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Abstract. We analyse the convergence of nonlinear Riemannian analogues of linear subdi-
vision processes operating on data in the sphere. We show how for curve subdivision rules

we can derive bounds guaranteeing convergence, if the density of input data is below that

threshold. Previous results only yield thresholds that are several magnitudes smaller and are
thus useless for a priori checking of convergence. It is the first time that such a result could

be shown for a geometry with positive curvature and for subdivision rules not enjoying any

special properties like being interpolatory or having nonnegative mask. refinement algorithm;
approximation theory; differential geometry.

1. Introduction

Subdivision schemes are iterative refinement algorithms used to produce smooth curves and
surfaces. For data in linear spaces they are well-studied and find applications in various areas
from approximation theory to computer graphics – see Dyn [1992], Cavaretta et al. [1991] and
Peters and Reif [2018] for an introduction and overview.

This paper contributes new results to the convergence analysis of subdivision schemes de-
fined via operations that are natural in nonlinear geometries. Several different methods exist
to transfer linear schemes to the nonlinear situation, see [Wallner, 2020] for a survey. We men-
tion the log-exp-analogue which uses the exponential map defined in Lie groups, Riemannian
manifolds and in symmetric spaces, cf. [Donoho, 2001, Ur Rahman et al., 2005]. The projection
analogue can be applied to embedded surfaces, see [Xie and Yu, 2010, Grohs, 2009]. Generally,
such constructions are only locally well-defined. Arguably the most natural of the available in-
trinsic definitions is the Riemannian analogue of a subdivision rule, obtained by replacing every
occurrence of an affine average by a weighted geodesic average, also known as the Riemannian
center of mass. It can be made globally well-defined on a complete Riemannian manifold with
nonpositive sectional curvature, cf. [Hüning and Wallner, 2019, Wallner et al., 2011, Ebner, 2013,
2014]. Well-definedness has been studied in various contexts, see [Karcher, 1977, Sander, 2016,
Dyer et al., 2016a,b, Pennec, 2018].

While smoothness of limits produced by such geometric subdivision rules has been successfully
investigated, see e.g. [Grohs, 2010], the existence of these limits poses different problems. Early
results were limited to ‘dense enough’ input data. Results concerning convergence for all input
data, or at least input data which obey a sensible density property, are available for univariate
interpolatory schemes [Wallner, 2014], multivariate schemes with nonnegative mask [Ebner, 2013,
2014] or schemes expressed in terms of multiple binary averages [Dyn and Sharon, 2017b,a]. In
Hüning and Wallner [2019] we proved that the Riemannian analogue of a univariate linear scheme
on complete Riemannian manifolds with nonpositive sectional curvature converges if the linear
scheme converges uniformly, without any restriction on the sign of the schemes’s mask coefficients.
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2 SVENJA HÜNING JOHANNES WALLNER

The present work for the first time treats convergence results for refinement algorithms on a
space with positive curvature. It turns out that even for the sphere the situation is appreciably
different from the nonpositive curvature case.

The paper is organised as follows. We start by repeating some basic facts about subdivision
and introduce our notation. Next we discuss Riemannian analogues of linear subdivision schemes,
in particular their well-definedness on the sphere. Our strategy to prove convergence is rather
technical and is introduced by means of an example first. The last section contains further
examples, including ones which could not be treated by earlier methods.

2. Linear subdivision and its Riemannian analogue

Consider a sequence of input data points (xi)i∈Z in some linear space. A linear binary sub-
division rule S defined by the mask (ai)i∈Z maps the input data to a new sequence (Sxi)i∈Z,
where

Sxi =
∑
j∈Z

ai−2jxj .

Throughout this paper we assume that only finitely many coefficients ai are nonzero. A subdivi-
sion scheme is the repeated application S, S2, S3, . . . of the subdivision rule. We consider only
translation invariant (affine invariant) rules, meaning that

∑
j∈Z a2j =

∑
j∈Z a2j+1 = 1. This is

because others do not make sense geometrically, and even for functional data xj ∈ R, translation
invariance is known to be a necessary condition for convergence.

We are going to adapt the subdivision rule S so as to act on data contained in a Riemannian
manifold M . For basics on Riemannian geometry, the reader is referred to [do Carmo, 1992].
The adaptation replaces the weighted affine averages Sxi =

∑
j∈Z ai−2jxj by geodesic averages.

Since Sxi can be equivalently described by Sxi = arg minx
∑
j∈Z ai−2j‖x − xj‖2, a natural

extension of this construction to data in M is performed by replacing the Euclidean distance by
the Riemannian distance. The subdivision rule

Txi = arg min
x

∑
j∈Z

ai−2j dist (x, xj)
2
, i ∈ Z(1)

is called the Riemannian analogue of S. The minimiser occurring in this definition is the Rie-
mannian center of mass of points xj with respect to weights ai−2j . We use ‘Riemannian center
of mass’ and ‘weighted geodesic average’ synonymously. Note that weights are allowed to be
negative.

Existence of the minimiser in (1) has been studied by several authors, see e.g. [Hardering,
2015, Sander, 2016, Karcher, 1977]. It always exists locally. In case of nonpositive sectional
curvature K completeness and simple connectedness of the manifold together imply existence for
all data points. As to more general classes of manifolds, completeness remains necessary. One
can get rid of simple connectedness if data are joined by a path, see [Hüning and Wallner, 2019].
It is the topic of the present paper to investigate what happens when the sectional curvature is
no longer required to be nonnegative.

We also introduce in this place two properties we are going to need in our analysis. We say
that T is contractive, with contractivity factor µ, if

dist(T kxi+1, T
kxi) ≤ µk · sup

`
dist(x`, x`+1), for all i ∈ Z, k ∈ N (µ < 1).(2)

Further, T is displacement-safe, if there is a constant C > 0 such that

dist(Tx2i, xi) ≤ C · sup
`

dist(x`, x`+1), i ∈ Z.(3)
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We say that T converges for input data x if iteratively refined data x, Tx, T 2x, . . . become denser
and approach a continuous limit curve. Formally, we treat convergence in a coordinate chart,
linearly interpolating points T kxi by a piecewise linear function hk with hk(2−ki) = (T kx)i,
and observing convergence of functions hk (uniformly on compact subsets). It has been shown
in various situations that displacement-safe rules admitting a contractivity factor µ < 1 are
convergent, see e.g. [Dyn and Sharon, 2017a,b, Wallner et al., 2011]. For us it will be convenient
to use the following result by Hüning and Wallner [2019].

Theorem 1. Consider the Riemannian analogue T of a linear binary subdivision rule S in a
complete Riemannian manfold M . Assuming T is well-defined for input data x, it converges to
a continuous limit T∞x if it admits a contractivity factor µ < 1 and is displacement-safe.

3. Riemannian center of mass on manifolds exhibiting positive sectional
curvature

3.1. Well-definedness of Riemannian averages. In our study of Riemannian subdivision we
deal with weighted geodesic averages of finitely many points xj w.r.t. weights αj . The average
is defined as the minimiser of

fα(x) =
∑
j

αj dist (xj , x)
2

with
∑
j

αj = 1.(4)

Existence and uniqueness of the Riemannian average has been studied by various authors. We
are going to make use of the following result by [Dyer et al., 2016a], which uses the notation
Br(x) = {y ∈M | dist (x, y) < r} for the geodesic ball of radius r > 0 centered in x ∈M .

Lemma 2. Consider a complete Riemannian manifold with sectional curvature bounded from
above by K > 0. Consider also finitely many data points xj ∈ Br(x), for some x ∈M and r > 0,
and weights αj with

∑
αj = 1. Letting

α− :=
∑
αj<0

|αj |,

the function fα =
∑
αj dist(·, xj)2 has a unique minimiser in Br∗(x), if

(i) r < r∗ < min{ ιM2 ,
π

4
√
K
}, where ιM denotes the injectivity radius of M ,

(ii) r∗ > (1 + 2α−)r,
(iii) r∗ < π

4
√
K

(1 + (1 + π
2 )α−)−1.

A convergence result for nonlinear subdivision rules depends on the capability to control the
distances of points of the sequence (T kxi)i∈Z from each other as well as their distance to the
input data. Unfortunately, Lemma 2 cannot directly be used to control those distances.

3.2. The Riemannian analogue of a linear subdivision rule on the unit sphere. From
now on, we restrict ourselves to the unit sphere Σn ⊆ Rn+1 for n ≥ 2. In particular the sectional
curvature K = 1, and the injectivity radius equals π. The conditions on radii r and r∗ specified
in Lemma 2 reduce to

r∗ > (1 + 2α−)r ≥ r, r∗ <
π

4

(
1 +

(
1 +

π

2

)
α−

)−1

.(5)

In the special case of nonnegative coefficients we have α− = 0, and conditions reduce further to
r∗ > r and r∗ < π

4 . Applying Lemma 2 to the averages occurring in a Riemannian subdivision
rule yields the following result:

Proposition 3. Let T be a Riemannian subdivision rule in the sphere according to Equ. (1).
For any point Txi, consider the sum of negative coefficients which contribute to the definition of
Txi, namely, α− =

∑
ai−2j<0 |ai−2j |. Then we distinguish two cases:
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α− = 0: Assume the input data points xj contributing to the computation of Txi lie within
a ball of radius r < π

4 . Then Txi is well defined by Equ. (1) as a minimiser within that
ball.

α− > 0: Assume the data points xj contributing to the computation of Txi lie within a
ball Br(m), and find r∗ > r satisfying (5). Then Txi is well defined by Equ. (1) as a
minimiser within Br∗(m).

4. A strategy to prove convergence of Riemannian subdivision schemes

We show a strategy to prove convergence results for the Riemannian analogue T of a linear rule
S on the unit sphere. To be able to apply Th. 1 we need bounds on both dist (Txi,Txi+1) and
dist (xi,Tx2i). For those, we join the points involved by curves, and estimate their length. This
procedure involves technical details such as the second order Taylor approximation of squared
distance functions which have been computed by [Pennec, 2018] and which are summarized by
Section 4.1.

4.1. The Riemannian distance function on the unit sphere and its derivatives. Recall
that the tangent space TxΣn of the sphere in a point x equals the orthogonal complement x⊥.
The geodesic distance of points x, y is given by dist (x, y) = arccos (〈x, y〉). The exponential map
at x ∈ Σn is given by

expx : TxΣn → Σn w 7→ cos ‖w‖x+
sin ‖w‖
‖w‖

w.

Here sin s/s means an analytic function which evaluates to 1 for s = 0. The expression expx(w)
denotes that point on Σn which is reached by the geodesic line (great circle) starting in x in
direction w, travelling the length of ‖w‖. By restricting to ‖w‖ < π we make expx one-to-one.
The inverse exp−1

x (y) is well defined except for antipodal points x, y.
We will need first and second derivatives of a real-valued function g in the sphere. While

the gradient ∇g is well defined in Riemannian geometry, the Hessian occuring in the 2nd order
Taylor expansion of a function g̃ : Rn → R,

g̃(x) = g̃(x∗) + (x− x∗)T · (∇g̃)(x∗) +
1

2
(x− x∗)T · (Hg̃)(x∗) · (x− x∗) + o(2),(6)

does not immediately carry over in a way which is independent of a nonlinear change of co-
ordinates. For this reason, we use the particular coordinate representation g̃ of g defined by
g̃ = g ◦ expx. Since the differential of expx at the contact point x itself is the identity, the
gradients of g and g̃ coincide:

(∇g)(x) = (∇g̃)(0).(7)

The domain of g̃ is a linear space, so the Hessian Hg̃ is well defined. For purposes of this paper,
we define the Hessian of g itself by

(Hg)(x) := (Hg̃)(0).(8)

For any fixed y ∈M the gradient of the squared distance from y is given by

∇(dist(·, y)2)(x) = −2 exp−1
x (y).(9)

With I as the identity matrix, the Hessian of the square of distance of y is expressible as

y = expx(ρv), ‖v‖ = 1 =⇒
(
H dist(·, y)2

)
(x) = 2(vvT + ψ(ρ)(I − xxT − vvT )),(10)

where ψ(s) =
s

tan(s)
and

(
H dist

(
·, x
)2)

(x) = 2(I − xxT ),
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cf. [Pennec, 2018]. This notation requires an explanation: Firstly, ψ(s) is considered as an
analytic function with ψ(0) = 1. Secondly, the tangent space TxΣn is n-dimensional, but is
canonically embedded into Rn+1 as the subspace x⊥. We describe its elements unambiguously
by vectors v ∈ Rn+1. The Hessian therefore is conveniently described by a matrix of size
(n+ 1)× (n+ 1), even if it is only ever applied to elements of the n-dimensional tangent space.

The explicit formula also yields the eigenstructure of H: The null eigenspace orthogonal to
the tangent space is not geometrically relevant. The eigenvalue 2 has a 1-dimensional eigenspace
spanned by v, and the eigenspace of 2ψ(ρ) is the orthogonal complement of v inside the tangent
space. The null eigenspace in orthogonal direction occurs only because we describe the Hessian
via canonical coordinates in Rn. Considered as the matrix of a symmetric linear mapping of the
tangent space, H is invertible whenever the eigenvalue 2ψ(ρ) is nonzero.

Returning to the function fα defined by (4) via data points xj = expx (ρjvj), ‖vj‖ = 1, its
first and second derivatives are computed by an appropriate linear combination of the above:

(∇fα)(x) = −2
∑

j
αj exp−1

x (xj) = −2
∑

j
αjρjvj ,(11)

(Hfα)(x) = 2
∑

j
αj
(
vjv

T
j + ψ(ρj)(I − xxT − vjvTj )

)
.(12)

4.2. Variable mask and estimating distances. We now consider weighted averages of data
points xj with variable coefficients αj(t), t ∈ [0, 1]. As t changes, the minimiser traverses the
curve

γ(t) = arg min
x

fα(t)(13)

with length
∫ 1

0
‖γ̇(t)‖ dt. The idea is to choose coefficient functions such that the initial point

γ(0) of the minmiser’s path is known, and via the size of derivatives we obtain an upper bound
for the length of the curve γ, and thus an upper bound for the distance between points γ(0),
γ(1).

The derivative of the minimiser’s path can be computed from the condition (∇fα(t))(γ(t)) = 0

by differentiation. With g(x) = dist(x, xj)
2 we have fα =

∑
αjgj . We switch to a coordinate

representation via the chart exp−1
γ(t). Then f̃α and its gradient have the Taylor approximation

f̃α(x) = f̃α(0)+(∇f̃α)(0)·x+ 1
2x

T (Hf̃α)(0)x+o(2) and (∇f̃α)(x) = (∇f̃α(0))+(Hf̃α)(0)·x+o(1).
This yields

d

dt

∑
αj(t)(∇gj)(γ(t)) =

∑
α̇j(t)(∇gj)(γ(t))) +

∑
αj(Hgj)(γ(t)) · γ̇(t) = 0

=⇒ γ̇(t) = −
(∑

αj(Hgj)
)−1(∑

α̇j(∇gj)
)

= −(Hfα)−1 ·
(∑

α̇j exp−1
γ(t) xj

)
.(14)

In accordance with (7) and (8), we are dropping the tilde symbol indicating a coordinate repre-
sentation. Before we describe a more general procedure, we show some first steps by means of
an example.

Example 4. (cubic Lane-Riesenfeld subdivision rule). Consider the linear subdivision rule

(Sx)2i =
1

8
xi−1 +

6

8
xi +

1

8
xi+1 and (Sx)2i+1 =

1

2
xi +

1

2
xi+1.

Assuming supi dist(xi, xi+1) < r, Prop. 3 ensures that the Riemannian version T of S is well
defined, if r < π/4. Further, the result of subdivision is close to the original data, since
Tx2i,Tx2i+1 ∈ Bxi

(r).
Our aim is to estimate the distance of Tx2i, Tx2i+1 from the given data more precisely. Since

Tx2i+1 is the geodesic midpoint of xi, xi+1, its distance to the input data is bounded by r/2. To
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obtain a similar estimate for Tx2i we define time-dependent weights

αi−1(t) = αi+1(t) =
t

8
, αi(t) = 1− t

4
.(15)

The path γ(t) defined as the average of data points w.r.t. weights αj(t) yields γ(0) = xi and
γ(1) = Tx2i.

We are interested in the speed γ̇(0) and therefore have a look at the Hessian of the function
fα(0). Since at t = 0 only one weight is nonzero, Equ. (12) reduces to (Hfα(0))(γ̇(0)) = 2(I −
γ(0)γ(0)T ), i.e., within the tangent space, the Hessian is twice the identity. By (14),

γ̇(0) = −1

8

(
exp−1

xi
(xi−1) + exp−1

xi
(xi+1)

)
=⇒ ‖γ̇(0)‖ < r

4
.

In order to estimate the arc length of the path γ, we need to give a similar bound for all t. This
is postponed until some technical lemmas have been shown. ♦

Proposition 5. Assume that dist(xj , xj+1) ≤ r for some r > 0 and that ‖γ̇(t)‖ ≤ C0r for
C0 > 0 and all t ∈ [0, a], a ≤ 1. Let `j be upper bounds for dist(xj , γ(0)). Then, for all t ∈ [0, a],

‖γ̇(t)‖ ≤ 2

|2− L(t)|
∑
j

|α̇j(t)|(rC0t+ `j), where L(t) =
∑
j

|αj(t)|(2− 2ψ(C0rt+ `j)).(16)

Proposition 6. This conclusion holds under the milder condition ‖γ̇(0)‖ ≤ C0r, if the inequality

2

|2− L(t)|
∑
j

|α̇j(t)|(rC0t+ `j) < C0r for all t ∈ [0, a]

can be guaranteed.

Proof of Prop. 6. Let t∗ be maximal with the property that γ̇(t) ≤ C0r in [0, t∗]. The statement
of Prop. 5 applies to the interval [0, t∗], showing that γ̇(t∗) < C0r. If t∗ < a, this contradicts
maximality. �

Proof of Prop. 5. We use the notation gj(x) = dist(x, xj)
2. We have dist(γ(t), xj) <

π
2 , since

the radius r∗ of the ball containing the input data and the minimiser γ(t) is smaller than π
4 , see

Section 3.2. The eigenvalues λ1,j ≥ λ2,j of the Hessian Hgj obey 0 < λ2,j ≤ 2. As to the Hessian
of fα(t), observe that

‖Hfα(t)

∣∣
γ(t)
‖ =

∥∥∥∑
j

αj(t)Hgj
∣∣
γ(t)

∥∥∥ ≤ 2
∑
j

|αj(t)|,

since all eigenvalues λ1,j equal 2. In particular, eigenvalues of Hfα are bounded by 2
∑
|αj(t)|.

Further,

‖2I −Hfα(t)
∣∣
γ(t)
‖ =

∥∥∥∑
j

αj(t)
(
2I −Hgj

∣∣
γ(t)

)∥∥∥ ≤∑
j

|αj(t)|
∥∥∥2I −Hgj

∣∣
γ(t)

∥∥∥.
The smaller eigenvalue λ2,j(t) = 2ψ(dist(γ(t), xj)) of Hgj does not exceed 2. From ‖γ̇(t)‖ ≤ C0r
and the fact that ψ is positive and decreasing in [0, π2 ] we deduce that λ2,j(t) ≥ 2ψ(C0rt + `j).
Therefore,

‖2I −Hfα(t)

∣∣
γ(t)
‖ ≤ L(t),

i.e., the minimal eigenvalue of Hfα(t) is bounded from below by |2− L(t)|. This implies that

‖
(
Hfα(t)

∣∣
γ(t)

)−1‖ ≤ 1

|2− L(t)|
.
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By the assumption ‖γ̇(t)‖ ≤ C0r, the length of the curve γ|[0,t] does not exceed rC0t. Thus

‖ exp−1
γ(t)(xj)‖ = dist(γ(t), xj) ≤ dist(γ(t), γ(0)) + dist(γ(0), xj) ≤ rC0t+ `j ,

and it follows that ∥∥∑ α̇j∇gj
∣∣
γ(t
‖ ≤ 2

∑
j

|α̇j(t)| (rC0t+ `j) .

By (14), the speed of the curve γ is bounded by ‖(Hfα)−1‖ ·
∥∥∑ α̇j∇gj

∣∣
γ(t)

∥∥, and the statement

now follows directly from the inequalities above. �

Example 7. (Cubic Lane-Riesenfeld rule, part II) We continue Ex. 4, where we chose weights
αi−1(t) = αi+1(t) = t

8 and αi(t) = 1 − t
4 , resulting in a path γ(t) starting in γ(0) = xi.

Consequently, the bounds `j needed by Prop. 5 can be chosen as `i−1 = r, `i = 0, `i+1 = r. The
function L(t) then reads

L(t) =
t

4
(2− 2ψ(C0rt+ r)) + (1− t

4
)(2− 2ψ(C0rt)).

Choose r0 = 1
4 and C0 = 0.53 (this choice will be justified below). Just for comparision, we are

also illustrating a second choice, namely r0 = 0.6 and C0 = 0.69. By Ex. 4,

‖γ̇(0)‖ < rC0 for any r ∈ (0, r0), r0 =
1

4
.

Since L(t) is strictly increasing in the interval [0, 1], and ψ(s) is positive and decreasing on [0, π2 ],
the upper bound for ‖γ̇(t)‖ provided by Prop. 5 can be estimated as

2

|2− L(t)|
∑
j

|α̇j(t)|(rC0t+ `j) ≤
2

|2− L(1)|

(1

4
r +

1

2
rC0t

)
=

2
1
2ψ(C0r + r) + 3

2ψ(C0r)

(r
4

+
rC0

2

)
≤ 2

1
2ψ(C0r0 + r0) + 3

2ψ(C0r0)

(r
4

+
rC0

2

)
≤ 0.524 r

(the value of the denominator is 1.966. . . ). The right hand side is just a bit smaller than C0r,
and Prop. 6 applies. The second choice of parameters yields a right hand side of 0.689 r, with
1.728911. . . in the denominator. In both cases Prop. 6 applies, but the auxiliary parameter C0 in
both cases has been chosen so that we come close to failing the assumptions of Prop. 6. Applying
Prop. 6, we compute

dist(xi,Tx2i) ≤
∫ 1

0

‖γ̇(t)‖ dt /
∫ 1

0

2

1.966 . . .

(1

4
+ t

C0

2

)
r dt ≤ 0.39r.

This inequality amounts to the displacement-safe condition needed by Th. 1. In order to apply
Th. 1 and show convergence, we also need T to be contractive:

dist(Tx2i,Tx2i+1) ≤ dist(Tx2i, xi) + dist(xi,Tx2i+1) ≤ 0.39r +
r

2
= 0.89r,

which by symmetry is also an upper bound for dist(Tx2i,Tx2i−1).
The second choice of parameters yields a right hand side of 0.49r in the displacement-safe

condition and 0.99r in the contractivity condition. If r0 is any higher, we can no longer show
contractivity in this way. The true contractivity factor enjoyed by the Riemannian Lane-
Riesenfeld scheme is closer to 1/2 than these bounds suggest. This is because we do not
measure dist(Txxi,Tx2x+i) directly, but we go via a broken path consisting of the curve γ
and a geodesic. We summarize: Let (xi)i∈Z be a sequence of points on the unit sphere. If
sup` dist(x`, x`+1) < 0.6 ≈ 0.19π, then the Riemannian analogue of the linear cubic Lane-
Riesenfeld scheme converges to a continuous limit function. The limit is even C2 smooth, as
shown by Grohs [2010]. ♦
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(a) (b) (b)

Figure 1. Initial polygon and limit curve of (a) the cubic Lane- Riesenfeld scheme on the unit sphere;
(b) the 4-point scheme; (c) the Riemannian subdivision rule (19).

4.3. The Strategy. In a more general situation, the strategy to show convergence of a Rie-
mannian subdivision rule T can be summarized as follows.

• Use Prop. 3 to give a bound r such that T is well defined whenever the distance of
successive input data points xi does not exceed r.

• By linear interpolation of weights, describe a path γ connecting Tx2i = γ(1) with a
point γ(0) whose location relative to the input data is well known, e.g. γ(0) = xi, or
γ(0) located on the geodesic segment joining xi, xi+1. Employ Propositions 5 and 6 to
estimate dist(γ(0),Tx2i).

• If necessary, provide similar distance estimates for neighbours Tx2i+1, Tx2i−1.
• Using the triangle inequality, estimate dist(Tx2i, xi), establishing the so-called displace-

ment-safe condition. Again using the triangle inequality, estimate distances of successive
points in the sequence Txj , showing that indeed supj dist(Txj ,Txj+1) ≤ Cr, where
C < 1.

Applying this method, one must choose r, the constant C0 referred to by Prop. 5, and the initial
point γ(0) of the path. There is no general rule how these choices should be made, but we show
two more examples which illustrate the strategy. The next example is an interpolatory scheme
where γ(0) is the geodesic midpoint of successive input data points. The last example is that of
a subdivision rule which does not have any special properties, and where γ(0), δ(0) are chosen
on the geodesic segments connecting successive input data points.

4.4. Example: 4-point scheme. We consider the well-known interpolatory 4-point scheme
defined by

(Sx)2i = xi and (Sx)2i+1 = − 1

16
xi−1 +

9

16
xi +

9

16
xi+1 −

1

16
xi+2,(17)

see [Dyn et al., 1987]. Its Riemannian analogue is defined by Tx2i = x2i and

Tx2i+1 = arg min
x∈Σn

(
− 1

16
dist(x, xi−1)2 +

9

16
dist(x, xi)

2 +
9

16
dist(x, xi+1)2 − 1

16
dist(x, xi+2)2

)
.

If the distance of successive data points is bounded by r, all input data points which contribute to
the computation of Tx2i+1 are in a geodesic ball of radius 3r/2 centered in the geodesic midpoint
of xi, xi+1. With α− = 1

8 , Proposition 3 resp. Equ. (5) allows us to compute the maximal value
0.317 . . . of r such that there is a unique minimiser Tx2i+1. We choose r0 = 0.31 and assume
r < r0. Then T is well defined.
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In order to check how much Tx2i+1 deviates from the input data, consider a path γ(t) defined
by minimizing fα(t), where the variable coefficients α(t) are given as

αi−1(t) = αi+2(t) = − t

16
, and αi(t) = αi+1(t) =

1

2
+

t

16
(0 ≤ t ≤ 1).(18)

This path connects γ(1) = Tx2i+1 with γ(0), which is the geodesic midpoint of xi, xi+1. The
bounds `j needed by Prop. 5 are `i−1 = `i+2 = 3

2r, `i = `i+1 = 1
2r. Without choosing C0 yet,

we write down the auxiliary function L(t) as

L(t) =
2t

16

(
2− 2ψ(C0rt+

3

2
r)
)

+ 2
(1

2
+

t

16

)(
2− 2ψ(C0rt+

1

2
r)
)
.

We observe that L(0) = 2− r/ tan( 1
2r) and that L(0) is a positive and increasing function of r.

Thus L(0) is bounded by 2− r0/ tan( 1
2r0) ≤ 1.66 · 10−2. Prop. 5 then yields

‖γ̇(0)‖ ≤ 2

|2− L(0)|
∑
j

|α̇j(0)|`j ≤
2

|2− 1.66 · 10−2|
r

4
≤ 0.26 r.

Using the fact that L(t) increases with t, we estimate the bound for ‖γ̇(t)‖ provided by Prop. 5:

2

|2− L(t)|
∑
|α̇j(t)|(rC0t+ `j) ≤

2

|2− L(1)|

(1

4
rC0t+

1

4
r
)
.

It is easy to choose C0 such that this value does not exceed C0, say C0 = 0.45. Then Prop. 6
applies, and

dist(Tx2i+1, γ(0)) =

∫ 1

0

‖γ̇(t)‖ ≤ 2

|2− L(1)|

(1

8
rC0 +

1

4
r
)
≤ 0.31r.

Contractivity of T is expressed as dist(Txj ,Txj+1) ≤ Cr, for some constant C < 1. Because of
symmetry it is sufficient to check

dist(Tx2i,Tx2i+1) ≤ dist(Txi, γ(0)) + dist(γ(x),Tx2i+1) ≤ 0.81r.

Since the 4-point rule is interpolatory with xi = Tx2i, the displacement-safe condition is auto-
matic. We have shown: For input data xi in the unit sphere, where the distance of successive
points does not exceed 0.31, the Riemannian analogue of the linear 4-point scheme converges to
a continuous limit function. The limit is even C1 smooth [Grohs, 2009].

4.5. Example: A scheme with negative coefficients. We consider the linear subdivision
rule defined by the mask (ai)−4<i<5 = 1

32 (−1, −1, 13, 21, 21, 13, −1,−1). Its Riemannian
analogue T is defined by

Tx2i = arg min
x∈Σn

1

32

(
− dist(x, xi−1)2 + 21 dist(x, xi)

2 + 13 dist(x, xi+1)2 − dist(x, xi+2)2
)

(19)

and similar for Tx2i+1. With α− = 1
16 , Proposition 3 implies that T is well defined if supj dist(xj ,

xj+1) < r, for any r ≤ r0, with r0 = 0.4.
We use a path γ(t) to connect Tx2i = γ(1) with a weighted geodesic average of xi, xi+1,

located on the geodesic segment connecting xi and xi+1, and dissecting it according to the ratio
(1− β) : β.

At the present time we do not know which value of β works out, but in order to shorten the
presentation we reveal in advance that β = 0.65 will. We compute γ(t) as the minimiser of fα(t),
with

αi−1(t) = αi+2(t) = − t

32
, αi(t) = (1− t)0.65 + t

21

32
, αi+1(t) = (1− t)0.35 + t

13

32
.

The distances of input data from γ(0) are then bounded by `i−1 = 1.35 r, `i = 0.35 r, `i+1 =
0.65 r, `i+2 = 1.65 r. The auxiliary function L(t) needed by Prop. 5 reads L(t) = t

32 (2−2ψ(C0rt+
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1.35r)) + · · · . It depends on the choice of r in a monotonically increasing way, so by evaluating
it for r = r0 we observe that L(0) ≤ 0.02. We use this information to estimate

‖γ̇(0)‖ ≤ 2

|2− L(0)|
∑
|α̇j(0)‖`j ≤

2 · 0.1325 r

|2− 0.02|
≤ 0.14 r.

Since L(t) ≤ L(1), the upper bound for ‖γ̇(t)‖ provided by Prop. 5 can be estimated by

2

|2− L(t)|
∑
|α̇j(t)|(rC0t+ `j) ≤

2

|2− L(1)|

( 1

32
(rC0t+ 1.35r) + · · ·

)
=

2

|2− L(1)|

(1

8
rC0t+

53

400
r
)

for all t ∈ [0, 1]. It is not difficult to pick a value C0 such that this expression is less than C0;
let us choose C0 = 0.16. Invoking Propositions 5 and 6 we see that indeed the previous bound
applies to ‖γ̇(t)‖, so

dist(γ(0),Tx2i) ≤
∫ 1

0

‖γ̇(t)‖ dt ≤ 2

|2− L(1)|

( 1

16
rC0 +

53

400
r
)
≤ 0.1425 r.

The displacement-safe condition now follows from

dist(xi,Tx2i) ≤ dist(xi, γ(0)) + dist(γ(0),Tx2i) ≤ (0.35 + 0.1425)r = 0.4925 r.

Similarly we use a path δ(i)(t) connecting Tx2i+1 with a weighted geodesic average of xi, xi+1

where this time the weights are 0.35 and 0.65 instead of the previous choice of 0.65 and 0.35.
We get the same estimate for the length of those paths. Thus,

dist(Tx2i,Tx2i+1) ≤ dist(Tx2i, γ(0)) + dist(γ(0), δ(i)(0)) + dist(δ(i)(0),Tx2i+1)

≤ (2 · 0.1425 + 0.30)r = 0.585 r,

dist(Tx2i−1,Tx2i) ≤ dist(Tx2i−1, δ
(i−1)(0)) + dist(δ(i−1)(0), xi) + dist(xi,Tx2i)

≤ (0.1425 + 0.35 + 0.4925)r = 0.985 r.

This shows that T is contractive and concludes the proof that the Riemannian subdivision rule
T produces a continuous limit function for all data with supi dist(xi, xi+1) < 0.4 ≈ 0.13π.

Concluding Remarks. This paper introduces a procedure to treat convergence of Riemannian
subdivison algorithms in spheres. An obvious question in this context is how to analyze more
general Riemannian manifolds. Our method generalizes to all situations where the inverse of
the Hessian of square-of-distance functions can be estimated. This topic is discussed by Pennec
[2017], who goes on to study spherical and hyperbolic geometry as concrete examples. The
squared distance is computed by means of the Riemannian log, whose Taylor expansion differs
from the Euclidean situation in its terms of degree ≥ 2 (they feature the Riemannian curvature
tensor). A differential-geometric tour de force would probably allow us to show results like
Prop. 5, only with a modified function ψ, and with statements becoming weaker as curvatures
are varying. Further topics of future research include the multivariate case, and alternative
definitions of ‘average’ adapted to special manifolds.
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