that its normals point to

the inside, 
onsider the 
onvex 
ore 
 of M . It is de�ned as the set

of points p su
h that M is star-shaped with respe
t to p. It is easily

seen to be 
onvex. Every auto-normal 
hord of M gives rise to two

parallel tangent planes of M with C lying between them.

Se
ond, 
onsider a sphere of maximum radius R ins
ribed into C.

Clearly no auto-normal 
hord of M has length less or equal r. Thus

the o�set surfa
es M

r

with r < R are nonsingular and free of self-

interse
tions if r is less then all prin
ipal 
urvature radii of M .

5 Algorithm

5.1 Singular Points on O�set Surfa
e

Lo
al self-interse
tions of the o�set surfa
e o

ur when the positive o�set

distan
e ex
eeds the maximum absolute value of the negative minimum prin-


ipal 
urvature on the generator surfa
e or the absolute value of the negative

o�set distan
e ex
eeds the maximum value of the positive maximum prin
i-

pal 
urvature on the generator surfa
e. A detailed formulation and a robust

method for �nding extrema of prin
ipal 
urvatures 
an be found in [7℄.
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5.2 Auto-Normal Chords

The shortest auto-normal 
hord problem is to �nd two di�erent points on

the generator surfa
e whose surfa
e normals point in opposite dire
tions

and that have a minimum distan
e. The absolute minimum of the distan
e

fun
tion is trivially attained for all pairs of equal points, but their normal

ve
tors point to the same dire
tion. All pairs of points where the distan
e

fun
tion attains a lo
al minimum have the property that their normal ve
tors

point either to the same or to the opposite dire
tion. This means that we


an look for all stationary points of the distan
e fun
tion, thereby avoiding

the trivial solutions, afterwards single out those pairs whose normal ve
tors

behave in the desired way, and 
hoose the one whi
h minimizes the distan
e.

We assume that the generator surfa
e is given by a NURBS surfa
e,

whi
h 
an be split into rational B�ezier surfa
es by knot insertion. The

minimum distan
e problem 
an be de
omposed into the minimum distan
e

between two points on di�erent surfa
es and the minimum distan
e between

two points on the same surfa
e. The �rst problem is solved by Zhou et al.

[14℄, so we fo
us on the se
ond problem here.

Let the generator surfa
e be given by g(u; v) = (g

1

(u; v); g

2

(u; v); g

3

(u; v)).

Assume the surfa
e is nonsingular, i.e. j(�g=�u) � (�g=�v)j 6= 0, and that

�g=�u and �g=�v are 
ontinuous.

The squared distan
e fun
tion between two points p = g(u; v) and q =

g(s; t) on the generator surfa
e with parameters (u; v) and (s; t) is given by

D(s; t; u; v) = jg(s; t)�g(u; v)j

2

= (g(s; t)�g(u; v)) � (g(s; t)�g(u; v)) (4)

where (s; t) 6= (u; v). The stationary points of D(s; t; u; v) satisfy the follow-

ing equations

D

s

(s; t; u; v) = D

t

(s; t; u; v) = D

u

(s; t; u; v) = D

v

(s; t; u; v) = 0 (5)

whi
h 
an be rewritten using (4) as

(g(s; t) � g(u; v)) � g

s

(s; t ) = 0 (6)

(g(s; t) � g(u; v)) � g

t

(s; t ) = 0 (7)

(g(s; t) � g(u; v)) � g

u

(u; v) = 0 (8)

(g(s; t) � g(u; v)) � g

v

(u; v) = 0 (9)

The geometri
al interpretation of equations from (6) to (9) is that the line


onne
ting the two points p = g(u; v) and q = g(s; t) is orthogonal to the
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generator surfa
e at both points. Without loss of generality we may assume

that g(s; t) is given as a rational B�ezier surfa
e, that is

g(s; t) =

P

m

i=0

P

n

j=0

w

ij

P

ij

B

i;m

(s)B

j;n

(t)

P

m

i=0

P

n

j=0

w

ij

B

i;m

(s)B

j;n

(t)

�

p(s; t)

w(s; t)

: (10)

Substituting (10) into (6) gives

�

p(s; t)

w(s; t)

�

p(u; v)

w(u; v)

�

�

�

p

s

(s; t)w(s; t) � p(s; t)w

s

(s; t)

w

2

(s; t)

�

= 0: (11)

Multiplying by its own denominator we �nally obtain

q � [p

s

(s;t )w(s;t )� p(s;t )w

s

(s;t )℄ = 0

q � [p

t

(s;t )w(s;t )� p(s;t )w

t

(s;t )℄ = 0

q � [p

u

(u;v)w(u;v)� p(u;v)w

u

(u;v)℄ = 0

q � [p

v

(u;v)w(u;v)� p(u;v)w

v

(u;v)℄ = 0

with q = p(s; t)w(u; v) � p(u; v)w(s; t)

where (s; t) 6= (u; v). This system of equations 
onsists of four nonlinear

polynomial equations with four unknowns s, t, u, v. To �nd all the station-

ary points, we need to employ global solution te
hniques whi
h are designed

to 
ompute all the roots in the area of interest. One su
h global method is

provided by the Bernstein subdivision-based Interval Proje
ted Polyhedron

algorithm [1, 3, 6℄. The trivial solutions (s; t) = (u; v) must be ex
luded

from the system, otherwise a Bernstein subdivision-based interval proje
ted

polyhedron method would attempt to solve for an in�nite number of roots.

Unfortunately, the system does not involve the fa
tors s� u and t� v and

hen
e we 
annot fa
tor out these fa
tors from the system. Thus, the poly-

nomial system is �rst solved by the Bernstein subdivision-based polynomial

solver at a 
oarse subdivision level (e.g. 10

�1

� 10

�2

) in a global manner.

The two re
tangular sub-pat
hes on the surfa
e for ea
h set of roots us-

ing the de Casteljau subdivision algorithm are extra
ted. Then the normal

re
tangular pyramids, whi
h bound normal ve
tors of B�ezier pat
hes, are


onstru
ted [5℄. If the two pyramids interse
t, the asso
iated parameter

boxes are 
onsidered as representing trivial roots and ex
luded from the list

of roots. Finally we restart the polynomial solver with boxes that in
lude

the solutions and solve for them with stri
t a

ura
y (e.g. 10

�8

).

5.3 Coin
ident Boundary Points

Let us 
onsider the 
ase of 
oin
ident points at the boundary. In the self-

interse
tion point, the boundary 
urve of the o�set surfa
e tangentially self-
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interse
ts the boundary 
urve of the o�set surfa
e. In the generi
 
ase

the self-interse
tion point is an interior point of the o�set surfa
e. Sin
e

the o�set surfa
e is parallel to the generator surfa
e, we 
an redu
e this


ondition to the orthogonality of the tangent ve
tor of the boundary 
urve

of the generator surfa
e and the normal ve
tor of the generator surfa
e at

its 
orresponding point. Therefore we have the following equations:

g(s; t) + dn(s; t) = g(u; v) + dn(u; v) (12)

[g

s

(s; t)� g

t

(s; t)℄ � g

v

(u; v) = 0 (13)

This system 
onsists of four s
alar equations with four unknowns, namely

v, s, t and d when the boundary 
urve is an isoparametri
 
urve u =0 or

1, or u, s, t and d when the boundary 
urve is an isoparametri
 v =0 or 1.

In the latter 
ase g

v

(u; v) in Equation (13) is repla
ed by g

u

(u; v). We 
an

formulate the four s
alar equations in terms of polynomials by splitting the

rational B-spline surfa
e into rational B�ezier pat
hes and introdu
ing the

auxiliary variable to avoid the square roots [5℄. However we 
annot fa
tor

out the trivial solution (s; t) = (u; v) from the system. Maekawa et al. [5℄

developed a method to handle su
h a 
ase. But in this 
ase we 
an employ

Newton's method to solve the system (12) and (13), as we 
an provide all

the initial approximations to the roots by the following global method whi
h

does not involve fa
toring out trivial solutions.

We are able to 
ompute all the stationary points of the squared distan
e

fun
tion [14℄ between a rational B�ezier boundary 
urve and a rational B�ezier

boundary 
urve using the Interval Proje
ted Polyhedron algorithm. For the


ase of the stationary points of the squared distan
e fun
tion between a

rational B�ezier boundary 
urve and a rational B�ezier pat
h, we need to


onsider two situations. The �rst situation is the 
ase when the boundary


urve is not extra
ted from the iso-parametri
 line of the same pat
h, while

in the se
ond 
ase the boundary 
urve is an iso-parametri
 line of the pat
h.

The �rst 
ase does not involve trivial solutions and 
an be solved easily by

the method des
ribed in [14℄. The se
ond 
ase involves trivial solutions,

therefore we split the pat
h into two pat
hes at the isoparametri
 line very


lose to the boundary, i.e. 0 + � or 1 � �, where � is a very small positive

number. Then extra
t the boundary 
urve from the small pat
h and treat

it as the �rst 
ase. It is implied that we use a more stri
t a

ura
y than �

in the polynomial solver. After all the stationary points are evaluated we

need to 
lassify ea
h stationary point as a lo
al maximum, lo
al minimum

or saddle point. Then we solve the system (12) and (13) by the Newton's
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method for all the lo
al minima as an input. The minimum d among the

solutions be
omes the maximum possible upper limit of the o�set distan
e

su
h that boundary point to boundary point or in the generi
 
ase boundary

point to interior point will not self-interse
t.

5.4 Self-interse
tions of the O�set Strip

As dis
ussed in Se
tion 3.1.5, 
omputation of the self-interse
tion of the

o�set strip redu
es to 
omputing the self-interse
tion of a ruled surfa
e. We

have four ruled surfa
es for a four-sided pat
hes of a tensor-produ
t surfa
e.

Without loss of generality, we work with the ruled surfa
e having 


1

(u) =

g(u; 0) as a dire
trix. In the self-interse
tion point two di�erent generators of

the ruled surfa
e interse
t ea
h other. This leads to the geometri
 
ondition

expressed by Equation (3). Thus, we have one equation with two unknowns,

namely u and u

0

. When one of the boundary generators is tou
hing the

interior of the ruled surfa
e, the additional 
ondition is obtained by setting

u = 0 or 1. In general, if two di�erent interior generators interse
t ea
h

other, it is diÆ
ult to �nd the minimum o�set distan
e for self-interse
tion

of the o�set strip.

6 Examples

6.1 Singular Points on O�set Surfa
e

A shaded image of an o�set of a bumpy wave-like surfa
e is shown in Fig-

ure 10. The generator surfa
e, whi
h is in wireframe, is a bi
ubi
 integral

B-spline surfa
e with uniform knots whi
h 
onsists of 4�4 B�ezier pat
hes.

The global minimum value of the minimum prin
ipal 
urvature is -21.018

and lo
ated at (0.5, 0.1079), (0.5, 0.8921), (0.1079, 0.5) and (0.8921, 0.5)

respe
tively in the uv-parametri
 spa
e. Thus maximum limit of o�set dis-

tan
e without self-interse
tion is d < 0:04758. The o�set image in Figure 10

has this limit, and we 
an observe the four lo
ations where the the minimum

prin
ipal 
urvature has its global minimum in the 
on
ave regions.

6.2 Auto-Normal Chords

The generator surfa
e (wireframe), together with its o�set (shaded image),

shown in Figure 11 is a sexti
-quadrati
 B�ezier pat
h. The surfa
e has

a global minimum along the auto-normal 
hord. We have adopted the
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method des
ribed in [5℄ to solve the system (6) to (9), whi
h provides (s; t)

= (0.10593, 0.5), (u; v) =(0.89407, 0.5) and d = 0:8082.

6.3 Coin
ident Boundary Points

The generator surfa
e is a quinti
-
ubi
 B�ezier pat
h and has a global min-

imum distan
e between the boundary 
urve u=1.0 and its interior point.

First all the initial approximations to the Newton's method to solve the sys-

tem (12) and (13) are obtained in a global manner. The stationary points

of the squared distan
e fun
tion between a boundary 
urve and an interior

point of the surfa
e, and between two boundary 
urves are 
omputed using

the Interval Proje
ted Polyhedron algorithm. After all the stationary points

are evaluated we 
lassify ea
h stationary point as a lo
al maximum, lo
al

minimum or saddle point. Then we solve the system (12) and (13) by the

Newton's method for all the lo
al minima as an input. Finally the global

minimum is found to be d = 0:09346 between a point on the boundary 
urve

(u; v) =(1, 0.5) and an interior point (s; t) = (0.05319, 0.5). The initial ap-

proximation d = 0:08793 (u; v) =(1, 0.5), (s; t) = (0.04594, 0.5) was used,

whi
h resulted from the minimum distan
e 
omputation between the bound-

ary 
urve and the interior point of the surfa
e. The Figure 12 shows the

generator surfa
e (wireframe), its o�set (shaded image) with d = 0:08793,

and the straight line 
onne
ting the minimum distan
e between the bound-

ary 
urve u=1.0 and its interior point.

6.4 Self-interse
tions of the O�set Strip

The generator surfa
e is a quarti
 B�ezier ruled surfa
e. Sin
e the generator

surfa
e is a four-sided pat
h, we need to 
he
k for all the four ruled surfa
es

for possible self-interse
tions. In this example the ruled surfa
e, having

P(u; 0) as a dire
trix, self-interse
ts. Thus, we have t=v=1. In this 
ase one

of the boundary generators u = 1 tou
hes the interior of the ruled surfa
e.

Newton's method 
onverges to u

0

= 0.12319324. Now we 
an easily �nd �

and �

0

to be -0.244291, -0.226883.. In this 
ase, an initial s 
lose to the

�nal result is 
riti
al, otherwise Newton's method may 
onverge to di�erent

solutions. The Figure 13 shows the generator surfa
e (wireframe), its o�set

(shaded image) with d = �0:244291.
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Figure 10: Lo
al self-interse
tion

Figure 11: Auto-normal 
hords
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Figure 12: Coin
ident boundary points

Figure 13: Self-interse
tion of the o�set strip
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