EXISTENCE OF SET-INTERPOLATING AND ENERGY-
MINIMIZING CURVES

JOHANNES WALLNER

ABSTRACT. We consider existence of curves ¢ : [0,1] — R™ which
minimize an energy of the form [ |c®|P (k =1,2,..., 1 < p < 00)
under side-conditions of the form Gj(c(t1;),...,c* Yty ;) € M,
where G is a continuous function, ¢; ; € [0, 1], M; is some closed set,
and the indices j range in some index set J. This includes the prob-
lem of finding energy minimizing interpolants restricted to surfaces,
and also variational near-interpolating problems. The norm used for
vectors does not have to be Euclidean.

It is shown that such an energy minimizer exists if there exists a
curve satisfying the side conditions at all, and if among the interpo-
lation conditions there are at least k points to be interpolated. In the
case k = 1, some relations to arc length are shown.

1. INTRODUCTION

Finding curves ¢ : I — R"™ which minimize the energy functional
(1) E(c) = [ |P@)Pdt (1<p<oo, k=1,2,...)

under certain side conditions has been of interest in Computer-Aided Geo-
metric Design for a long time, especially in the case k = p = 2. In this
paper we show an existence result for the case p > 1 and general set-
interpolation side conditions which may involve derivatives. The norm
used in R"™ does not have to be Euclidean. For the case £ = 1 we show
some additional properties of energy minimizers and consider the case
p = 1 also. The simplest case of such interpolation conditions is that for
each t € I there is a closed set M (t) C R™ such that

(2) c(t) € M(t).

In particular, the condition that the curve we are looking for is to be
contained in a surface “M”, is expressed by the requirement that M (t) =
M for all t.

Key words and phrases. variational spline interpolation, existence of energy mini-
mizing curves .
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More generally, we assume that there is an indexed family of side con-
ditions of the form

(3) Gjc(toy), .-, ¥ Vtrory)) € My, (€ J)

where J is some index set, t;,; € I, M, is a closed subset of some space
R™, and G, is a continuous function from (R")* to R". Equ. (3) can
be used to express Hermite interpolation conditions: For instance, the
equation ¢(tg) = v, for a given parameter value ¢y and a vector v has the
required form, as the left hand side “G;” is a continous function involving
the derivatives of the curve, and we may let M; := {v}. Hermite Near-
interpolation conditions can be formulated by using sets M; which contain
more than 1 point.

The requirement that G is continuous for all j is necessary. An example
of a non-continuous geometrically meaningful function is the curvature

: . : . 1/2
(letto) PNt I? = (élto) - é(to))?)
1é(to) |I? '
In this formula ||x| denotes the Euclidean norm of a vector x. In the case
k > 2, a constraint involving curvature could nevertheless be used if the

case ||¢(tg)]] = 0 is excluded, e.g. by additional constraints of the form
|é(to)]] € [g, 00), for some € > 0.

G(c(to), ¢(to), E(to)) =

2. PrREVIOUS WORK AND APPLICATIONS

We briefly describe the special cases of this problem which we have in
mind and also previous work on that topic.

2.1. Near-Interpolation. A well-known instance of the problem of min-
imizing energy under side conditions as described above is that M (t) = R"
for almost all ¢, but there is a finite number of values t¢1,...,t, such hat
M(t;) is a proper subset of R™. Those subsets may be seen as toler-
ance zones of points to be interpolated. This is the topic of the papers
[1, 2, 3, 4, 5], and [6]. Without going into details we mention that the
more difficult problem of subjecting the parameter values tq, ..., %, to op-
timization, with the side condition that t; < t3 < .-+ < t,., has been
solved in [2] and [3].

2.2. Variational Interpolation and set-interpolation in a surface.
Assume that M is a closed surface, possibly with boundary. A typical
instance of the variational interpolation problem would be that M (t) = M
for almost all ¢, and M (t) is a proper subset of M for finitely many ¢. If
R™ is equipped with the standard Euclidean norm, then in the case k =1
minimizing energy means finding the shortest path which fulfills the side
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conditions. This relation of energy minimizers to arc length is discussed
below.

For k = p = 2, minimizing energy means finding smooth interpolants
and near-interpolants on surfaces which minimize the linearized thin beam
bending energy. This problem has been considered e.g. in [7] and [8]. Side
conditions involving derivatives can be included if they have the form (3).

The main contribution concerning existence of minimizers is contained
in the thesis [9], which considers energy functionals which involve deriva-
tives up to some finite order k, and curves whose arclength parametriza-
tion lies in a certain Sobolev space. The author looks for set-interpolating
minimizers among curves which are contained in a parametric and com-
pact surface in R3.

The present paper uses an approach which is not restricted to paramet-
ric or compact surfaces, and we use slightly different function spaces. The
side conditions which may be imposed on curves so that the existence of
a curve with minimal energy can be shown are more general on the one
hand (the restriction to finitely many side conditions in [9] is not neces-
sary), but more restrictive on the other hand, as we require that &k points
are to be interpolated, not 2.

2.3. Applications and computation of energy-minimizing curves
in surfaces. Applications of the concept of an energy-minimizing curve
(or “spline curve”) in a surface are given e.g. in [8]. Besides the ob-
vious possibility of variational interpolation and near-interpolation, this
includes variational motion design (where the Euclidean motion group
serves as a surface where curves have to be contained in) and variational
interpolation in the presence of obstacles (via barrier manifolds).

The actual numerical computation of energy-minimizing curves works
with a discretization, where a curve is replaced by a sequence of points,
and k-th derivatives by appropriate k-th order differences of that sequence.
If we use the standard Euclidean norm for vectors in R”, and let p =
2, the discretized energy function becomes a quadratic function which
takes point sequences as arguments. This is also described in the paper
mentioned above.

3. OVERVIEW OF THE EXISTENCE PROOF

The method of proof is the following: We consider curves which have
a k-th derivative almost everywhere, so that the definition of energy is
meaningful. We consider a suitable space of curves (i.e., vector-valued
functions defined in an interval) and define a norm for such functions
whose p-th power actually equals the energy. Thus finding curves of min-
imal energy is equivalent to finding functions of minimal norm. It turns
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out that this space of curves is isomorphic to a well known L? space. The
collection of side conditions defines a certain subset “Z” of admissible
curves.

We now have to show the existence of an element of minimal norm
in Z. If Z were contained in a finite-dimensional space, closedness of Z
would be sufficient for existence, because in finite dimension unit balls are
compact. There is a well-known procedure in functional analysis which
allows to generalize such an argument to reflexive Banach spaces: There
it is sufficient that Z is closed with respect to the weak topology. This
is verified below. A standard argument now shows that Z indeed has an
element of minimal norm (Th. 1).

In [9] a compactness argument in the domain of a parametrized surface
is used in order to show existence.

4. DEFINITIONS AND PRELIMINARY RESULTS

We use the symbols C*(X), AC(X), LP(X) for spaces of real-valued func-
tions defined in X. f € LP(X) means that f is defined almost everywhere
and that || f[|, == ([ [f|")"/? < co. C*(X) denotes the space of k-times
continuously differentiable functions. f € AC(I), where I is an interval,
means that f is absolutely continuous, so that the first derivative f’ ex-

ists almost everywhere (“[a.e.]”), f/ € L', and the fundamental theorem
of calculus is valid, i.e., f(b) — f(a) = f[a y [ We further consider the

space LP(X,R") of vector valued L functions f(t) = (fi(t),..., fu(t)),
where each component f; is an LP function. For facts about these function
spaces, the reader is referred to [10] and [11].

We let I = [0, 1] henceforth and note that by Holder’s inequality, || f]|;1 <
| fll, for all f € L'(I). Thus the following definition makes sense:

Def. 1. For any strictly increasing sequence T' = (t1, ..., tx) of real num-
bers and for any p > 1 we consider

(4) Vr={feC" ()| f*VeAC ¥ erLr
ft) = -+ = fte) = 0},
which is endowed with the norm || f|lv := || f®]],.

Lemma 1. The mapping D : Vi — LP(I), f +— f%® is a norm isomor-
phism.

Proof: We construct an inverse D~!. Choose g € LP. As LP(I) C L'(1),
we may let

(5)  hea(t) = Jo.g 95 he—2(t) = [0 k1, -5 ho(t) = Jjoq -
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If Df = g, then necessarily D~'g(t) = ho(t) + Zf:_ol C;it'. The coefficients
C; can be found from the condition f(t;) =--- = f(tx) = 0:

(6) C’O—i—th’l—i—t,’f_le,l - —ho(tl), (’l: 1,,]{))

The matrix A of this system of linear equations is regular, as it consists
of the powers t (i = 1,...,k, 7 =0,...,k —1). It follows that D~ 'g is
uniquely defined, and therefore D is an isomorphism. O

A vector-valued L function f : [0,1] — R™ may be identified with a
real-valued L* function g : [0,n] — R, if we define

(7) filt) = gli-1,a(t =i +1).
This isomorphism of LP(I,R") = LP(]0,n]) introduces a norm, which is

denoted by ||-||":

(8) 1A= Z 151l-

We fix a norm “||z]|” in R™ and define a second norm for vector-valued
L? functions by

9) LAl == ([ I @)ty /e,

Lemma 2. The norms ||| and ||-||" in LP(I,R™) are equivalent, i.e., there
are constants «, 3 such that for all f, o/ f]| < I f]" < Bl f]l-

The proof is given in the appendix.

Def. 2. Consider the linear space

Norms are defined by || fllw = |/ ®zorny,  [1f 1w = 1F® oz mn-
The following is a direct consequence of Lemma 1:

Lemma 3. The mapping f — f* is a norm isomorphism of the spaces
Wr and LP(I,R™), both with respect to the norms ||-||, ||-|lw and the norms

IR IR
5. CLOSEDNESS AND WEAK CLOSEDNESS OF SIDE CONDITIONS

Lemma 4. The evaluation mappings
(11) vy Wr =R fe fO®) (0<)<k)

are bounded (i.e., continuous with respect to the norm topology in Wr).



6 JOHANNES WALLNER

Proof: We are going to show the existence of constants «y; such that

(12) v (I < 7ill f -

We use the 1-norm in R", but this specific choice is not relevant for con-
tinuity of v, ;. We first consider the case that n =1, i.e, Wy = Vp. Recall
that || |l < f]l,- We compute upper bounds for the functions h; defined

by (5):

PO = S0 SP1 < S IFPT< 1PN < 1D,
P2 (O] = | Jio. Pl < Jjoy =] < tIFP N < AFPp, -
o) < [f P,
We consider the linear system of equations (6), whose matrix is denoted
by A. There is o > 0 such that ||[A7 2|/ < 0||2| for all z € R™, so

(13) Cil < allholles < allf P, i=0,... k=1

It follows that
47

19 = ﬁ(ho(t) +Co+ -+ Cpt™ )|
< (O] +5Cs| + - + G2y [Croa | #0717
. k-1 4!
(14) < llFP N, with =1+ 03 7

for all t € I and 0 < j < k. By definition of the norm in Wy, this shows
(12) in the case n = 1. As to the case n > 1, we consider the component

functions fy,..., f, of f and argue as follows:
(15) lens (Al = S 110 < 2 S 15l = 21l
This shows (12) in the general case. O

Lemma 5. v, ; is weakly continuous in Wr.

Proof: Continuity of v, ; means that all functionals f — fi(] )(t) are con-
tinuous, and vice versa; regardless of the topology we choose in Wr. For
linear functionals, however, norm-continuity is the same as weak continu-
ity. Thus the statement follows immediately from the previous lemma. O

Lemma 6. Suppose that for each index j in some index set J there is a

continuous function H; : R" — R™ | parameter values tg ;, . .., 51, and
a closed set N; C R". Then

(16) Z = {f e Wr | Hj(C(tOJ), . ,C(k_l)(tk_lﬂ‘)) S Nj Ve J}

18 closed with respect to both norm and weak topology in Wr.
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Proof: The collection ¢; = (v, ;0 X -+ X vy, k1) : W — R"x--- xR"
of evaluation mappings is continuous with respect to both the norm and
the weak topologies in Wy, as each component is. We can write Z in the
form Z = (;;(Hj o ¢;)~'(N;), so obviously Z is closed. O

6. EXISTENCE OF CURVES WHICH RESPECT THE SIDE CONDITIONS

We are going to show some cases where there always are curves which
satisfy the side conditions. The following is well known:

Lemma 7. For all piecewise C* curves ¢ : I — R™ there is a nondecreas-
ing parameter transform « : I — I such that d := co~ is C*. We can
choose 7 such that ¢ = d in any finite union of disjoint closed intervals
where c is C*.

For the convenience of the reader, a proof is indicated in the appendix.

Def. 3. Assume that M is a subset of R™. A finite collection of side
conditions, involving values and derivatives of curves at the parameter
values ty, ..., t,., is called locally admissible for M, if there is a curve c,
defined only locally in a neighbourhood of each t; and taking values in M,
such that the side conditions are fulfilled.

An important and trivial example of a locally admissible collection of
side conditions are interpolation conditions of the form ¢(t;) € M;, for
parameter values t; <ty < --- < t, and M; € M. Curves which fulfill
those interpolation conditions may be defined as locally constant curves.

Lemma 8. If M has the property that any two points p,q € M may be
connected by a piecewise CF curve, then for any finite collection of locally
admissible boundary conditions there is a C* curve ¢ : I — M which is
defined in entire I and which fulfills those side conditions.

Proof: Assume that t; < ty < --- < t, is the list of parameter values
involved in the side conditions, and choose a curve ¢, defined only locally
in disjoint intervals [t; — €, t; 4+ €] which fulfills those side conditions. Now
connect the points ¢(t; 4+ ¢/2) and ¢(t; 11 — €/2) by C* curves. By pasting
those curves and the curve ¢ together, we get a piecewise C* curve ¢ which
is defined in the entire interval [0, 1], and which fulfills the side conditions.
We apply Lemma 7 to ¢ and the intervals [t; —e, t;+¢], and get a C* curve
which fulfills the side conditions. O

Lemma 8 applies directly to interpolation of points in surfaces, and
interpolation of subsets of R™. The property of M referred to in Lemma
8 is fulfilled if M is a surface, possibly with boundary, or any connected
finite union of curvilinear polyhedra.
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7. EXISTENCE OF ENERGY-MINIMIZING CURVES

We consider the set V*P of curves whose k-th derivatives are L? functions:
(17) VP = {c: T R | ce CF L D e AC, W e L7},

Theorem 1. Assume that an integer k > 0, values t; < --- < 1, € [0,1],
and points M(ty),...,M(ty) € R™ are given. Assume that an arbitrary
collection of further interpolation conditions of the form (3) (which in-
cludes those of the form (2)) is given. If there is a curve ¢ € V*P which
fulfills the interpolation conditions at all, there is also one where the en-
ergy (1) is minimal.

Proof: We consider the polynomial function p : I — R™ of degree k —
1 with the property p(t;) = M(t;). Subtracting p furnishes a bijection
between the set of curves in V*? which interpolate the points M(t;), and
the set of functions in Wr. With the definition of energy in (1), we have

(18) E(c) = [z = (e = )z zn) = lle = pllw-

Minimizing energy therefore is equivalent to finding f such that

(19) feWr, Gile(toy), ., (tr1y)) € M; forall j € J,
c=f+p, |[fllw — min.

If we define Hj(xo, ..., zp-1) = G;i((zxo, ..., zp—1) + (p(toj), ---,

p*Y(t,_1,))), and choose Z as in (16), then (19) is equivalent to
fe€Z ||fllw — min. Let

(20) f=mf{||fllw | f e Z}

and consider a sequence fi, fo,... with f; € Z such that || f;||w — 5.
LP(I,R™) = LP(]0,n]) is a reflexive Banach space, so there is a weakly
convergent subsequence f;, — f. f € Z, because Z is weakly closed. As
a weak limit, f has the property that 5" := || f|lw < lmy_, | fi.|lw, so
(" < B. The definition of 3 however shows that § < ’. Thus we have
B=0=|fllw, and f minimizes the norm |||y in Z. This is equivalent
to f + p being a minimal energy interpolant. ]

8. THE CASE k=1

Here we show some relations of energy minimizers with curves which min-
imize arc length, which are well known in the smooth category.
Def. 4. The arc length L(c) of a curve is defined by letting k = 1 in (1),
i.e., L(c) :== [le]l. We call v.(u) = ﬁC)L(Cho,u]) the arc length function
of c.

This definition of L(c) is not restricted to the Euclidean norm in R™.
The arc length function maps I to I.
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Def. 5. For any set M and points u,v € M we use the abbreviation
Cuwar for {c € VVP | e(I) C M,c(0) = u,c(l) = v}.

Lemma 9. If c € V' is one-to-one, then the curve d = co~y. ' also is in

VP has the same arclength as ¢, and ||d|| = L(c) almost everywhere.
The proof is given in in the appendix.

Lemma 10. For all curves cy € Cy . m there is another curve in Cy i,
which 1s not longer than co and which is one-to-one.

The proof is given in in the appendix.

Lemma 11. Minimizers of the energy E(c) for k =1 in C,4m are also
minimizers of the arc length L(c), and ||¢|| is constant almost everywhere.
The converse is also true — curves with these two properties minimaize
E(c). Such curves are one-to-one.

Proof: This fact is well known in differential geometry, where one con-
siders piecewise regular smooth curves, which are easily shown to pos-
sess smooth arc length parametrizations. We add a few technicalities to
the existing proofs (see e.g. [12], p. 70) in order to deal with insufficient
smoothness. The base of the proof is the Holder inequality L(c)? < E(c),
where equality holds if and only if ||¢|| is constant [a.e.]. The result is
trivially true for constant curves, so we consider only non-constant curves
now.

Clearly a minimizer of L(c) is one-to-one. The same is true for E(c):
Assume that c(tg) = c(to + 7) and define d(t) = ¢(7) for t < - and
d(t) = (L) for t > {2 Tt is elementary that E(d) < (1 —7)*'E(c),
so E(c) is not minimal.

Suppose now that ¢ minimizes E(c) in Cp 4 1. As ¢ is one-to-one, Lemma
9 shows that the curve d = co ;! has the property that ||d|| is constant
and equals L(c) [a.e.]. By construction, we have the inequalities F(c) <
E(d) = L(d)? = L(c)? < E(c), so L(c)? = E(c) and ||¢|| is constant [a.e.].

We eventually want to show that ¢ minimizes arc length. Assume now
that ¢ minimizes E(c), and that ¢ € C,,». By Lemma 10, it is sufficient
to consider only such curves ¢ which are one-to-one.

Construct d from ¢ analogous to the construction of d from ¢ above.

Then L(c)? = E(c) < E(d) = L(d)? = L(¢)?. This shows that L(c) <
L(¢), i.e., ¢ does minimize arc length.

The converse statement is easily shown: Assume that ¢ minimizes arc
length and ||¢|| is constant [a.e.]. Then for all ¢ € C,,a we have E(c) =
L(c)? < L(¢)? < E(¢). So ¢ minimizes energy. O
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9. CHARACTERIZATION OF ENERGY MINIMIZERS BY INFINITESIMAL
CONDITIONS

A problem related to the one considered in this paper is to find infinites-
imal conditions which characterize the energy minimizers or at least are
fulfilled by them. If p = 2 and the Euclidean norm is used in R"”, it is
not difficult to show that the variational problem of making the energy
functional (1) stationary for curves in a given surface results in the Euler-
Lagrange condition that the 2k-th derivative of ¢ is orthogonal to that
surface. The well-known case k = 1 leads to the differential equation of
geodesic lines.

10. APPENDIX: PROOFS

Proof: (of Lemma 2) In R" all norms (even the non-convex ones) are
equivalent, so there are constants B, D such that ||z, < B x|, and
|z]|, < D|z|| for all z € R™. The existence of B means that for all z we
have > |z;|'/? < BY?(3" |2;)V/?. In order to show that there is 3 with
LAl < BN, we compute [|f]]" = S2(f |fil")/? < BYP(3Z [ 1fiP)7 <
BYr([ DP|f()|P)/» = BYPD| f||. A reverse inequality is shown in an
analogous way. O

Proof: (of Lemma 7) Assume that the parameter values where ¢ is not
C* are ti,...,t,, and that the intervals where we want ¢ = d are
[ug, uy], ..., [us,u.]. Now construct a parameter transform 7 in the fol-
lowing way: In the quadrangle [0,1] x [0, 1], connect the points (u;,u;)
and (u},u}) by straight line segments (i = 1,...,s). Further draw small
horizontal line segments through the points (¢;,¢;) (i = 1,...,r). The
graph of v as a real function shall contain these segments, and it is con-
structed by filling in the gaps by means of a nondecreasing C'*° function
a(x) with the property that a(x) =0 for z < 0 and a(x) = 1if z > 1.
After construction of v, we let d = c o~ and the proof is finished.

It remains to show how to find «a(z). For this purpose, we let 3(z) :=

exp(x™2) if z > 0 and B(z) = 0 for x < 0 and let a(x) = % 0

Proof: (of Lemma 9) It is well known that continuous curves which are
one-to-one may be parametrized using the arc length f[o g llcll as a pa-

rameter. The arc length of ¢|p 4 is an upper bound for ||c(t) — c(t")]|,
and L(cl|j,) is strictly increasing. Apart from the factor 1/L(c), which
ensures that after the parameter transform the curve is still defined in the
same interval [0, 1], the curve d = co~, ! is exactly this parametrization
by arc length.

As ||d(t) —d(t")|| < L(c)|t—1t'|, d is Lipschitz and so d € AC. The chain
rule applies to ¢ = d o7, (cf. (20.5) of [10]), so from .(u) = ﬁ“c(u)”
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{a.e% and || d(v(w))]|-Ae(uw) = ||é(w)]| [a.e.], we conclude that ||d(t)|| = L(CD)

Proof: (of Lemma 10) If a curve ¢y € V7 is not one-to-one, we look for ¢,
To, such that ¢(ty) = c(to+70), but ¢o is not constant in [tg, to+7]. Choose
7o maximal with this property. We define ¢, (t) := ¢o(t) if ¢t & [to, to + T0],
and ¢y (t) := ¢o(to) if t € [ty, o+ 7). This procedure is iterated and curves
Ca,C3, ... are constructed. Obviously ¢ := lim ¢; is in AC, has the property
that L(¢) < L(c), and is not necessarily one-to-one, but ‘interval-to-one’.

By deleting all intervals (tj,tg] from I where ¢ is constant, we get a

subset J C I. Let 0(u) = ﬁHO,u] N J|. Define ¢ by ¢(6(u)) = ¢(u).
Then © € AC (which follows easily from ¢ € AC, as > |t — ;| < 1), T is
one-to-one, and L(¢) = L(¢) < L(c). 0
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