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Figure 1: Regular structures discovered by our algorithm involve combinations of rotation, translation, and scaling of the repetitive elements.

Abstract

We introduce a computational framework for discovering regular or
repeated geometric structures in 3D shapes. We describe and clas-
sify possible regular structures and present an effective algorithm
for detecting such repeated geometric patterns in point- or mesh-
based models. Our method assumes no prior knowledge of the ge-
ometry or spatial location of the individual elements that define the
pattern. Structure discovery is made possible by a careful anal-
ysis of pairwise similarity transformations that reveals prominent
lattice structures in a suitable model of transformation space. We
introduce an optimization method for detecting such uniform grids
specifically designed to deal with outliers and missing elements.
This yields a robust algorithm that successfully discovers complex
regular structures amidst clutter, noise, and missing geometry. The
accuracy of the extracted generating transformations is further im-
proved using a novel simultaneous registration method in the spa-
tial domain. We demonstrate the effectiveness of our algorithm on
a variety of examples and show applications to compression, model
repair, and geometry synthesis.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: regular structure, repetitive pattern, transformation
group, shape analysis, similarity transformation

1 Introduction

Regular geometric structures are ubiquitous in both natural and
man-made objects. They play an important role in fields as di-

verse as biology, physics, engineering, architecture, and art. The
detection of repeated structures is also an important mechanism in
how we recognize and understand the world around us — for many
objects are characterized by the presence of such patterns.

Repetition is prevalent in the structure of biological organisms,
from the spinal column in mammals to the phyllotaxis of plant
leaves. The study of symmetries, patterns, and repetitions is the
central topic of the book On Growth and Form by D’Arcy Thomp-
son [1992], which has remained a popular biology classic since its
publication in 1917. Geometric regularity is often the result of a
specific developmental growth process [Mandelbrot 1982]. Find-
ing such repeated substructures can thus help to understand biolog-
ical growth and analyze abnormalities due to, for example, external
conditions such as temperature or water supplies.

Structural regularity also abounds in man-made objects, often as a
result of economical, manufacturing, functional, or aesthetic con-
siderations. One of the most prominent examples is architecture,
where repetitive elements are fundamental in almost all design
styles. In fact, we often recognize certain styles exactly because
of the presence of such elements, such as the colonnade in the por-
tico of a Greek temple. Repeating structures and motifs are also an
essential component in decorative art, fashion, and interior design.

Discovering such regular structures in geometric models is a chal-
lenging task, since we typically have no prior knowledge of the size,
shape, or location of the individual elements that define the pat-
tern. Structures can be incomplete or corrupted by noise, and hid-
den amongst large components of the geometry that are not part of
the pattern and therefore function as clutter or outliers. We present
an algorithm addressing these challenges by simultaneously esti-
mating the repetition pattern and detecting the repeating geometric
element. We propose a mathematical framework that captures a
wide variety of regular structures as shown in Figure 1.

We believe that our proposed approach captures a novel kind of
meso-level structure in 3D geometry data that is different from
both macro-scale global symmetries and the micro-regularity of a
bump map texture. Our method finds a compact generative model
that explains repetitive elements within an object thus giving access
to important semantic information about the shape. The retrieved
regularity patterns reveal the inherent geometric redundancy of a
shape and can be utilized to form high-level models of the object
for recognition, to improve the performance of lower-level com-
pression and simplification algorithms, or to allow certain kinds of
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Figure 2: Processing pipeline for automatic structure discovery. Transform analysis yields characteristic patterns in transformation space,
model estimation determines the generating transformations, aggregation extracts the corresponding regular structures in the spatial domain.

global editing operations that would be hard to achieve by other
techniques. Our method is robust with respect to missing elements
and partial regularity. This enables applications that reconstruct
missing elements using the retrieved pattern as a prior for shape
completion and non-local noise removal.

Contributions. The central objective of this paper is the detection
of regular structures in geometric models and their use in advanced
geometry processing operations. To achieve this goal, we make the
following contributions:

• We present a computational framework for structure discov-
ery that allows a unified and mathematically rigorous treat-
ment of a variety of important 3D structures, including trans-
lational, rotational, and cylindrical grids, as well as helices
and spirals. We show that these patterns can be represented as
regular samplings of the commutative one- and two-parameter
subgroups of the group of similarity transformations.

• We define a mapping function for transformations from matrix
space to an auxiliary space in which generative models occur
as uniform grids. We present a global optimization method for
discovering and fitting such grids that robustly handles miss-
ing grid elements and outliers.

• We introduce an aggregation procedure that extracts large-
scale repetitive elements and at the same time optimizes the
generating transformations. This is achieved with a novel
ICP-inspired quadratic objective function in the space of sim-
ilarity transformations.

Repetitive patterns are generated by combining and applying a
small number of generative transformations to geometry building
blocks. Typically, these patterns are surrounded by other geometry
which does not conform to the pattern. Our method simultaneously
estimates a generative model that explains the repetitions present,
as well as the geometry element being repeated. This is an interest-
ing joint optimization, coupling continuous geometry registration
in 3D with discrete pattern fitting in a suitable transform space.

Overview. We formalize the notion of structural regularity in
Section 2 using the concept of discrete groups of transformations.
Based on this mathematical framework, we introduce an algorithm
for extracting regular structures that is composed of three main
stages (see Figure 2). We first decompose the input shape into small
local surface patches and estimate similarity transformations be-
tween these patches. A suitable mapping from the space of similar-
ity transformations to an auxiliary 2D space, followed by clustering
of transformations, yields characteristic lattice patterns for shapes
containing regular structures. The second stage estimates the pa-
rameters of the generative model that gives rise to these patterns –
this is done by a global optimization procedure in transformation
space. The outcome of this second stage is a set of regular struc-

tures at the scale of the initial local surface patches. In the final
stage, we aggregate spatially adjacent patches to build larger repet-
itive elements using a novel simultaneous registration method that
optimizes the generating transformations in the spatial domain.

Sections 3 to 5 discuss the three stages of our processing pipeline in
more detail. In Section 6 we present results, analyze the scalability
and robustness of our technique, and discuss a number of applica-
tions to model repair and geometry synthesis. We conclude with
limitations and some directions for future research.

Related Work. The theory of discrete groups of transformations
is a fundamental tool in the study of periodic patterns. Liu and col-
leagues [2004] present a computational model that detects peaks in
the autocorrelation function of images to determine the periodicity
of texture patterns. They propose a classification method to catego-
rize 1D and 2D periodic patterns according to the 7 frieze groups
or 17 wallpaper groups, respectively. Beyond applications in im-
age analysis, they demonstrate the effectiveness of their method for
applications in indexing, compression, and gait analysis.

Related approaches rely on the Fourier transform or other spectral
methods to discover periodic patterns in signals [Hsu et al. 2001].
A good example is the constant Q transform [Brown 1991], widely
used in detecting repeating patterns in acoustic signals such as mu-
sic. Fourier methods have also been suggested in cognitive science
as a tool the brain uses to extract structure from images [Blakemore
and Campbell 1969]. For spatial data, autocorrelation and Fourier-
based methods are most effective in recovering patterns composed
of translations, reflections, and glide-reflections. Our approach ex-
tends the range of transformations to also include scaling and rota-
tions and is thus capable of recovering non-translational structures
such as rings, spirals, and helices (Figure 1).

Other approaches in image analysis are also related to our work. Le-
ung and Malik [1996] detect interesting candidate regions in an im-
age based on intensity variation. Matching elements are extracted
using local search and grouped in a graph structure that encodes the
repetitive pattern. Similarly, Schaffalitzky and Zissermann [1999]
use edge detection to find interesting elements and successively
grow patterns in a greedy fashion. They propose a grouping strategy
for translational grids based on maximum likelihood estimation.
Tuytelaars and colleagues [2003] employ invariant-based hashing
and Hough transforms for finding regular patterns in images that
can be characterized by a planar homology. Recently, Müller and
co-workers [2007] proposed an algorithm for structure detection in
building facades from images. Their approach exploits the strong
geometric and orientation priors of common facade structures in a
statistical model to detect translational symmetries and repetitive
window structures. Korah and Rasmussen [2007] assume that the
image is rectified and that regular lattice structures are composed
of axis-aligned rectangles with a limited range of aspect ratios. We
follow a different approach in that we make no prior assumptions
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Figure 3: Schematic illustration of regular structures. The helix and spiral are generated by transformations that combine rotation with trans-
lation and scaling, respectively. The images on the right show the three types of commutative 2-parameter groups: rotation and translation
along the rotation axis, two independent translations, rotation and scaling with center of scaling on the rotation axis.

on shape, size, or orientation of the repetitive elements. Instead, we
infer these properties automatically during the optimization, once
structural regularity has been detected in transformation space.

Our approach bears some loose relation to fractal image compres-
sion [Jacquin 1992]. In this class of algorithms the goal is to re-
alize a given image as the fixed point of a contractive mapping in
the space of images. The data for this mapping is extracted from
‘similarities’ between small rectangles in the image. Impressive
compression rates have been demonstrated for images containing
repetitive structures.

Structure discovery has also be addressed in computer aided de-
sign (CAD). Shikhare and co-workers [2001] proposed a compres-
sion scheme that exploits geometric patterns in CAD models. This
method is most effective for procedurally designed models where
the repetitive elements appear as separate connected components.
Langbein and Martin [2006] introduced regularity feature trees that
provide a concise description of symmetry features in order to cap-
ture important aspects of the geometric design intent. The method is
specifically designed for shapes that are bounded by planar, spheri-
cal, cylindrical, conical, and toroidal surfaces and exploits the sim-
ple geometry of these typical CAD building blocks.

Liu and colleagues [2007] present a technique for segmenting pe-
riodic reliefs on triangle meshes that relies on the user to identify
the repetitive elements. We avoid the need for such user assistance
and employ a comprehensive analysis in transformation space to
automatically extract a set of candidate elements.

Our method is also related to previous methods in symmetry detec-
tion. Podolak and colleagues [2006] propose a symmetry transform
that captures a continuous measure of the reflective symmetries of a
shape with respect to all possible planes. Rustamov [2007] extends
this approach to include information on the spatial distribution of
asymmetries. Mitra and co-workers [2006] detect partial and ap-
proximate symmetries using a sampling approach to accumulate lo-
cal evidence of pairwise symmetries in a transformation space. The
method of Martinet and colleagues [2006] is based on generalized
moments and finds global symmetries in 3D shapes by comparing
spherical harmonic coefficients. Various geometry processing ap-
plications make use of extracted symmetries, e.g., for symmetriza-
tion and symmetry-aware meshing [Golovinskiy et al. 2007; Mitra
et al. 2007] or mesh segmentation [Simari et al. 2006].

The above symmetry detection methods are very successful for
models with a few large-scale symmetries. They are less effec-
tive when the size of the symmetric elements becomes smaller and
the number of repetitions increases. In our setting the signal is in
the regularity of the repetitions and thus we rely on a sufficient
number of repetitions for robust structure detection. In this sense
our method can be considered complementary to existing work on
symmetry detection – both address different aspects of structural
regularity.

2 Transformations and Regularity

We consider the space of orientation-preserving similarity trans-
formations, i.e., the subspace of the space of affine transforma-
tions whose elements are composed of uniform scaling, rotation,
and translation. A similarity transformation T can be represented
in homogeneous coordinates using a matrix H

H =
“

s · R t
0 1

”

,

where s is the uniform scaling factor, R is a rotation matrix, and t
is a translation vector.

We understand regularity as the repeated application of a simi-
larity transformation (see Figure 3). More formally, we define
a regular structure of size n as a tuple (P,G), where the set
P = {P0, . . . , Pn−1} is a collection of n patches Pk ⊂ S of a
given surface S, and G is a transformation group acting on P . In
the simplest setting, G is a 1-parameter group with generating sim-
ilarity transformation T . The elements of P can be represented as
Pk = T kP0 for k = 0, . . . , n−1. Any element Pi ∈ P of a regular
structure can be transformed into any other element Pj ∈ P by the
similarity transformation Tij = T j−i. As illustrated in Figure 4,

transformation T l occurs n − |l| times, where −n < l < n.

Commutative 2-parameter groups. More complex regular
structures can be generated by combining 1-parameter groups. The
great variety of repetitive structures common in art, nature, or engi-
neering is reflected in a rather involved mathematical classification.
For instance, there are 17 distinct planar crystallographic groups
of Euclidean transformations. The following properties of such a
crystallographic group G can be found in [Grünbaum and Shep-
hard 1987]. The group G is generated by rotations, reflections, and
translations; furthermore, the translations contained in G form a
subgroup H of finite index. This means that the pattern generated
by the group G and any patch P0 equals the pattern generated by
the subgroup H and a bigger patch P ∗

0 which is a finite union of
copies of P0 (Figure 5).

P0 P1 P2 P3
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T 3
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Figure 4: A 1D regular structure of size n gives rise to n2 pairwise
transformations that form a characteristic accumulative pattern.
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Figure 5: The crystallographic group generated by translations T1,
T2, and the rotation R creates a repetitive pattern when acting on
the patch P0 (orange). The same structure is created by the group

of translations {T j
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2 } acting on the bigger patch P ∗
0 = P0 ∪

RP0 ∪ R2P0 ∪ R3P0 (gray). P ∗
0 has 4-fold rotational symmetry.

It follows that the detection of general patterns (P,G) can be bro-
ken into two steps: First detect a pattern where the generative group
consists of translations, then detect rotational and reflective symme-
tries of the basic patch of the first pattern. If we can deal with the
first problem, the second one can be addressed by the method of
[Mitra et al. 2006]. The spatial crystallographic groups have analo-
gous properties. It turns out that there is an elegant way to handle
not only groups of translations, but generally uniformly sampled
commutative 1- and 2-parameter groups that involve rotation and
scaling as well. We show in the appendix that the commutative 2-
parameter groups fall into one of exactly three classes (Figure 3,
right). Commutative k-parameter groups for k ≥ 3 cannot contain
any rotation or scaling components, i.e., are composed of k inde-
pendent translations. Our method naturally extends to this case.

The geometry of a k-parameter regular structure (P,G) can be
compactly represented by a single patch P0 ∈ P , the group gen-
erator(s) T1, . . . , Tk, and the integer dimension(s) n1, . . . , nk with
n1 · . . . · nk = n = |P|. We call P0 the representative element
and the tuple (P0, {Ti}, {ni}) the generative model of the regular
structure.

Structure Detection. The objective of our algorithm can be for-
mulated as follows: Given a shape S, find a generative model
(P0, {Ti}, {ni}) such that the union P0 ∪ · · · ∪ Pn−1 covers as
much of the surface S as possible, while maximizing the number
of repetitions n. In other words, we want to explain as much as
possible of the given input shape with a generative model that is as
simple and compact as possible.

The challenge in finding a regular structure lies in the fact that both
G and P are unknown. Size and shape of the geometric elements
Pk are defined by the degree of regularity that they exhibit, hence
we cannot decouple the estimation of P and G. However, we can
make use of the following observation: If P0 is the representative
element of (P,G), then any subset of P0 will also generate a regular
structure with transformation group G. Our approach for structure
detection makes use of this observation by first estimating structural
regularity at the level of small local surface elements. Collections of
these surface elements that have a compatible transformation group
are then aggregated to form large-scale structures.

3 Transformation Analysis

The first stage of our algorithm estimates and analyzes transforma-
tions between compatible local surface elements. We show how a
suitable representation of these transformations leads to a character-
istic lattice of transformation clusters for shapes containing regular
structures.

Figure 6: Local alignment. The orange spheres on the left indicate
the sample positions of the biggest similarity set. ICP alignment
to the sample marked by the red circle yields the final positions
shown on the right. Blue spheres indicate samples that have been
discarded due to high alignment error.

Similarity Sets. Following the sampling approach proposed
in [Podolak et al. 2006] and [Mitra et al. 2006], we first compute
a uniform random sampling of the input model S with average
sample spacing h. The user parameter h determines the smallest
scale at which we wish to discover regular structures. Each sam-
ple point represents a small local patch of S. Our goal is to find
evidence for a regular structure by analyzing the similarity trans-
formations that map pairs of these patches onto each other. For this
purpose patches are grouped into similarity sets Ωl using a local
shape descriptor that is invariant under similarity transformations.
Only sample points with similar descriptor value are potential can-
didates for a regular structure, hence we can significantly reduce
the number of relevant sample pairs and avoid the quadratic com-
plexity of considering all pairwise matches. Subsequent processing
will then be performed on each similarity set Ωl independently.

We use a robust descriptor based on polynomial fitting of osculat-
ing jets as proposed by Cazals and Pouget [2003]. For each sample
point we estimate the mean and Gaussian curvatures H and K re-
spectively. Samples are grouped according to the value H2/K,
which is invariant under uniform scaling, rotation, and translation.
If no scaling is involved, we can further split the similarity sets
based on the values of (H, K). Similar to [Mitra et al. 2006], we
do not consider umbilical points, since the transformation between
two such samples is not unique. Similarity sets Ωl are processed in
descending order of number of elements, since large collections of
similar patches are more likely to contain a regular structure of sig-
nificant size. Let Ω be the currently largest similarity set. We want
to detect whether elements of Ω form a regular structure and, if
so, estimate the parameters of the underlying transformation group
from the collection T = {Tij |pi,pj ∈ Ω} of all pairwise transfor-
mations.

Local Alignment. The estimated differential properties provide
us with a means to approximate the similarity transformation Tij

that maps sample pi ∈ Ω to sample pj ∈ Ω. Translation and rota-
tion can be derived by aligning the local frames computed from
the surface normal and principal curvature directions. The uni-
form scaling factor can be calculated from the ratio of correspond-
ing mean curvatures Hi/Hj . To improve the accuracy of the es-
timated similarity transformation and prune out incorrect matches,
we refine this initial transformation using geometric registration.
We employ local non-rigid ICP using instantaneous velocities as
described by [Pottmann et al. 2006]. If the registration does not
produce a good alignment of the local surface patches, the sample
pair is discarded (see Figure 6). This improves the robustness of the
following analysis of transformations and reduces the dependence
on the specific choice of local shape descriptor, which only serves
as tool to prune unnecessary sample pairs.
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Figure 7: Characteristic patterns in transformation space. The
plot on the left shows the distribution of translation vectors for the
compatible pairs of the top three similarity sets of the building scan
of Figure 1. We detect the two highlighted planes through the origin
that correspond to the two dominant regular structures present in
the model. Transformations close to these planes are shown in the
corresponding color. The density plot on the right for the blue plane
exhibits the typical grid pattern.

Characteristic Patterns. Computing the group generators from
the set T of all pairwise transformations is a challenging task, since
in general T contains many more elements than just the group
transformations, and even these are often too numerous for an ex-
haustive computation. For example, an n×n regular grid gives rise
to n4 pairwise transformations. To make this problem computation-
ally tractable, we make use of the following important observation:
The spatial coherence of regular structures leads to strong accumu-
lative patterns in the corresponding transformation space.

Figure 4 illustrates this effect schematically for a simple 1-
parameter translational structure. In Figure 7 we show the distribu-
tion of the pairwise transformations for a more complex 3D model.
Even though the data is noisy and contains substantial holes due to
occlusion during scanning, characteristic patterns in transformation
space are noticeable. These patterns have two essential properties:

• All transformations of the underlying transformation group
lie on a 2D plane through the origin in the space of affine
transformations.

• The transformations accumulate in clusters that form a uni-
formly spaced grid.

This observation has important consequences for our algorithm:
First, we only need to search for a linear sub-space of transforma-
tions that passes through the origin. Secondly, we can avoid exhaus-
tive computation by randomized selection, since clusters remain
dominant even for a sparse sub-sample of the set of all pairwise
transformations. We thus select a small random subset Ω′ ⊂ Ω with
|Ω′| � |Ω| and only compute transformations for pairs (pi,pj)
with pi ∈ Ω′ and pj ∈ Ω. For all our examples, Ω′ was at most
5% of the full similarity set Ω. Finally, we can exploit the uniform
grid spacing of clusters to implement a robust global optimization
for estimating the group generators as described in Section 4.

Transformation Mapping. Similarity transformations that in-
volve scaling and/or rotation do not immediately reveal a uniform
grid structure on a linear subspace of the space of affine transfor-
mations: In general, transformations cluster at points on a curved
manifold, which is significantly more difficult to detect. To address
this issue, we introduce a suitable mapping function that exposes a
similar uniform lattice structure for non-translational structures. In
the definition of such a mapping it is crucial to avoid a dependence
on the choice of origin, since the translation component depends on
the center of scaling and the axis of rotation. Therefore, we only
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Figure 8: Algorithm for analyzing transformations.

consider properties of the transformation that are invariant under a
change of origin, such as the scaling factor s, the rotation angle θ,
and the direction of the axis of rotation that we extract from the
estimated transformation matrix Hij of a sample pair (pi,pj).

Below we describe how we determine which of the three classes of
2-parameter structures shown on the right in Figure 3 can possibly
be present in a given collection of similarity transformations and
propose a suitable mapping function for each class. A flowchart of
this procedure is shown in Figure 8.

We first determine if a rotational structure could be present by
checking whether a significant fraction of the transformations have
non-zero rotation angle. If no such evidence is found, the model
can only contain regular structures of type Trans × Trans, and we
search for suitable 2D planes through the origin in the space of 3D
translation vectors (Figure 7) using a RANSAC method [Fischler
and Bolles 1981]. All transformations are projected onto the re-
trieved planes, i.e. we apply a mapping of the form T 7→ (t1, t2) ∈
IR2, where t1, and t2 are the coordinates of the projected translation
vectors in the 2D sub-space.

In case we do find a significant number of rotations, we separate
all transformations into sets with similar direction of rotation axis,
since group transformations of a rotational structure need to have
coinciding axis directions. For each such set we check if there is a
significant variation in scaling factors. If so, the model potentially
contains regular structures of type Rot × Scale and we apply the
mapping T 7→ (θ, log s) to expose the uniform grid.

If no variation in scaling is detected, the model might still con-
tain regular structures of type Rot × Trans. Since only transla-
tions parallel to the axis of rotation are possible in a commutative
2-parameter group, we apply the mapping T 7→ (θ, t), where the
scalar t = t · a is computed as the projection of the translation
vector t onto the unit direction vector a of the rotation axis.

Each of the mappings T 7→ (t1, t2), T 7→ (θ, log s), and T 7→
(θ, t) has the crucial property that composition of similarities cor-
responds to the sum of vectors in transformation space. If a sec-
ond transformation T ′ ∈ T is mapped to (t′1, t

′
2), or (θ′, t′), or

(θ′, log s′), respectively, then the product TT ′ is mapped accord-
ing to

case Trans × Trans: TT ′ 7→ (t1 + t′1, t2 + t′2);

case Rot × Trans: TT ′ 7→ (θ + θ′, t + t′);

case Rot × Scale: TT ′ 7→ (θ + θ′, log s + log s′).
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Figure 9: Grid fitting. Cluster centers are extracted from the den-
sity distribution of mapped transformations (top left) and the grid is
initialized according to the dominant lines through the origin (top
right). The optimization simultaneously solves for the grid gen-
erators and the correspondence weights αij and βk. After con-
vergence, the latter accurately account for holes in the grid and
outliers in the set of cluster centers, respectively (bottom row).

Here angles have to be understood modulo 2π. The identity trans-
formation I = T 0 is always mapped to the origin (0, 0), while the
inverse transformation T−1 is mapped to (−t1, −t2), or (−θ, −t),
or (−θ, − log s), respectively. It follows that the group of trans-

formations {T kT ′j}, where j, k run in the integers, is mapped to a
regular 2D lattice of vectors in transformation space.

4 Model Estimation

The goal of the model estimation stage is to obtain an estimate of
the parameters of the generative model of a regular structure. Given
the analysis of transformations described above, this amounts to
finding regular lattices of clusters in a 2D distribution of points.
Figure 7 illustrates two issues that make this task difficult:

• A number of spurious clusters are present that are not part of
the regular structure. Since the similarity set Ω potentially
contains more elements than those of the underlying regular
structure, additional transformations appear in the set T that
can obscure the grid pattern.

• Clusters that should be present are missing or too weak. The
reason for this is twofold: There is a statistical variation in
the distribution of the estimated transformations due to noise
in the model and local variations of sample positions, which
leads to inaccuracies in the estimation of pairwise transforma-
tions and thus less pronounced clusters. Cluster height is also
reduced by missing transformations due to holes in the input
data and the random sub-sampling of transformations.

To reliably detect regular structures we therefore need a grid fit-
ting approach that is robust to outliers and holes. We propose a
global optimization method specifically designed for this task. This
method operates on a set of cluster centers C = {ck} that we ex-
tract from the set of transformations mapped to 2D space. We use

1

0

Figure 10: Finding a grid amidst clutter. The correspondence
weights βk on the right show the reliable classification of outliers.

mean-shift clustering for this purpose [Comaniciu and Meer 2002],
but other methods can also be applied.

We describe our approach for an n1 × n2 regular grid of a 2-
parameter group. 1-parameter groups can be considered a special
case with n2 = 1. Since the identity transformation is always part
of a transformation group, the grid must pass through the origin and
thus has only four degrees of freedom. This significantly reduces
the search space and is a main reason for the robustness of the op-
timization. Grid locations X = {xij} can be represented with two
vectors g1,g2 ∈ IR2 such that xij = ig1 + jg2 with integers i, j
subject to −n1 < i < n1 and −n2 < j < n2 (see also Figure 4
for a 1D example).

Energy Minimization. To find the unknown grid generators g1

and g2 we apply an optimization that combines different energy
terms. We minimize the sum of squared distances of the grid loca-
tions to the cluster centers using the energy

EX→C =
X

i

X

j
α2

ij‖xij − c(i, j)‖2,

where c(i, j) ∈ C is the cluster center closest to grid location xij .
Similarly, we measure the distances of cluster centers to the grid as

EC→X =
X|C|

k=1
β2

k‖ck − x(k)‖2,

where x(k) ∈ X is the grid location closest to cluster center ck.
The continuous variables αij and βk are correspondence weights
that measure how reliably a grid location can be mapped to a clus-
ter center and vice versa. They are additional unknowns in the op-
timization that account for holes and outliers in the distribution of
cluster centers. Values of αij and βk close to zero indicate a hole
or an outlier, respectively, while values close to one indicate a reli-
able match between transformation cluster and grid location. Two
additional energies aim at maximizing the number of valid corre-
spondences between grid locations and cluster centers:

Eα =
X

i

X

j
(1 − α2

ij)
2 Eβ =

X

k
(1 − β2

k)2.

Combining the different energy terms yields the objective function

E = γ(EX→C + EC→X) + (1 − γ)(Eα + Eβ),

where γ is a parameter that balances the fitting and correspondence
terms. The grid generators are found as the minimizer of this energy

g1,g2, {αij}, {βk} = argmin
g1,g2,{αij},{βk}

E.

We use an iterative Gauss-Newton solver to minimize the above
objective function. The correspondence weights αij and βk are ini-
tialized to one, since we do not assume any prior knowledge on
holes or outliers. The initial values of the grid generators g1 and
g2 are determined as clusters with ‖gi‖ minimal on the most dom-
inant lines through the origin (extracted using RANSAC). The grid



Figure 11: Simultaneous Registration. The colored points show
the sample points that are closest to the bottom left element trans-
formed using the estimated group transformations. Aggregation
without registration leads to successively stronger misalignments
(top row). Our coupled optimization with simultaneous registration
significantly improves the accuracy of the generating transforma-
tions and allows extracting larger elements (bottom row).

dimensions are conservatively estimated from the furthest cluster
on the lines. Closest cluster centers and grid locations in the fitting
energies are re-assigned after each iteration.

Figure 9 shows the results of our optimization method for the 7× 3
regular structure of windows of Figure 6 that gives rise to a 13 × 5
grid in transformation space. A standard least-squares fit would
not yield the desired result for such a distribution due to the strong
influence of outliers and holes. In contrast, our approach automati-
cally classifies holes and outliers and leads to a robust grid estimate.
Figure 10 illustrates this feature for a more complex point set. Even
though a pattern in the point set on the left is barely noticeable for
the human eye, our method reliably detects the hidden lattice.

5 Aggregation

The model estimation stage operates in transformation space and
provides us with a set of regular structures at the scale of the ini-
tial surface patches. The objective of the final stage is to extract
large-scale repetitive elements and optimize the generating trans-
formations using simultaneous registration of the extracted surface
elements. This alignment in the spatial domain is essential, since
transformations estimated from the small-scale surface patches can
be inaccurate, which leads to accumulative errors that corrupt the
quality of the extracted regular structures (see Figure 11).

We propose an interleaved optimization that alternates between lo-
cal region growing and coupled registration. The goal of the for-
mer is to aggregate spatially adjacent patches of regular structures
with compatible group structure. To determine which neighboring
samples should be added to the patch, samples are prioritized with
respect to the alignment error of the registration. We use a heap
data structure to store all samples of the current patch boundary and
incrementally add adjacent samples, similar to the region growing
method of [Pauly et al. 2005].

Simultaneous Registration. We first discuss the case of a one-
parameter regular structure. During registration we apply small

changes to the generating transformation T of the group G with
elements T k. We use a linearization and thus relate the matrices
H+,H of modified and original transformation T+, T via

H+ ≈ H + εD · H,

where ε is small and the matrix D has the form

D =

0

B

@

δ −d3 d2 d̄1

d3 δ −d1 d̄2

−d2 d1 δ d̄3

0 0 0 0

1

C

A
(1)

(cf. [Hofer et al. 2005]). This is equivalent to estimating the image
point T+(x) as

T+(x) ≈ T (x) + ε
`

d × T (x) + δT (x) + d̄
´

, (2)

with d = (d1, d2, d3) and d̄ = (d̄1, d̄2, d̄3). When working with
congruence transformations we let δ = 0. Iterated transformations
are linearized by omitting terms of order ≥ 2 in the expression
T k

+ ≈ (H + εD · H)k. We obtain

Hk
+ ≈ Hk + εfk(H,D) + ε2(. . .), with

fk(H,D) = D · Hk + H · D · Hk−1 + · · · + Hk−1 · D · H.

To set up the simultaneous registration procedure, assume that the
model estimation procedure has related patch Pi to patch Pj by

the transformation T k. This knowledge contributes a term Qij to
the objective function as follows: Let Pi be represented by sample
points xl and let yl be that point in Pj that is closest to T k(xl).
Moreover, let nl be the unit normal vector of Pj at yl. Then we
form a combined point-plane and point-point distance term via

Qij :=
X

l

“

[(T k
+(xl) − yl) · nl]

2 + µ[T k
+(xl) − yl]

2
”

.

The point-point distance is used here for its regularizing effect; we
use µ = 0.1 for all our examples. Inserting the first order estimate
for T k

+, the term Qij becomes a quadratic function Qij(εD) in the
unknown elements of εD. Summing up over all patch pairs (Pi, Pj)
that model estimation has related by a transformation T k yields the
final quadratic objective function

F (εD) =
X

i,j
Qij .

Similar to the random selection of transformation pairs (Section 2),
we can restrict the sum to a random subset of patch pairs. For struc-
tures with a large number of repetitions such as the amphitheater of
Figure 1, less than 5% of all pairs is sufficient.

After solving the resulting linear system we have to update the
group generator T by a true similarity or true congruence. For
this projection onto the similarity group we use the method of Horn
[1987] to best approximate the matrix H+εD·H by the matrix H+

of a similarity transformation or congruence transformation. The
registration algorithm iterates between step estimation “F → min”
and projection.

So far we have considered one-parameter structures. A two-param-
eter structure generated by the original T plus an additional trans-
lation T2 (with translation vector t2) is as simple as the one-param-
eter case, since any group element is linear in t2. For a two-param-
eter structure spanned by rotation R and scaling S, we linearize R
and S and omit terms of order ≥ 2 in the products RlSk.
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Figure 12: Structure discovery and procedural design on a 3D model of an amphitheater. The top row indicates which of the three regular
structures can be reconstructed in their entirety when successively removing geometry. The density plots show a section of the distribution of
transformations of the structure depicted in blue. The recovered structures are used to procedurally design a new model in the bottom right.

6 Results

The implementation of our structure detection algorithm follows
the pipeline depicted in Figure 2. The user provides a point cloud
or surface mesh as input and specifies the initial sample spacing h.
Additional parameters include thresholds for cluster detection, grid
fitting, and registration, for which we use the same default settings
in all examples. The computation requires no additional user as-
sistance and returns as output the detected set of regular structures,
i.e., the representative elements, the number of repetitions, and the
transformation group generators.

Scalability. Figure 12 shows the results of our structure discovery
algorithm on a complex architectural data set. The model exhibits a
dominant 2-parameter structure composed of the arched window el-
ements with a rotational component of 72 repetitions and a vertical
translation of 3 repetitions. The top row of elements is detected as
a separate 1-parameter ring structure. In the interior the algorithm
finds a 1-parameter rotational structure of supporting columns with
35 repetitions. This example highlights an important feature of our
algorithm. Due to the accumulation of similarity transformations in
transformation space, structure detection is robust even for a sparse
set of sample pairs. For example, the transformation group of the
2-parameter structure contains (72×3)2 = 46,656 pairwise similar-
ity transformations. However, dominant clusters sufficient for our
global optimization method to extract the entire structure already
appear when about 1,600 of these transformations are present.

Robustness. The characteristic accumulation of transformations
also explains why our method is very robust with respect to missing
geometry. We run the algorithm with the same parameter settings
after successively removing random pieces of the amphitheater. As
Figure 12 illustrates, the dominant structures are reliably detected
even in the presence of substantial holes. Figure 13 shows that also
regular structures with a relatively small number of repetitions can
be detected in complex models with substantial clutter. This exam-
ple also highlights the difference to top-down symmetry detection
methods (cf. Figure 7 of [Mitra et al. 2006]). The latter extracts

mostly pairwise symmetries, such as the global reflective symme-
try or the rigid motions mapping the towers or chimneys onto each
other. In contrast, our method detects translational and rotational
grids of windows and other structural elements, but ignores the
chimneys, since their spatial arrangement does not match any of
the repetitive patterns defined in our framework. On the other hand,
our method is capable of discovering and compactly representing
structures composed of very small elements such as the balustrade,
given a sufficiently dense sampling. Figure 14 shows the stability
of our method with respect to noise in the input shape. Noise leads
to errors in the pairwise transformations estimated for the initial
surface patches. This results in overlapping transformation clus-
ters that cannot be separated correctly by the clustering method. As
the figure illustrates, our method tolerates high noise levels that can
increase with the number of repetitions of the regular structure.

Model Repair. Figures 15 and 16 show structure detection and
model repair on noisy and incomplete surface scans. Two 2-
parameter translational structures have been discovered in the out-
door laser scan of Figure 15, even though they account for only
roughly 35k of the 250k sample points of the whole model. Re-
constructing a continuous surface from this point set is a challeng-
ing task, since the sampling is highly non-uniform and gradually
decreases in density due to the perspective distortion of the single-
viewpoint scanner. In addition, occlusion leads to substantial holes
in the data. Traditional surface reconstruction methods that are
oblivious to global structural information infer vertex connectiv-
ity using local smoothness priors only. As Figure 15 illustrates,
this leads to inferior results in regions of low sampling density and
holes. However, while local reconstruction fails, our robust global
optimization still reliably detects the regular translational grid. This
enables non-local reconstruction that exploits structural regularity
to fill holes and increase the sampling rate in regions of low point
density. We illustrate this functionality by replicating the represen-
tative element using the group transformations. In the future, we
plan to investigate more sophisticated methods that achieve super-
resolution reconstruction by combining the information of all ele-
ments of the extracted regular structure. This would be akin to the
use of non-local means in image restoration [Buades et al. 2008].



Figure 13: Our method detects multiple 1- and 2-parameter structures. The blue regions denote the representative elements. All structures
were detected with 30k samples distributed uniformly across the model, except for the balustrade, for which the rate was increased to 100k.

The chambered nautilus shell of Figure 16 exhibits a characteris-
tic spiral pattern of the chambers. The model is composed of 72
individual scans that have been aligned and merged. Even though
substantial effort has been invested in the acquisition process, fine-
scale detail is not adequately captured, and noise and holes cor-
rupt the model. Our algorithm robustly detects the 1-parameter
spiral structure with a generating transformation composed of ro-
tation and scaling. Replication of the representative element using
the generating transformation fills in missing regions and leads to
a high quality reconstruction. This example highlights the high de-
gree of precision of our simultaneous registration method, avoiding
error accumulation common in iterative alignment schemes.

Geometry Synthesis. Structure detection facilitates advanced
geometry synthesis operations as illustrated in Figures 12 and 16.
The amphitheater has been edited by replacing the representative el-
ements and changing the number of repetitions. The nautilus shell
has been altered by extrapolating the regular structure to add addi-
tional repetitive elements. This type of high-level geometry editing,
though intuitive, would be difficult to achieve manually or without
a precise knowledge of the generating transformations. These ex-
amples illustrate the potential of automatic structure discovery for
reverse engineering and CAD applications.

σ = 7.0 σ = 6.3 σ = 5.4 σ = 3.1

Figure 14: Structure detection on procedural geometry with noise
uniformly distributed in the interval [−σ, σ] in units of average lo-
cal sample spacing. The images show the maximum noise level
under which we still recover the helical structure. These models
were generated with Carlo Séquin’s sculpture generator.

Performance. Table 1 lists statistics for the examples shown in
this paper. Timings for transformation analysis include the sam-
pling of the input model, computation of similarity sets using cur-
vature descriptors, the ICP refinement to estimate the sample-pair
transformations, and the classification and transformation mapping
of regular structures. Since no prior information on the location,
type, or scale of regular structures is assumed, transformation anal-
ysis operates on a uniform sampling of both the model and the set of
pairwise transformations. Consequently, this stage is computation-
ally the most involved of our pipeline. Model estimation and aggre-
gation only process the set of detected small-scale regular structures
and thus account for less than 5% of the total computation time.

Figure 15: Structure detection and model repair on a complex out-
door scan. Our algorithm fully automatically discovers two trans-
lational grids within the acquired point cloud. Standard surface
reconstruction yields an incomplete and inconsistent triangulation
shown in the middle. The models on the right have been created by
augmenting the point set using replicated samples from the repre-
sentative elements prior to reconstruction.



Figure 16: Model repair and geometry synthesis for a scan of a chambered nautilus shell. From left to right: photograph of original model,
input data consisting of 72 registered laser scans, repaired model with additional synthesized elements indicated in orange.

Limitations. Currently our method cannot handle ‘warped’ se-
quential repetitive patterns of patches P1, P2, P3, . . . where the
transformation Ti,i+1 that maps Pi to Pi+1 is changing with the in-
dex i. For example, the colosseum of Rome has an elliptic base and
therefore does not exhibit rotational symmetry. Our method cannot
find a suitable generative model for such objects. We do not include
patterns generated by non-commutative crystallographic groups di-
rectly, but offer only a two-stage process for detection: Applying
the methods of this paper first, and detect symmetries of building
blocks afterwards. At present it seems that the commutative case
is at the limit of what can be done with our method of mapping to
transformation space. In particular, iterative systems of transforma-
tions which generate fractals (in general non-commutative) are not
considered in our framework.

7 Conclusions & Future Work

We have shown how to recognize and extract repetitive structures
in 3D data without prior knowledge of the size, shape, and loca-
tion of the individual elements that define the structure. An ap-
propriate representation of similarity transformations reduces this
problem to grid fitting in 2D. We introduced an optimization al-
gorithm for detecting such grids which has proven very robust to
outliers and missing data, thus facilitating structure discovery in
complex geometries with substantial clutter. Simultaneous regis-
tration achieves a high degree of accuracy of the extracted generat-
ing transformations. Our method handles a wide variety of regular
structures in a single unified framework, requires no user interac-
tion, and is applicable for large, complex geometric models that
can be noisy and highly incomplete. We have shown applications
in compression, model repair, and large-scale geometry synthesis.

The method presented in this paper is not restricted to 2D groups
and 3D geometry, which opens up new applications in the analysis
of volumetric and general higher-dimensional scientific data. We
would also like to point to a very general issue connected with this
paper: The Kolmogorov complexity of an entity means the size of
the shortest possible description of that entity, once language and

Theater Castle Helix Outdoor Nautilus

# Vertices 100,000 172,606 161,263 249,532 53,722

# Samples 26,013 29,815 15,844 49,742 88,505

# Pair Transforms 49,670 82,524 44,517 99,484 142,406

Transform Analysis 104.13 209.6 15.35 174.9 56.2

Model Estimation 0.23 3.64 0.55 1.79 0.66

Aggregation 4.41 6.92 0.16 0.31 1.29

Table 1: Statistics for our algorithm. Timings are in seconds, mea-
sured on a 3.4GHz Pentium with 2GB RAM.

syntax are formalized. Certainly repetitiveness in 3D shapes is an
essential ingredient in their concise description. We leave further
exploration of this relation between transformation groups and de-
scription complexity as a topic of future research.

Appendix

We describe how to classify the 1- and commutative 2-parameter
subgroups of the group of similarities which represent a basic math-
ematical entity in our investigation of repetitive structures. Con-
sider a similarity transformation T (τ) which is smoothly depen-
dent on a time parameter τ and which at time τ = 0 starts with the
identity transformation. Equation (2) shows that for the time value
τ = 0 we have the linearization T (ε)(x) = x+ε

`

d×x+δx+d̄
´

,
and therefore

d

dτ
T (τ)(x)

˛

˛

˛

τ=0

= d × x + δx + d̄. (3)

According to the general theory of matrix groups [Hall 2003], for
every choice of d, d̄, δ there is a unique one-parameter subgroup
T (τ) = exp(τ ·D) such that (3) is valid. The type of one-parameter
groups can be read off from properties of the velocity data d, d̄, δ
[Hofer et al. 2005]:

case: Trans Scale Rot Rot + Trans Rot + Scale

d o o 6= o 6= o 6= o

d · d̄ 0 6= 0

δ 0 6= 0 0 0 6= 0

We can encode velocity data d, d̄, δ in a matrix D as in Equation
(1), so there is a 1-1 correspondence between matrices D and one-
parameter groups.

We now wish to find the commutative connected two-parameter
subgroups of the similarity group. Note that all possible D’s form a
vector space, denoted by g, of dimension 7. According to the gen-
eral theory [Hall 2003], any commutative 2-parameter subgroup H
is the union of one-parameter groups whose velocity data constitute
a 2-dimensional subspace h of g such that

D,D′ ∈ h =⇒ [D,D′] = O, where [D,D′] := DD
′ − D

′
D.

An easy computation shows that the bracket operation applied to
velocity data d, d̄, δ and d′, d̄′, δ′ results in

d
′′ = d × d

′, d̄
′′ = δd̄′ − δ′d̄ + d × d̄

′ − d
′ × d̄, δ′′ = 0.

It is now a matter of linear algebra to find out which subspaces h
fulfill these condition. It turns out that there are only the following
possibilities:

• Case Trans × Trans: h is spanned by (o, d̄, 0) and (o, d̄′, 0),
and so every 1-parameter group in H is a translation.



• Case Rot × Trans: After translating the coordinate system,
h is spanned by velocity data (d,o, 0) and (o,d, 0) which
correspond to rotation about the axis d and translation parallel
to this axis, respectively.

• Case Rot × Scale: After translating the coordinate system,
h is spanned by velocity data (o,o, 1) and (d,o, 0) which
correspond to uniform scaling whose center is the origin, and
a rotation about an axis through the origin, respectively.
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