
A second order algorithm for orthogonal

projection onto curves and surfaces

Shi-min Hu and Johannes Wallner

Dept. of Computer Science and Technology, Tsinghua University, Beijing, China

shimin@tsinghua.edu.cn;

Institut für Diskrete Mathematik und Geometrie, TU Wien, Austria

wallner@geometrie.tuwien.ac.at.

Abstract

In this paper we analyze an algorithm which solves the point projection and the
“inversion” problems for parametric curves and surfaces. It consists of a geometric
second order iteration which converges faster than existing first order methods, and
whose sensitivity to the choice of initial values is small. Applications include the
ICP algorithm for shape registration.

1 Introduction and previous work

Projecting a point onto a parametric curve or surface in order to find the
closest point (footpoint) and computing the parameter values of the projection
(the point inversion problem) has attracted interest due to its importance in
geometric modeling, computer graphics and computer vision, see e.g. Ma and
Hewitt (2000) or Piegl and Tiller (2001). Both projection and inversion are
essential for interactively selecting curves and surfaces (see Hu et al. (2001)),
for construction and rendering of solid models with boundary representation,
projecting of a space curve onto a surface for surface curve design (cf. Pegna
and Wolter (1996)), and are also a key issues in the ICP (iterative closest

point) algorithm for shape registration described in Besl and McKay (1992).

Several algorithms have been developed which solve these problems. Some
depend on special properties of the objects to be projected onto, such as
Mortenson (1985), who essentially finds the root of a polynomial using a
Newton-Raphson method. Limaien and Trochu (1995) compute the orthogo-
nal projection of a point onto parametric curves and surfaces by constructing
an auxiliary function and finding its zeros. Hartmann (1999) proposes a first

Preprint submitted to Elsevier Science 14 February 2005

order algorithm for foot point computation by using a normalform (again, an
auxiliary function) and its first derivatives.

Piegl and Tiller (2001) provide an algorithm for point projection on NURBS
surfaces by decomposing a NURBS surface into quadrilaterals, projecting the
test point onto the closest quadrilateral, and then recover the parameter from
the closest quadrilateral. Ma and Hewitt (2000) present a practical algorithm
for computing a good initial value for the Newton-Raphson method.

Apparently there are two key issues in the projection and inversion problems:
— computing a good initial value;
— and using a Newton-type or other iteration to improve the solution.

Naturally, all methods using derivatives of the target object have difficulties
if the magnitude of oscillations of the target’s surface is smaller than the
test point’s distance to the target. In that case, a zero order algorithm which
consists in sampling the target and comparing distances is essentially the only
way of finding a good initial value for a further iteration, or even for solving
the problem at all. An example of this is given by Ma and Hewitt (2000), who
find a good initial for NURBS curves or surfaces by subdividing into Bézier
curves or surfaces and making use of relationship between control points and
curve/surface (the control points being a very good sample of the target,
including derivatives).

Algorithms which converge quickly usually employ first or second derivatives.
It is natural to apply a Newton-type iteration. The sensitivity of this procedure
to initial values is well known, as discussed e.g. in Ma and Hewitt (2000). On
the other hand, applications like shape registration require fast algorithms for
computing footpoints, as the projection part is actually the bottleneck of the
entire computation, see Besl and McKay (1992) and Pottmann et al. (2004).

The main objective of this paper is to analyze a geometric iteration method,
which solves the projection and inversion problems, and which has second
order approximation properties, It uses only such second order information of
the curve or surface under consideration which is geometric in the sense that
it is common to all possible parameterizations. In that way a certain amount
of the arbitrariness always present when parameterizations in dealing with
surfaces is eliminated. We compute parameter values by projecting points to
curvature circles and use the second order Taylor expansion of the curve or
surface in order to compute parameter increments. Numerical evidence shows
that this algorithm is robust and fast.

We will also show how such a second order geometric iteration is useful in shape
registration of point clouds and improves the efficiency of the registration
process.

2

PSfrag replacements

c(t0)

q

p

m

PSfrag replacements

c(t0) q

p

m

Fig. 1. Left: A first order algorithm for projection onto surfaces. Right: The curve
(t, sin(t)), its curvature circles, and a step of second order iteration.

2 Orthogonal projection onto a curve

Assume that c(t) be a C2 curve in n-dimensional Euclidean space R
n (n ≥ 2),

and p is a test point. A first order geometric iteration which computes the
footpoint of p is the following: Projecting p onto the tangent of c at t = t0
yields a point q expressible in terms of c(t0) and the derivative c′(t0) (see
Fig. 1):

q = c(t0) + ∆t c′(t0). (1)

The scalar product of vectors x, y ∈ R
n will be denoted by 〈x, y〉, and the

norm of a vector x by ‖x‖. Then

∆t =
〈c′(t0), q − c(t0)〉

〈c′(t0), c′(t0)〉
. (2)

We increment t0 by ∆t and repeat the above procedure until ∆t is less than
a given tolerance, or until the angle ∠(c(t0)qp) is close enough to 90◦. In this
way we can compute the projection of p onto the curve in a simple way.

A geometric second order method is to replace the curve c by its curvature
circle c̄ at t = t0. The curve’s curvature will be denoted by the symbol κ.
Recall that the curvature circle has radius 1/κ and lies on that side of the
tangent where c′′(t0) points to. The curvature is computed by the formula
κ = area(c′(t0), c

′′(t0))/‖c
′(t0)‖

3. Here area(x, y) denotes the area of the paral-
lelogram spanned by the vectors x and y, possibly with sign. If n = 2, we have
area(x, y) = det(x, y). If n = 3, we use area(x, y) = ‖x × y‖, and in general
we have the formula area(x, y)2 = 〈x, x〉〈y, y〉 − 〈x, y〉2. In any case the area
has the properties that area(x + λy, y) = area(x, y + λx) = area(x, y) for all
λ, and area(λx, y) = area(x, λy) = λ area(x, y) for all λ ≥ 0. We compute the
footpoint q of p on the curvature circle (or on the tangent, if κ happens to be
zero; see Fig. 1).

3

We assume for the moment the curvature circle c̄ to be parameterized such that
it has the same Taylor polynomial as the curve c. We use the symbol o(∆t2) for
any vector-valued or real-valued function r(∆t) such that lim∆t→0

1
∆t2

r(∆t) =
0. Then we have

q = c̄(t0 + ∆t) = c(t0 + ∆t) + o(∆t2) (3)

= c(t0) + ∆tc′(t0) +
∆t2

2
c′′(t0) + o(∆t2) (4)

In R
2, we may take the determinant of the previous equation with either c′(t0).

We get

det(q − c(t0), c
′′(t0)) = ∆t det(c′(t0), c

′′(t0)) + o(∆t2),

which yields the formula

∆t + o(∆t2) =
det(q − c(t0), c

′′(t0))

det(c′(t0), c′′(t0))
=

1

κ‖c′‖3
det(q − c(t0), c

′′(t0)). (5)

From this, the parameter increment ∆t may be computed easily by simply
disregarding the remainder term o(∆t)2.

In the general case (n may now be greater than 2), we compute area(q −
c(t0), c

′(t0)) with q from Equ. (3). We get

area(c′, q − c(t0)) =
∆t2

2
area(c′, c′′) + o(∆t2) (6)

=⇒ ∆t2 ≈ 2
area(c′, q − c(t0))

area(c′, c′′)
= 2

area(c′, q − c(t0))

κ‖c′‖3
. (7)

The sign of ∆t is chosen according to

sign(∆t) = sign〈c′(t0), q − c(t0)〉. (8)

These equations now can be used to compute the parameter increment ∆t.
Iteration yields a second order algorithm for computing the footpoint of x
onto the curve together with the parameter value of the footpoint.

For n = 2, both formulas (5) and (7) are equivalent in the limit t → t0, but the
second one, which only includes the first derivative vector and the curvature,
leads to a more stable iteration.

This algorithm also solves the inversion problem which means computing the
parameter value t for a point which is known to lie on the curve.

4

PSfrag replacements

p0

s,1

s,2
q

p

PSfrag replacements

p0

s,1

s,2

q

p

qlin

Fig. 2. Illustration of first order (left) and second order (right) geometric iteration
for surfaces

3 Orthogonal projection onto a surface

We extend the geometric iteration described above to surfaces s(u1, u2) in R
3.

Partial derivatives with respect to the parameters u1 and u2 will be denoted by
s,1, s,2, s,11, and so on. The coefficients of the first fundamental form are given

by gij = 〈s,i, s,j〉, the unit normal vector field by n = (s,1 × s,2)/
√

det(gjk),

and the coefficients of the second fundamental form by hjk = 〈s,jk, n〉. We
assume that s is regular, i.e., {s,1, s,2} is linearly independent, so det(gjk) =
area(s,1, s,2)

2 6= 0.

Projecting a point p onto a surface is done as follows. We assume that we
already have an initial guess p0 = s(u1

0, u
2
0), and that we find q by projecting

p onto the tangent plane at p0 (see Fig. 2):

q − p0 = s,1.∆u1 + s,2.∆u2. (9)

By multiplying with s,i (i = 1, 2) we get

〈s,1, s,1〉∆u1 + 〈s,2, s,1〉∆u2 = 〈q − p0, s,1〉, (10)

〈s,1, s,2〉∆u1 + 〈s,2, s,2〉∆u2 = 〈q − p0, s,2〉, (11)

so ∆u1, ∆u2 can be computed as solution of a regular system of linear equa-
tions, with coefficient matrix (gjk). We update u1

0, u
2
0 by adding ∆u1, ∆u2.

This first-order geometric iteration appears in Hartmann (1999), Hoschek and
Lasser (1993), and Hu et al. (2000).

In order to improve efficiency, we would like to propose the following approach
of geometric approximation by normal curvature. Any vector x − p0 can be
expressed as a linear combination of the tangent vectors s,1, s,2 and the normal
vector n at p0:

5

x − p0 = λ1s,1 + λ2s,2 + νn. (12)

The normal curvature of the tangent vector λ1s,1 +λ2s,2 can be computed via

κn = (
2

∑

i,j=1

hijλ
iλj) · (

2
∑

i,j=1

gijλ
iλj)−1. (13)

We consider a planar section of the given surface with the plane which contains
p0, the normal vector n, and the point x. It has some parameterization c(t)
which we actually will not need, and which has the property that c(0) = p0,
and that its tangent vector is given by

c′(0) = λ1s,1 + λ2s,2. (14)

Its radius of curvature is given by 1/κn. The circle of curvature is contained
in the plane mentioned above, and has the center p0 + n/κn.

We project the point x onto the circle of curvature, which yields the point
q. The orthogonal projection of x onto the surface is now approximated by
c(∆t), with ∆t computed according to Equ. (7) (c′ is taken from (14)). The
sign of ∆t is that of the scalar product 〈c′(0), q − p0〉 We now update u1 and
u2 according to

ui −→ ui + ∆ui, ∆ui = λi∆t. (15)

The procedure is repeated again, with s(u1, u2) as new initial point, until the
desired accuracy criteria are met.

4 Examples

This section shows numerical evidence concerning the behaviour of the first
and the second order geometric algorithms discussed above.

Example 1. We consider the curve c(t) = (t, sin t), depicted in Fig. 1 to-
gether with 7 evenly distributed curvature circles. Table 1 shows the results of
geometric iteration. Here, the initial parameter t0 is estimated by comparing
the distance between the test point and 7 uniformly sampled points with pa-
rameters t = 2kπ/7, k = 0, 1, . . . , 7. The experimental data show the second
order algorithm has good convergence, and but the convergence of the first
order algorithm is sometimes very slow.

6

x = (1, 0.8) t0 = 0.898

step 1 2 3 4 5 6

∆t1 8.1e-02 2.7e-03 5.7e-05 1.2e-06 2.3e-08 0.0

∆t2 8.4e-02 1.8e-04 6.0e-10 0.0 t = 0.982347

x = (2, 2), t0 = 1.795

step 1 2 3 4 5 6

∆t1 −2.2e-02 2.1e-02 −2.0e-02 1.9e-02 −1.8e-02 1.7e-02

∆t2 −1.1e-02 2.5e-05 1.0e-10 0.0 t = 1.783812

Table 1
Step sizes ∆t1 and ∆t2 in Example 1 for the first and second order algorithms.

PSfrag replacements
x

c(t0)

Fig. 3. Illustration of geometric iteration for the B-Spline curve

Example 2. We consider the order B-Spline curve c(t) =
∑n

i=0 biB
4
i (t) with

the knot list (0, 0, 0, 0, .2, .4, .6, .8, 1, 1, 1, 1) and the control points (100, 100),
(140, 196), (200, 240), (260, 164), (340, 164), (400, 240), (460, 196), (500, 100).
An initial parameter guess for the footpoint q of a point x may be obtained by
finding the control point nearest to x (see reference Ma and Hewitt (2000)),
or by computing distances to a sample of points c(ti).

Fig. 3 shows the initial point x to be projected, together with the first guess
c(t0) for a footpoint and the curvature circle there. The “+” sign denotes the
result of one step of iteration.

Table 2 compares the first and second order algorithms, the faster convergence
of the latter being clearly visible. Table 3 shows the robustness of the second
order algorithm with respect to the choice of an initial value t0. The solution
in this case is given by t = 0.6223419238.

Example 3. In order to give also a surface example, we consider the 4 × 4
B-Spline surface S(u, v) =

∑3
i=0

∑6
j=0 pijBi,4(u)Bj,4, (v), whose control points

are given by (−236, −197, −22), (−206, −117, −22), (−216, −27, 8), (−246,
62, −22); (−156, −177, 8), (−176, −97, 38), (−157, 20, 126), (−186, 142,
8); (−86, −157, 8), (−138, −113, −146), (−104, 14, −60), (−96, 102, 8);
(−6, −197, −22), (−47, −96, −33), (25, 32, 95), (−6, 102, 8); (74, −177,
8), (34, −75, 147), (86, 97, 105), (54, 142, 8); (124, −157, 8), (198, −31, 63),
(64, 31, 154), (144, 102, 8); (204, −197, −22), (234, −77, 8), (214, −7, 8),

7

x = (381, 252), t0 = 0.75,

step 1 2 3 4 5 6

∆t1 3.2e-02 −2.3e-02 −1.8e-02 −1.4e-02 1.1e-02 −8.8e-03

∆t2 2.1e-02 −1.2e-03 −4.1e-06 0.0 t = 0.7695140103

x = (332, 200), t0 = 0.5

step 1 2 3 4 5 6

∆t1 8.5e-02 2.9e-02 6.9e-03 1.3e-03 2.2e-04 3.9e-05

∆t2 1.2e-01 1.2e-03 −3.8e-06 0.0 t = 0.6223419238

Table 2
Stepsizes ∆1 and ∆t2 for the first and second order algorithms together with the
solution t corresponding to Example 2.

step 1 2 3 4 5 6

t0 = 0.30 1.4e-01 1.7e-01 1.1e-02 −2.9e-04 −2.0e-07 0.0

t0 = 0.40 2.0e-01 2.0e-02 −1.1e-03 2.7e-06 0.0

t0 = 0.50 1.2e-01 1.2e-03 −3.8e-06 0.0

t0 = 0.60 2.4e-02 −1.4e-03 −5.1e-06 1.0e-10

t0 = 0.70 −6.6e-02 −1.1e-02 −2.9e-04 −2.0e-07 0.0

t0 = 0.80 −1.1e-01 −6.1e-02 −9.0e-03 −1.9e-04 8.8e-08 0.0

Table 3
Convergence rate in terms of ∆t of the second order algorithm for different choices
of initial value t0 (x = (332, 200) in Example 2).

first order algorithm.

step 1 2 3 4 5 6

∆u1 −3.8e-02 −2.4e-06 −3.8e-04 −1.4e-04 −4.3e-05 1.2e-05

∆u2 −5.4e-02 1.4e-02 −2.6e-03 −5.1e-04 −1.1e-04 2.5e-05

second order algorithm.

step 1 2 3 4 5 6

∆u1 −3.4e-02 −4.3e-03 3.8e-05 −5.1e-06 9.0e-08 −1.2e-08

∆u2 −4.8e-02 6.5e-03 2.3e-04 7.3e-08 5.4e-07 2.0e-10

Table 4
Data for Example 3. (x = (120, 10, 100), (u1

0, u
2
0) = (0.9, 0.6)).

(239, 102, −22). The knot lists are (0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1) for u and
(0, 0, 0, 0, 1, 1, 1, 1) for v. An initial estimate for the projection has been ob-
tained by means of the control polyhedron. Table 4 shows experimental results
with the test point (120, 10, 100) and initial parameter (0.9, 0.6). Table 5 shows
a case were the first order algorithm fails. The test point is (−120, 10, 100),
the initial parameter was set to (0.1, 0.6).

8

first order algorithm.

step 1 2 3 4 5 10

∆u1 6.9e-02 −7.3e-02 9.6e-02 −1.0e-01 1.2e-01 −1.2e-01

∆u2 6.3e-02 2.5e-02 −7.0e-02 7.6e-02 −9.7e-02 1.0e-01

second order algorithm.

step 1 2 3 4 5 10

∆u1 3.1e-02 −9.4e-03 7.0e-03 −4.9e-04 7.8e-04 −1.5e-07

∆u2 2.9e-02 3.8e-02 1.4e-03 5.5e-03 5.1e-06 2.3e-06

Table 5
Experimental data for Example 3. Test point is (−120, 10, 100), and (u1

0, u
2
0) =

(0.1, 0.6).

5 Application to the ICP algorithm for shape registration

The shape registration problem for a given design model and a set of data
points (i.e., a point cloud approximating the shape of the design model)
amounts to finding a rigid body motion such that its application to the design
model minimizes an appropriately defined distance of the design model from
the point cloud.

A well known standard algorithm to solve such a registration problem is the
iterative closest point (ICP) algorithm of Besl and McKay (1992). It usually
consists of two steps. First, for points xi in the cloud the respective closest
points yi on the model are computed. Second, a motion m is found such that
∑

dist(m(xi), yi) is minimized. The first step is the most time consuming part
of the algorithm and has to implemented efficiently, see e.g. Pottmann et al.
(2004). Other registration algorithms such as the Newton method of Tucker
and Kurfess (2003) or the squared distance function method of Pottmann
et al. (2004) depend on computing closest points, i.e., computing orthogonal
projections.

Second order algorithms as those discussed in this paper have some properties
which make them suitable for projection and for accelerating the ICP algo-
rithm. First, if xi and xj are close together, we may always use the footpoint
yi of xi as an initial value for the computation of yj; and when iterating the
computation of the motion m, we may use the footpoints of the previous step
as an initial value for the current one. While this is true for most projection
algorithms, it is probably even more so for ours, as it is rather insensitive with
respect to initial values.

Depending on the oscillatory behaviour of the surface in question (which would
be tame for many applications, a fact usually known beforehand), we might
expect, due to numerical observations, that about 95% of the total parameter

9

j 0 1 2 3 4 5 6 7 8

E(j) 1.04 3.5e-1 2.1e-1 1.1e-1 6.0e-2 1.3e-2 4.3e-4 1.7e-6 2.3e-11

E(j)
E(j−1) 0.34 0.60 0.53 0.54 0.22 3.2e-2 3.7e-3 1.4e-5

Table 6
Convergence rate of the registration process illustrated in Fig. 4. Object size: ≈
2.0 × 0.8 × 0.4. The qantity E(j) is defined as

√

(
∑

i(xi − yi)2)/k, where j is the
number of iterations.

Fig. 4. Left: Before registration. Right: After registration

increment during projection is achieved in the first step. This means that it
would be sufficient to perform just one step of the projection algorithm in
order to ensure convergence of the ICP algorithm. Fig. 4 shows a registration
example. It has been computed using the algorithm of Pottmann et al. (2004),
which is faster than the traditional ICP method, as documented by Table 6.

Conclusion

This paper investigates point projection and point inversion on parametric
curves and surfaces by using curvature information. Experimental results show
that the algorithms under consideration are robust and efficient. Applications
to shape registration are discussed.

Acknowledgements

This work was supported by the Austrian Science Foundation (Grant No.
P15911) during the first author’s stay in Vienna; and further by the Natural
Science Foundation of China (Project number 60273012, 60225016, 60333010)
and the National Basic Research Project of China (Project Number 2002CB

10

312101). The authors would like to thank the reviewers for their helpful com-
ments.

References

Besl, P. J., McKay, N. D., 1992. A method for registration of 3-d shapes. IEEE
Trans. Pattern Anal. Mach. Intell. 14, 239–256.

Hartmann, E., 1999. On the curvature of curves and surfaces defined by nor-
malforms. Computer Aided Geometric Design 16, 355–376.

Hoschek, J., Lasser, D., 1993. Fundamentals of Computer Aided Geometric
Design. A. K. Peters.

Hu, S.-M., Li, Y.-F., Ju, T., Zhu, X., 2001. Modifying the shape of NURBS
surfaces with geometric constraints. Computer Aided Design 33, 903–912.

Hu, S.-M., Sun, J.-G., Jin, T.-G., Wang, G.-Z., 2000. Computing the parame-
ter of points on NURBS curves and surfaces via moving affine frame method
[Chinese]. J. Software 11, 49–53.

Limaien, A., Trochu, F., 1995. Geometric algorithms for the intersection of
curves and surfaces. Computers & Graphics 19, 391–403.

Ma, Y. L., Hewitt, W. T., 2000. Point inversion and projection for NURBS
curve and surface: Control polygon approach. Computer Aided Geometric
Design 20, 79–99.

Mortenson, M. E., 1985. Geometric modeling. Wiley, pp. 305-317.
Pegna, J., Wolter, F.-E., 1996. Surface curve design by orthogonal projection

of space curves onto free-form surfaces. J. Mech. Design 118, 45–52.
Piegl, L. A., Tiller, W., 2001. Parameterization for surface fitting in reverse

enginering. Computer-Aided Design 33, 593–603.
Pottmann, H., Leopoldseder, S., Hofer, M., 2004. Registration without ICP.

Computer Vision and Image Understanding 95, 54–71.
Tucker, T. M., Kurfess, T. R., 2003. Newton methods for parametric surface

registration. Part II. Experimental validation. Computer-Aided Design 35,
115–120.

11

