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Abstract. We consider existence of curves c : [0, 1] → R
n which

minimize an energy of the form ∫ ‖c(k)‖p (k = 1, 2, . . . , 1 < p < ∞)
under side-conditions of the form Gj(c(t1,j), . . . , c

(k−1)(tk,j)) ∈ Mj ,
where Gj is a continuous function, ti,j ∈ [0, 1], Mj is some closed set,
and the indices j range in some index set J . This includes the prob-
lem of finding energy minimizing interpolants restricted to surfaces,
and also variational near-interpolating problems. The norm used for
vectors does not have to be Euclidean.

It is shown that such an energy minimizer exists if there exists a
curve satisfying the side conditions at all, and if among the interpo-
lation conditions there are at least k points to be interpolated. In the
case k = 1, some relations to arc length are shown.

1. Introduction

Finding curves c : I → R
n which minimize the energy functional

E(c) = ∫I ‖c
(k)(t)‖pdt (1 ≤ p < ∞, k = 1, 2, . . . )(1)

under certain side conditions has been of interest in Computer-Aided Geo-
metric Design for a long time, especially in the case k = p = 2. In this
paper we show an existence result for the case p > 1 and general set-
interpolation side conditions which may involve derivatives. The norm
used in R

n does not have to be Euclidean. For the case k = 1 we show
some additional properties of energy minimizers and consider the case
p = 1 also. The simplest case of such interpolation conditions is that for
each t ∈ I there is a closed set M(t) ⊂ R

n such that

c(t) ∈ M(t).(2)

In particular, the condition that the curve we are looking for is to be
contained in a surface “M”, is expressed by the requirement that M(t) =
M for all t.

Key words and phrases. variational spline interpolation, existence of energy mini-
mizing curves .
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More generally, we assume that there is an indexed family of side con-
ditions of the form

Gj(c(t0,j), . . . , c
(k−1)(tk−1,j)) ∈ Mj, (j ∈ J)(3)

where J is some index set, ti,j ∈ I, Mj is a closed subset of some space
R

nj , and Gj is a continuous function from (Rn)k to R
nj . Equ. (3) can

be used to express Hermite interpolation conditions: For instance, the
equation ċ(t0) = v, for a given parameter value t0 and a vector v has the
required form, as the left hand side “Gj” is a continous function involving
the derivatives of the curve, and we may let Mj := {v}. Hermite Near-
interpolation conditions can be formulated by using sets Mj which contain
more than 1 point.

The requirement that Gj is continuous for all j is necessary. An example
of a non-continuous geometrically meaningful function is the curvature

G(c(t0), ċ(t0), c̈(t0)) =

(
‖ċ(t0)‖

2‖c̈(t0)‖
2 − (ċ(t0) · c̈(t0))

2
)1/2

‖ċ(t0)‖3
.

In this formula ‖x‖ denotes the Euclidean norm of a vector x. In the case
k > 2, a constraint involving curvature could nevertheless be used if the
case ‖ċ(t0)‖ = 0 is excluded, e.g. by additional constraints of the form
‖ċ(t0)‖ ∈ [ε,∞), for some ε > 0.

2. Previous Work and Applications

We briefly describe the special cases of this problem which we have in
mind and also previous work on that topic.

2.1. Near-Interpolation. A well-known instance of the problem of min-
imizing energy under side conditions as described above is that M(t) = R

n

for almost all t, but there is a finite number of values t1, . . . , tr such hat
M(tj) is a proper subset of R

n. Those subsets may be seen as toler-
ance zones of points to be interpolated. This is the topic of the papers
[1, 2, 3, 4, 5], and [6]. Without going into details we mention that the
more difficult problem of subjecting the parameter values t1, . . . , tr to op-
timization, with the side condition that t1 ≤ t2 ≤ · · · ≤ tr, has been
solved in [2] and [3].

2.2. Variational Interpolation and set-interpolation in a surface.

Assume that M is a closed surface, possibly with boundary. A typical
instance of the variational interpolation problem would be that M(t) = M
for almost all t, and M(t) is a proper subset of M for finitely many t. If
R

n is equipped with the standard Euclidean norm, then in the case k = 1
minimizing energy means finding the shortest path which fulfills the side
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conditions. This relation of energy minimizers to arc length is discussed
below.

For k = p = 2, minimizing energy means finding smooth interpolants
and near-interpolants on surfaces which minimize the linearized thin beam
bending energy. This problem has been considered e.g. in [7] and [8]. Side
conditions involving derivatives can be included if they have the form (3).

The main contribution concerning existence of minimizers is contained
in the thesis [9], which considers energy functionals which involve deriva-
tives up to some finite order k, and curves whose arclength parametriza-
tion lies in a certain Sobolev space. The author looks for set-interpolating
minimizers among curves which are contained in a parametric and com-
pact surface in R

3.
The present paper uses an approach which is not restricted to paramet-

ric or compact surfaces, and we use slightly different function spaces. The
side conditions which may be imposed on curves so that the existence of
a curve with minimal energy can be shown are more general on the one
hand (the restriction to finitely many side conditions in [9] is not neces-
sary), but more restrictive on the other hand, as we require that k points
are to be interpolated, not 2.

2.3. Applications and computation of energy-minimizing curves

in surfaces. Applications of the concept of an energy-minimizing curve
(or “spline curve”) in a surface are given e.g. in [8]. Besides the ob-
vious possibility of variational interpolation and near-interpolation, this
includes variational motion design (where the Euclidean motion group
serves as a surface where curves have to be contained in) and variational
interpolation in the presence of obstacles (via barrier manifolds).

The actual numerical computation of energy-minimizing curves works
with a discretization, where a curve is replaced by a sequence of points,
and k-th derivatives by appropriate k-th order differences of that sequence.
If we use the standard Euclidean norm for vectors in R

n, and let p =
2, the discretized energy function becomes a quadratic function which
takes point sequences as arguments. This is also described in the paper
mentioned above.

3. Overview of the existence proof

The method of proof is the following: We consider curves which have
a k-th derivative almost everywhere, so that the definition of energy is
meaningful. We consider a suitable space of curves (i.e., vector-valued
functions defined in an interval) and define a norm for such functions
whose p-th power actually equals the energy. Thus finding curves of min-
imal energy is equivalent to finding functions of minimal norm. It turns
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out that this space of curves is isomorphic to a well known Lp space. The
collection of side conditions defines a certain subset “Z” of admissible
curves.

We now have to show the existence of an element of minimal norm
in Z. If Z were contained in a finite-dimensional space, closedness of Z
would be sufficient for existence, because in finite dimension unit balls are
compact. There is a well-known procedure in functional analysis which
allows to generalize such an argument to reflexive Banach spaces: There
it is sufficient that Z is closed with respect to the weak topology. This
is verified below. A standard argument now shows that Z indeed has an
element of minimal norm (Th. 1).

In [9] a compactness argument in the domain of a parametrized surface
is used in order to show existence.

4. Definitions and preliminary results

We use the symbols Ck(X), AC(X), Lp(X) for spaces of real-valued func-
tions defined in X. f ∈ Lp(X) means that f is defined almost everywhere
and that ‖f‖p := (

∫
X
|f |p)1/p < ∞. Ck(X) denotes the space of k-times

continuously differentiable functions. f ∈ AC(I), where I is an interval,
means that f is absolutely continuous, so that the first derivative f ′ ex-
ists almost everywhere (“[a.e.]”), f ′ ∈ L1, and the fundamental theorem
of calculus is valid, i.e., f(b) − f(a) =

∫
[a,b]

f ′. We further consider the

space Lp(X, Rn) of vector valued Lp functions f(t) = (f1(t), . . . , fn(t)),
where each component fi is an Lp function. For facts about these function
spaces, the reader is referred to [10] and [11].

We let I = [0, 1] henceforth and note that by Hölder’s inequality, ‖f‖1 ≤
‖f‖p for all f ∈ L1(I). Thus the following definition makes sense:

Def. 1. For any strictly increasing sequence T = (t1, . . . , tk) of real num-
bers and for any p > 1 we consider

VT = {f ∈ Ck−1(I) | f (k−1) ∈ AC, f (k) ∈ Lp,(4)

f(t1) = · · · = f(tk) = 0},

which is endowed with the norm ‖f‖V := ‖f (k)‖p.

Lemma 1. The mapping D : VT → Lp(I), f 7→ f (k) is a norm isomor-
phism.

Proof: We construct an inverse D−1. Choose g ∈ Lp. As Lp(I) ⊂ L1(I),
we may let

hk−1(t) = ∫[0,t] g, hk−2(t) = ∫[0,t] hk−1, . . . , h0(t) = ∫[0,t] h1.(5)
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If Df = g, then necessarily D−1g(t) = h0(t)+
∑k−1

i=0 Cit
i. The coefficients

Ci can be found from the condition f(t1) = · · · = f(tk) = 0:

C0 + tiC1 + · · · tk−1
i Ck−1 = −h0(ti), (i = 1, . . . , k).(6)

The matrix A of this system of linear equations is regular, as it consists
of the powers tji (i = 1, . . . , k, j = 0, . . . , k − 1). It follows that D−1g is
uniquely defined, and therefore D is an isomorphism. 2

A vector-valued Lp function f : [0, 1] → R
n may be identified with a

real-valued Lp function g : [0, n] → R, if we define

fi(t) = g|[i−1,i](t − i + 1).(7)

This isomorphism of Lp(I, Rn) ∼= Lp([0, n]) introduces a norm, which is
denoted by ‖·‖′:

‖f‖′ :=
∑

j

‖fj‖p.(8)

We fix a norm “‖x‖” in R
n and define a second norm for vector-valued

Lp functions by

‖f‖ := (
∫
‖f(t)‖pdt)1/p.(9)

Lemma 2. The norms ‖·‖ and ‖·‖′ in Lp(I, Rn) are equivalent, i.e., there
are constants α, β such that for all f , α‖f‖ ≤ ‖f‖′ ≤ β‖f‖.

The proof is given in the appendix.

Def. 2. Consider the linear space

WT = {f : I → R
n | fi ∈ VT}.(10)

Norms are defined by ‖f‖W = ‖f (k)‖Lp(I,Rn), ‖f‖′W = ‖f (k)‖′Lp(I,Rn).

The following is a direct consequence of Lemma 1:

Lemma 3. The mapping f 7→ f (k) is a norm isomorphism of the spaces
WT and Lp(I, Rn), both with respect to the norms ‖·‖, ‖·‖W and the norms
‖·‖′, ‖·‖′W .

5. Closedness and Weak Closedness of Side Conditions

Lemma 4. The evaluation mappings

vt,j : WT → R
n, f 7→ f (j)(t) (0 ≤ j < k)(11)

are bounded (i.e., continuous with respect to the norm topology in WT ).
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Proof: We are going to show the existence of constants γj such that

‖vt,j(f)‖ ≤ γj‖f‖
′
W .(12)

We use the 1-norm in R
n, but this specific choice is not relevant for con-

tinuity of vt,j . We first consider the case that n = 1, i.e, WT = VT . Recall
that ‖f‖1 ≤ ‖f‖p. We compute upper bounds for the functions hj defined
by (5):

|hk−1(t)| = | ∫[0,t] f
(k)| ≤ ∫[0,t] |f

(k)| ≤ ‖f (k)‖1 ≤ ‖f (k)‖p,

|hk−2(t)| = | ∫[0,t] hk−1| ≤ ∫[0,t] |hk−1| ≤ t‖f (k)‖p ≤ ‖f (k)‖p, . . .

|h0(t)| ≤ ‖f (k)‖p.

We consider the linear system of equations (6), whose matrix is denoted
by A. There is σ > 0 such that ‖A−1x‖∞ ≤ σ‖x‖∞ for all x ∈ R

n, so

|Ci| ≤ σ‖h0‖∞ ≤ σ‖f (k)‖p i = 0, . . . , k − 1.(13)

It follows that

|f (j)(t)| = |
dj

dtj
(h0(t) + C0 + · · · + Ck−1t

k−1)|

≤ |hj(t)| + j! |Cj| + · · · + (k−1)!
(k−1−j)!

|Ck−1| tk−1−j

≤ γj‖f
(k)‖p, with γj = 1 + σ

∑k−1
i=j

i!
(i−j)!

.(14)

for all t ∈ I and 0 ≤ j < k. By definition of the norm in WT , this shows
(12) in the case n = 1. As to the case n > 1, we consider the component
functions f1, . . . , fn of f and argue as follows:

‖vt,j(f)‖1 =
∑

i |f
(j)
i (t)| ≤ γj

∑
i ‖f

(k)
i ‖p = γj‖f‖

′
W .(15)

This shows (12) in the general case. 2

Lemma 5. vt,j is weakly continuous in WT .

Proof: Continuity of vt,j means that all functionals f 7→ f
(j)
i (t) are con-

tinuous, and vice versa; regardless of the topology we choose in WT . For
linear functionals, however, norm-continuity is the same as weak continu-
ity. Thus the statement follows immediately from the previous lemma. 2

Lemma 6. Suppose that for each index j in some index set J there is a
continuous function Hj : R

nk → R
nj , parameter values t0,j, . . . , tk−1,j, and

a closed set Nj ⊆ R
nj . Then

Z := {f ∈ WT | Hj(c(t0,j), . . . , c
(k−1)(tk−1,j)) ∈ Nj ∀ j ∈ J}(16)

is closed with respect to both norm and weak topology in WT .
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Proof: The collection φj = (vt0,j ,0×· · ·×vtk−1,j ,k−1) : WT → R
n×· · ·×R

n

of evaluation mappings is continuous with respect to both the norm and
the weak topologies in WT , as each component is. We can write Z in the
form Z =

⋂
j∈J(Hj ◦ φj)

−1(Nj), so obviously Z is closed. 2

6. Existence of curves which respect the side conditions

We are going to show some cases where there always are curves which
satisfy the side conditions. The following is well known:

Lemma 7. For all piecewise Ck curves c : I → R
n there is a nondecreas-

ing parameter transform γ : I → I such that d := c ◦ γ is Ck. We can
choose γ such that c = d in any finite union of disjoint closed intervals
where c is Ck.

For the convenience of the reader, a proof is indicated in the appendix.

Def. 3. Assume that M is a subset of R
n. A finite collection of side

conditions, involving values and derivatives of curves at the parameter
values t1, . . . , tr, is called locally admissible for M , if there is a curve c,
defined only locally in a neighbourhood of each ti and taking values in M ,
such that the side conditions are fulfilled.

An important and trivial example of a locally admissible collection of
side conditions are interpolation conditions of the form c(tj) ∈ Mj, for
parameter values t1 < t2 < · · · < tr and Mj ⊆ M . Curves which fulfill
those interpolation conditions may be defined as locally constant curves.

Lemma 8. If M has the property that any two points p, q ∈ M may be
connected by a piecewise Ck curve, then for any finite collection of locally
admissible boundary conditions there is a Ck curve c : I → M which is
defined in entire I and which fulfills those side conditions.

Proof: Assume that t1 < t2 < · · · < tr is the list of parameter values
involved in the side conditions, and choose a curve c̃, defined only locally
in disjoint intervals [ti − ε, ti + ε] which fulfills those side conditions. Now
connect the points c̃(ti + ε/2) and c̃(ti+1 − ε/2) by Ck curves. By pasting
those curves and the curve c̃ together, we get a piecewise Ck curve c̄ which
is defined in the entire interval [0, 1], and which fulfills the side conditions.
We apply Lemma 7 to c̄ and the intervals [ti−ε, ti +ε], and get a Ck curve
which fulfills the side conditions. 2

Lemma 8 applies directly to interpolation of points in surfaces, and
interpolation of subsets of R

n. The property of M referred to in Lemma
8 is fulfilled if M is a surface, possibly with boundary, or any connected
finite union of curvilinear polyhedra.
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7. Existence of energy-minimizing curves

We consider the set Vk,p of curves whose k-th derivatives are Lp functions:

Vk,p := {c : I → R
n | c ∈ Ck−1, c(k−1) ∈ AC, c(k) ∈ Lp}.(17)

Theorem 1. Assume that an integer k > 0, values t1 < · · · < tk ∈ [0, 1],
and points M(t1), . . . ,M(tk) ∈ R

n are given. Assume that an arbitrary
collection of further interpolation conditions of the form (3) (which in-
cludes those of the form (2)) is given. If there is a curve c ∈ Vk,p which
fulfills the interpolation conditions at all, there is also one where the en-
ergy (1) is minimal.

Proof: We consider the polynomial function p : I → R
n of degree k −

1 with the property p(ti) = M(ti). Subtracting p furnishes a bijection
between the set of curves in Vk,p which interpolate the points M(tj), and
the set of functions in WT . With the definition of energy in (1), we have

E(c) = ‖c(k)‖Lp(I,Rn) = ‖(c − p)(k)‖Lp(I,Rn) = ‖c − p‖W .(18)

Minimizing energy therefore is equivalent to finding f such that

f ∈ WT , Gj(c(t0,j), . . . , c
k−1(tk−1,j)) ∈ Mj for all j ∈ J,(19)

c = f + p, ‖f‖W → min .

If we define Hj(x0, . . . , xk−1) = Gj((x0, . . . , xk−1) + (p(t0,j), . . . ,
p(k−1)(tk−1,j))), and choose Z as in (16), then (19) is equivalent to
f ∈ Z, ‖f‖W → min . Let

β = inf{‖f‖W | f ∈ Z}(20)

and consider a sequence f1, f2, . . . with fi ∈ Z such that ‖fi‖W → β.
Lp(I, Rn) ∼= Lp([0, n]) is a reflexive Banach space, so there is a weakly

convergent subsequence fik ⇀ f. f ∈ Z, because Z is weakly closed. As
a weak limit, f has the property that β ′ := ‖f‖W ≤ limk→∞‖fik‖W , so
β′ ≤ β. The definition of β however shows that β ≤ β ′. Thus we have
β = β′ = ‖f‖W , and f minimizes the norm ‖·‖W in Z. This is equivalent
to f + p being a minimal energy interpolant. 2

8. The case k = 1

Here we show some relations of energy minimizers with curves which min-
imize arc length, which are well known in the smooth category.

Def. 4. The arc length L(c) of a curve is defined by letting k = 1 in (1),
i.e., L(c) :=

∫
‖ċ‖. We call γc(u) = 1

L(c)
L(c|[0,u]) the arc length function

of c.

This definition of L(c) is not restricted to the Euclidean norm in R
n.

The arc length function maps I to I.
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Def. 5. For any set M and points u, v ∈ M we use the abbreviation
Cu,v,M for {c ∈ V1,p | c(I) ⊆ M, c(0) = u, c(1) = v}.

Lemma 9. If c ∈ V1,p is one-to-one, then the curve d = c ◦ γ−1
c also is in

V1,p, has the same arclength as c, and ‖ḋ‖ = L(c) almost everywhere.

The proof is given in in the appendix.

Lemma 10. For all curves c0 ∈ Cu,v,M there is another curve in Cu,v,M ,
which is not longer than c0 and which is one-to-one.

The proof is given in in the appendix.

Lemma 11. Minimizers of the energy E(c) for k = 1 in Cp,q,M are also
minimizers of the arc length L(c), and ‖ċ‖ is constant almost everywhere.
The converse is also true — curves with these two properties minimize
E(c). Such curves are one-to-one.

Proof: This fact is well known in differential geometry, where one con-
siders piecewise regular smooth curves, which are easily shown to pos-
sess smooth arc length parametrizations. We add a few technicalities to
the existing proofs (see e.g. [12], p. 70) in order to deal with insufficient
smoothness. The base of the proof is the Hölder inequality L(c)p ≤ E(c),
where equality holds if and only if ‖ċ‖ is constant [a.e.]. The result is
trivially true for constant curves, so we consider only non-constant curves
now.

Clearly a minimizer of L(c) is one-to-one. The same is true for E(c):
Assume that c(t0) = c(t0 + τ) and define d(t) = c( t

1−τ
) for t ≤ t0

1−τ
and

d(t) = c( t−τ
1−τ

) for t ≥ t0
1−τ

. It is elementary that E(d) ≤ (1 − τ)p−1E(c),
so E(c) is not minimal.

Suppose now that c minimizes E(c) in Cp,q,M . As c is one-to-one, Lemma

9 shows that the curve d = c ◦ γ−1
c has the property that ‖ḋ‖ is constant

and equals L(c) [a.e.]. By construction, we have the inequalities E(c) ≤
E(d) = L(d)p = L(c)p ≤ E(c), so L(c)p = E(c) and ‖ċ‖ is constant [a.e.].

We eventually want to show that c minimizes arc length. Assume now
that c minimizes E(c), and that c̄ ∈ Cp,q,M . By Lemma 10, it is sufficient
to consider only such curves c̄ which are one-to-one.

Construct d̄ from c̄ analogous to the construction of d from c above.
Then L(c)p = E(c) ≤ E(d̄) = L(d̄)p = L(c̄)p. This shows that L(c) ≤
L(c̄), i.e., c does minimize arc length.

The converse statement is easily shown: Assume that c minimizes arc
length and ‖ċ‖ is constant [a.e.]. Then for all c̄ ∈ Cp,q,M we have E(c) =
L(c)p ≤ L(c̄)p ≤ E(c̄). So c minimizes energy. 2
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9. Characterization of energy minimizers by infinitesimal
conditions

A problem related to the one considered in this paper is to find infinites-
imal conditions which characterize the energy minimizers or at least are
fulfilled by them. If p = 2 and the Euclidean norm is used in R

n, it is
not difficult to show that the variational problem of making the energy
functional (1) stationary for curves in a given surface results in the Euler-
Lagrange condition that the 2k-th derivative of c is orthogonal to that
surface. The well-known case k = 1 leads to the differential equation of
geodesic lines.

10. Appendix: Proofs

Proof: (of Lemma 2) In R
n, all norms (even the non-convex ones) are

equivalent, so there are constants B,D such that ‖x‖1/p ≤ B ‖x‖1 and
‖x‖p ≤ D ‖x‖ for all x ∈ R

n. The existence of B means that for all x we
have

∑
|xi|

1/p ≤ B1/p(
∑

|xi|)
1/p. In order to show that there is β with

‖f‖′ ≤ β‖f‖, we compute ‖f‖′ =
∑

(
∫
|fi|

p)1/p ≤ B1/p(
∑ ∫

|fi|
p)1/p ≤

B1/p(
∫

Dp‖f(t)‖p)1/p = B1/pD‖f‖. A reverse inequality is shown in an
analogous way. 2

Proof: (of Lemma 7) Assume that the parameter values where c is not
Ck are t1, . . . , tr, and that the intervals where we want c = d are
[u1, u

′
1], . . . , [us, u

′
s]. Now construct a parameter transform γ in the fol-

lowing way: In the quadrangle [0, 1] × [0, 1], connect the points (ui, ui)
and (u′

i, u
′
i) by straight line segments (i = 1, . . . , s). Further draw small

horizontal line segments through the points (ti, ti) (i = 1, . . . , r). The
graph of γ as a real function shall contain these segments, and it is con-
structed by filling in the gaps by means of a nondecreasing C∞ function
α(x) with the property that α(x) = 0 for x ≤ 0 and α(x) = 1 if x ≥ 1.
After construction of γ, we let d = c ◦ γ and the proof is finished.

It remains to show how to find α(x). For this purpose, we let β(x) :=

exp(x−2) if x > 0 and β(x) = 0 for x ≤ 0 and let α(x) = β(x)
β(x)+β(1−x)

. 2

Proof: (of Lemma 9) It is well known that continuous curves which are
one-to-one may be parametrized using the arc length

∫
[0,t]

‖ċ‖ as a pa-

rameter. The arc length of c|[t′,t′′] is an upper bound for ‖c(t) − c(t′′)‖,
and L(c|[0,t]) is strictly increasing. Apart from the factor 1/L(c), which
ensures that after the parameter transform the curve is still defined in the
same interval [0, 1], the curve d = c ◦ γ−1

c is exactly this parametrization
by arc length.

As ‖d(t)−d(t′)‖ ≤ L(c)|t− t′|, d is Lipschitz and so d ∈ AC. The chain
rule applies to c = d ◦ γc (cf. (20.5) of [10]), so from γ̇c(u) = 1

L(c)
‖ċ(u)‖
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[a.e.] and ‖ḋ(γ(u))‖· γ̇c(u) = ‖ċ(u)‖ [a.e.], we conclude that ‖ḋ(t)‖ = L(c)
[a.e.]. 2

Proof: (of Lemma 10) If a curve c0 ∈ V1,p is not one-to-one, we look for t0,
τ0, such that c(t0) = c(t0+τ0), but c0 is not constant in [t0, t0+τ0]. Choose
τ0 maximal with this property. We define c1(t) := c0(t) if t 6∈ [t0, t0 + τ0],
and c1(t) := c0(t0) if t ∈ [t0, t0 + τ0]. This procedure is iterated and curves
c2, c3, . . . are constructed. Obviously c̃ := lim ci is in AC, has the property
that L(c̃) ≤ L(c), and is not necessarily one-to-one, but ‘interval-to-one’.

By deleting all intervals (tj , t
′
j] from I where c̃ is constant, we get a

subset J ⊆ I. Let δ(u) = 1
|J |
|[0, u] ∩ J |. Define c̃̃ by c̃̃(δ(u)) = c̃(u).

Then c̃̃ ∈ AC (which follows easily from c̃ ∈ AC, as
∑

|t′i − ti| ≤ 1), c̃̃ is
one-to-one, and L(c̃̃) = L(c̃) ≤ L(c). 2
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